SlideShare a Scribd company logo
1 of 77
TWEEZER PEPTIDE MIMICS
OF THE ESTROGEN
RECEPTOR FOR
DETERMINATION OF
ENDOCRINE DISRUPTOR
CHEMICALS
Rosa Romeralo-Tapia
Supervisor: Prof. Dr. Johan Van der Eycken
Laboratory for Organic and Bioorganic SynthesisThesis submitted to obtain the degree of
Doctor in Sciences: Chemistry
13 October 2011
• Challenges in endocrine disrupting chemicals
research: EST-SENDICHEM project
2/75
Overview
• Challenges in endocrine disrupting chemicals
research: EST-SENDICHEM project
• Design artificial receptor
3/75
Overview
• Challenges in endocrine disrupting chemicals
research: EST-SENDICHEM project
• Design artificial receptor
• Synthesis type A, B and C tweezer peptide
mimics
4/75
Overview
• Challenges in endocrine disrupting chemicals
research: EST-SENDICHEM project
• Design artificial receptor
• Synthesis type A, B and C tweezer peptide
mimics
• Structure analysis by NMR spectroscopy
5/75
Overview
• Challenges in endocrine disrupting chemicals
research: EST-SENDICHEM project
• Design artificial receptor
• Synthesis type A, B and C tweezer peptide
mimics
• Structure analysis by NMR spectroscopy
• Screening tweezer peptide mimics by ACE6/75
Overview
ENDOCRINE DISRUPTING
CHEMICALS
(EDCs)
“Endocrine disruptors are defined as exogenous substances or
mixtures that alter the function(s) of the endocrine system and
consequently cause adverse health effects in intact organisms, or their
progeny or (sub) population”*
Definition of EDCs
NATURAL and SYNTHETIC
HORMONES
COOLANTS, PESTICIDES PLASTICISERS
HO
OH
OH
Cl
Cl
Cl
Cl
Cl
O
O
O
O
ClCl
HO
OH
Cl
Cl Cl
Estradiol (E2) Polychlorinated bisphenols
(PCBs)
Bisphenol-A (BPA)
Ethinylestradiol (EE) 1,1,1-Trichloro-2,2-bis-
(4'-chlorophenyl)ethane (DDT)
Di-n-butylphthalate
(DBP)
HO
*Definition given by International Programme on Chemical Safety
8/75
http://www.chemtrust.org.uk
ClCl
Cl
Cl Cl
Cl
Cl
Cl
Cl
Cl
DDT
N
N
N
N
H
Cl
N
H
AtrazinePCBs
Effects on wild life
DDT spil in Florida Lake
Reproduction-related
abnormalities
DDT and PCB in fat
Greenland
Premature death
Intersex characteristics
Atrazine exposure ??
9/75
Challenges in EDC Research
• Establish cause-effect
relationships
• Obtain reliable exposure data
• Identify which chemicals cause
endocrine disruption
10/75
Challenges in EDC Research
• Establish cause-effect
relationships
• Obtain reliable exposure data
• Identify which chemicals cause
endocrine disruption
11/75
NEW SORBENT TO
SELECTIVELY
RETAiN EDCs FROM WATER
EDC-CONTAMINATED
WATER
Solid phase affinity extraction
Prof. dr. Annemieke Madder
(Coordinator)
Organic and Biomimetic Chemistry
  Prof. dr. P. Sandra
Separation Sciences
Prof. dr. F. Du Prez
Polymer Chemistry
  Prof. dr. J. Van der Eycken
Organic and Bioorganic Synthesis
Prof. dr. J. Martins
NMR & Structure Analysis 
12/75
Mode of action of
EDCs
Hormone-related
mechanisms
mone synthesis (1)
mone transport (2, 3, 11)
mone metabolism (4)
www.medscape.com Source: Expert Rev Of Obstet Gynacol 2008
13/75
Mode of action of
EDCs
B) Receptor-mediated
mechanisms
Hormone-related
mechanisms
mone synthesis (1)
mone transport (2, 3, 11)
mone metabolism (4)
www.medscape.com Source: Expert Rev Of Obstet Gynacol 2008
14/75
://whqlibdoc.who.int
B) Receptor mediated EDCs GENISTEIN (natural hormone)
ETHINYLESTRADIOL, DIETHYLSTILBESTROL (synthetic
hormones)
DDT (pesticide), BISPHENOL-A (plasticiser)
• Agonist: mimicking the natural hormone ER
recognizes
• Antagonist: blocking the hormone receptor positions EDCs as
ligands
Mode of action of
EDCs
Natural
hormone
EDC
ER
ER Estrogen
Receptor
15/75
NEW SORBENT TO
SELECTIVELY
RETAiN EDCs FROM WATER
(based on receptor-mediated
mechanism)
EDC-CONTAMINATED
WATER
Solid phase affinity extraction
Van der Plas SE et al. Eur. J. Org. Chem. 2009, 11 (Sp. Iss. SI), 1796-1805
Figaroli S, Madder A. Tetrahedron, 2010, 66, 6912-6918
 Solid support (Polymer)
 Molecule with affinity to
EDCs:
MIMIC OF
ESTROGEN
RECEPTOR
16/75
MODEL DESIGNS
FOR MIMICS OF
HORMONE BINDING DOMAIN
ESTROGEN RECEPTOR
(HBD-hERα)
Design HBD-hERα mimic
hERα: 595 AA, 7 active sites
C terminal: HBD
297-595 (~300 AA)Brzozowski et al. Nature 1997, 389, 753-758
Tannenbaum et al. Proc. Natl. Acad. Sci. 1998, 95, 5998-
ScaffoldScaffold
Hormone binding domain
Artificial receptor
Hormone Binding Activity
Few selected Amino acids
18/75
ScaffoldScaffold
Hormone binding domain
ANCHORING
AMINO ACIDS
EDCs-ER COMPLEXES
Design HBD-hERα mimic
19/75
Histidine 524 (H11), Arginine 394 (H5), Glutamic acid 353 (H3)
hERα-E2
Hydrophilic interactions
Design HBD-hERα mimic
Amino acids
OH
HO
Estradiol (E2)
Tanenbaum D.M et al. Proc. Natl. Acad. Sci. USA 1998, 95, 5998-6003
20/75
A-B rings: Ala 350 (H3), Leu 387 (H5), Leu 391 (H5), Phe 404
(βturn), Met 388 (H5) D ring: Leu 525 (H11), Ile 424 (H7), Gly 521
(H11)
hERα-E2
Hydrophobic residues
Design HBD-hERα mimic
Amino acids
Tanenbaum D.M et al. Proc. Natl. Acad. Sci. USA 1998, 95, 5998-6003
21/75
DES
Hydrophilic
contacts
Glu 353
Arg 394
His 524
Hydrophobi
c
contacts
Ala 350
Leu 386
Leu 387
Raloxifene
Hydrophilic
contacts
Glu 353
Arg 394
His 524
Hydrophobi
c
contacts
Ala 350
Leu 354
Leu 387
E2
Hydrophilic
contacts
Glu 353
Arg 394
His 524
Hydrophobi
c
contacts
Ala 350
Leu 387
Met 388
Leu 391
Design HBD-hERα mimic
Amino acids
Glu
Arg
His
Ala
Leu
Met
Phe
Data obtained from Protein Data Bank http:// www.pbd.org
DES: diethylstilbestrol E2: 17Beta-estradiol
22/75
.H1H2..MGLLTNLADREL..H4..LEILMIGLVWR.. βturn
..H6H7H8H9H10..GMEHL..
Helix 3 Helix 5
Helix 11
H12..C terminal
His 524
(H11)
Arg 394 (H5)
Glu 353 (H3)
Ala 350 (H3)
Leu 387 (H5)
Leu 391 (H5)
Phe 404 (βturn)
Met 388 (H5)
Leu 525 (H11)
Ile 424 (H7)
Gly 521 (H11)
N
C
H11
H3
H5
H7
Design HBD-hERα mimic
Tertiary structure
N C
C
23/75
CHEMICAL PLATFORM
ScaffoldScaffold
Hormone binding domain
Design HBD-hERα mimic
24/75
Pg2HN
NHPg1
O
OH
• CO2H to be attached on solid support – Solid phase synthesis
• Aromatic ring (planar, Π-Π interactions)
• Two amines orthogonally protected
• P1-P2: Peptide strands
(building blocks= Ala, Leu, Phe, Met, Glu, Arg, His)
Design HBD-hERα mimic
Dipodal scaffold
25/75
Pg2HN
NHPg1
O
OH
• CO2H to be attached on solid support – Solid phase synthesis
• Aromatic ring (planar, Π-Π interactions)
• Two amines orthogonally protected
• P1-P2: Peptide strands
(building blocks= Ala, Leu, Phe, Met, Glu, Arg, His)
Design HBD-hERα mimic
Dipodal scaffold
26/75
P g2HN
NHPg1
O
OH
• CO2H to be attached on solid support – Solid phase synthesis
• Aromatic ring (planar, Π-Π interactions)
• Two amines orthogonally protected (Pg= protective group)
• P1-P2: Peptide strands
(building blocks= Ala, Leu, Phe, Met, Glu, Arg, His)
Design HBD-hERα mimic
Dipodal scaffold
27/75
P2HN
NHP1
O
OH
• CO2H to be attached on solid support – Solid phase synthesis
• Aromatic ring (planar, Π-Π interactions)
• Two amines orthogonally protected
• P1-P2: Peptide strands
(building blocks= Ala, Leu, Phe, Met, Glu, Arg, His)
Design HBD-hERα mimic
Dipodal scaffold
28/75
SOLID-PHASE
CHEMISTRY
FOR SYNTHESIS OF
MODEL PEPTIDE MIMICS
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5
C N
C N
HO
O
NO2
NH2
Fmoc-Cl
NaHCO3
dioxane/H2O
Model Peptide Mimics
Synthesis IV.1: Neustadt BR et al.Tetrahedron Lett. 1998, 39, 5317-
30/75
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5
N C
N C
HO
O
NO2
NH2
Fmoc-Cl
NaHCO3
dioxane/H2O
Synthesis IV.1: Neustadt BR et al.Tetrahedron Lett. 1998, 39, 5317-
Model Peptide Mimics
31/75
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5
C N
HO
O
NO2
NH2
Fmoc-Cl
NaHCO3
dioxane/H2O
N C
Synthesis IV.1: Neustadt BR et al.Tetrahedron Lett. 1998, 39, 5317-
Model Peptide Mimics
32/75
Type A
Model Peptide Mimic
based on
Linear Fmoc-SPPS
33/75
O
O
NO2
NHFmoc
O
O
NO2
HN
O
NHFmoc
Wang
resin
l = 1.10 mmol/g
(i) 20% piperidine/DMF
(ii) Fmoc-Gly-OH, DIC, DMAP,
CH2Cl2 (x2)
Preactivation
reagents
(1st coupling)
Preactivation
reagents
(2nd
coupling)
Loading
(mmol/g)
Yield
(%)
Fmoc-Gly-OH,
DIC
Fmoc-Gly-OH,
DIC, HOBt
0.58 57%
Fmoc-Gly-OH,
DIC, HOBt
Fmoc-Gly-OH,
DIC, DMAP
0.90 89%
Fmoc-Gly-OH,
DIC, DMAP
Fmoc-Gly-OH,
DIC, DMAP
1.00 Quantitative
Type A model: Linear
SPPS
34/75
O
O
NO2
HN
O
N
H
O
H
N
N
H
O
O
H
N O
O
O
NO2
HN
O
NHFmoc
1. 20% piperidine/DMF
2. Fmoc-Ala-OH, HBTU, DIPEA, DMF
3. 20% piperidine/DMF
4. Fmoc-Leu-OH, HBTU, DIPEA, DMF
5. 20% piperidine/DMF
6. Fmoc-Phe-OH, HBTU, DIPEA, DMF
7. 20% piperidine/DMF
8. DIPEA/Ac2O/CH2Cl2 (1/1/3)
Type A model: Linear
SPPS
35/75
O
O
NH2
HN
O
N
H
O
H
N
N
H
O
O
H
N O
O
O
NO2
HN
O
N
H
O
H
N
N
H
O
O
H
N O
V.2
V.3
SnCl2. 2H2O
DMF
Crude cleaved product
Crude cleaved product
min0 5 10 15 20
mAU
0
50
100
150
200
250
300
350
11.259 min
min0 5 10 15 20
mAU
0
200
400
600
800
1000
1200
DAD1 B, Sig=254,20 Ref=off (F:07-11-06056-1201.D)
10.449 min
min0 5 10 15 20
mAU
0
200
400
600
800
1000
1200
)
10.449 min
Type A model: Linear
SPPS
36/75
Solvent A: 5mM NH4OAc/H2O Solvent B: CH3CN 0-100% B in 15 minutes (λ = 214 nm )
O
O
O
NH2
HN
O
N
H
O
H
N
N
H
O
O
H
N
1. Fmoc-Gly-OH, DIC, DMAP, CH2Cl2 (x 2)
2. 20% piperidine/DMF
3. Fmoc-Glu(tBu)-OH, HBTU, DIPEA, DMF (x 2)
4. 20% piperidine/DMF
Repeat 3,4
5. Fmoc-Ala-OH, HBTU, DIPEA, NMP
Repeat 4
6. DIPEA/Ac2O/CH2Cl2 (1/1/3) (x 2)
7. 95%TFA/H20
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
OHO
O
O
Type A model: Linear
SPPS
37/75
Type B and C
Model Peptide Mimics
based on Convergent
Cu-Catalyzed 1,3 Dipolar
Cycloaddition Reactions
38/75
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
N C
N C
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5
N C
C N
Peptide Mimics Synthesis
39/75
Franke R et al. Tetrahedron Lett. 2005, 46, 4479-4482
CuAAC
Cu-alkyne azide 1,3-cycloaddition
H2N
R1
N
N
N
CO2H
R2
H2N
N
O
R1
CO2H
R2
1
23
4
H
H acceptor H acceptor
H
H donor H donor
AMIDE
BOND
1,4-SUBSTITUTED
TRIAZOLE
RING
i) N3CH2CO-TSKYREG-OH,
CuI
ii) Cleavage
1
4
40/75
O
O
NO2
NHFmoc
O
O
NH2
NHFmoc
HO
O
HN
NHFmoc
O
HO
O
NH2
NHFmoc
SnCl2. 2H2O,
DMF +
(i) 4-pentynoic acid,
DIC, CH2Cl2
(ii) 95%TFA/H2O
Scaffold towards Click
Approach
41/75
O
O
NO2
NHFmoc
O
O
NH2
NHFmoc
HO
O
HN
NHFmoc
O
HO
O
NH2
NHFmoc
HO
O
HN
N
H
O
O
SnCl2. 2H2O,
DMF +
(i) 4-pentynoic acid,
DIC, CH2Cl2
(ii) 95%TFA/H2O
(i) 4-pentynoic acid,
DIC, DMAP, CH2Cl2
(ii) 95%TFA/H2O
Scaffold towards Click
Approach
42/75
O
O
NO2
NHFmoc
O
O
NH2
NHFmoc
HO
O
HN
NHFmoc
O
HO
O
NH2
NHFmoc
HO
O
HN
N
H
O
O
SnCl2. 2H2O,
DMF +
(i) 4-pentynoic acid,
DIC, CH2Cl2
(ii) 95%TFA/H2O
(i) 4-pentynoic acid,
DIC, DMAP, CH2Cl2
(ii) 95%TFA/H2O
HO
O
HN
NHFmoc
O(i) 4-pentynoic acid,
HBTU, DIPEA, CH2Cl2
(ii) 95%TFA/H2O
Scaffold towards Click
Approach
43/75
O
O
NO2
NHFmoc
O
O
NH2
NHFmoc
HO
O
HN
NHFmoc
O
HO
O
NH2
NHFmoc
HO
O
HN
N
H
O
O
SnCl2. 2H2O,
DMF +
(i) 4-pentynoic acid,
DIC, CH2Cl2
(ii) 95%TFA/H2O
(i) 4-pentynoic acid,
DIC, DMAP, CH2Cl2
(ii) 95%TFA/H2O
O
O
HN
NHFmoc
O(i) 4-pentynoic acid,
HBTU, DIPEA, CH2Cl2
Scaffold towards Click
Approach
44/75
New scaffold
Synthesis
Azidopeptides
O
O
N
H
O
NH2 O
O
N
H
O H
N
N3
O
R1
R2HBTU, DIPEA,
DMF (x 2)
2-ClTrt.
resin
R1
R2
HBTU-mediated
Fmoc SPPS
AcOH/ TFE/ CH2Cl2
O
N3
HO
23-70% crude purity
HO
O
N
H
O H
N
N3
O
R1
R2
Azido acetic acid
coupling to free amine
min0 5 10 15 20
mAU
0
200
400
600
800
08-12-11 -
10.502
10.941
11.524
min0 5 10 15 20
mAU
0
200
400
600
800
- - 
10.502
10.941
N3CH2CO-Leu-Phe
Leu-Phe
HOBt
Synthesis N CH CO H:Franke R et al. Tetrahedron Lett. 2005, 46, 4479-4482
45/75
Imidazole-1-sulfonyl azide hydrochloride: Goddard-Borger ED et al. Org. Lett. 2007, 9, 3793-3800
Devulder V, Backaert F, Van der Eycken J. Ghent University. 2010
O
O
N
H
O H
N O
O
N
H
O H
N
N3
O
R1
R22-Cl Trt.
resin
R1
R2
HBTU-mediated
Fmoc SPPS
AcOH/ TFE/ CH2Cl2
CuSO4. 5H2O
THF/H2O
R3
O
NH2
R3
N
N
S
O
N3
O
HCl
OH
O
N
H
O
H
N
N3
O
R1
R2
R3
58-76% crude purity
Synthesis
AzidopeptidesDiazo transfer reaction
min0 5 10 15 20
mAU
0
200
400
600
800
1000
N3Leu-Leu-Leu-Gly-Leu-Phe-OH
N3Leu-Leu-Gly-Leu-Phe-OH
Leu-Leu-Leu-Gly-Leu-Phe-OH
46/75
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
N C
N C
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5
Model Peptide Mimics
47/75
O
NHFmoc
O H
N
O
N
N N
O
H
N
O
N
H
O
OH
i) 20%piperidine/DMF
ii) 4-pentynoic acid,
HBTU, DIPEA, DMF
O
NHFmoc
O H
N
O
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N
O
N
H
O
OH
ONN
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
i)
ii) TFA,H2O (95%)
NH
NH
O
O
O N
N
H
O
O
H
N
O
OH
ON N
Type B model: Sequential Click
48/75
New scaffold
O
NHFmoc
O H
N
O
N
N N
O
H
N
O
N
H
O
OH
i) 20%piperidine/DMF
ii) 4-pentynoic acid,
HBTU, DIPEA, DMF
O
NHFmoc
O H
N
O
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N
O
N
H
O
OH
ONN
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
i)
ii) TFA,H2O (95%)
NH
NH
O
O
O N
N
H
O
O
H
N
O
OH
ON N
Type B model: Sequential Click
49/75
O
NHFmoc
O H
N
O
N
N N
O
H
N
O
N
H
O
OH
i) 20%piperidine/DMF
ii) 4-pentynoic acid,
HBTU, DIPEA, DMF
O
NHFmoc
O H
N
O
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N
O
N
H
O
OH
ONN
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
i)
ii) TFA,H2O (95%)
NH
NH
O
O
O N
N
H
O
O
H
N
O
OH
ON N
Type B model: Sequential Click
50/75
O
NHFmoc
O H
N
O
N
N N
O
H
N
O
N
H
O
OH
i) 20%piperidine/DMF
ii) 4-pentynoic acid,
HBTU, DIPEA, DMF
O
NHFmoc
O H
N
O
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N
O
N
H
O
OH
ONN
HO
O
N
H
O H
N
N3
O
CuI, Ascorbic acid, DIPEA,
2,6-lutidine/DMF
i)
ii) TFA/ H2O (95%)
NH
NH
O
O
O N
N
H
O
O
H
N
O
OH
ON N
Type B model: Sequential Click
51/75
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N
O
N
H
O
OH
ONN
Crude product ( 7 steps)
min0 5 10 15 20
mAU
0
200
400
600
800
1000
DAD1 A, Sig=214,20 Ref=off (F:09-02-09080-1201.D)
9.225
9.686
10.149
13.340
min0 5 10 15 20
mAU
-100
-50
0
50
100
150
200
250
300
DAD1 A, Sig=214,20 Ref=off (F:09-07-02093-0501.D)
10.285
After RP-HPLC
Purity 82%
Type B model: Sequential Click
52/75
Solvent A: 5mM NH4OAc/H2O Solvent B: CH3CN 0-100% B in 15 minutes (λ = 214 nm )
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5N C
C N
Peptide mimics synthesis
53/75
O
NHFmoc
O H
N
O
Wang
resin
O
O
HN
O
H
N
O
N
H
O
H
N
N
H
O
O
NHFmoc
O OtBu
i) DBU/4-methylpiperidine/DMF (3/17/80)
ii)Fmoc-AA-OH, HATU, DIPEA, DMF
x 4 AA
i)
CuI, ascorbic acid, DIPEA,
2.6-lutidine/DMF, 80ºC, MW
ii) DBU/4-methylpiperidine/DMF (3/17/80)
iii) TIS/TFA/H2O
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N
NH2
O
HO O
O
O
HO
O
N
H
O H
N
N3
O
Type C model: SPPS-Click
54/75
O
NHFmoc
O H
N
O
Wang
resin
O
O
HN
O
H
N
O
N
H
O
H
N
N
H
O
O
NHFmoc
O OtBu
i) DBU/4-methylpiperidine/DMF (3/17/80)
ii) Fmoc-AA-OH, HATU, DIPEA, DMF
x 4 AA
i)
CuI, ascorbic acid, DIPEA,
2.6-lutidine/DMF, 80ºC, MW
ii) DBU/4-methylpiperidine/DMF (3/17/80)
iii) TIS/TFA/H2O
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N
NH2
O
HO O
O
O
HO
O
N
H
O H
N
N3
O
Type C model: SPPS-Click
55/75
O
NHFmoc
O H
N
O
Wang
resin
O
O
HN
O
H
N
O
N
H
O
H
N
N
H
O
O
NHFmoc
O OtBu
i) DBU/4-methylpiperidine/DMF (3/17/80)
ii)Fmoc-AA-OH, HATU, DIPEA, DMF
x 4 AA
i)
CuI, ascorbic acid, DIPEA,
2.6-lutidine/DMF, 80ºC, MW (80W)
ii) DBU/4-methylpiperidine/DMF (3/17/80)
iii) TIS/TFA/H2O
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N
NH2
O
HO O
O
O
HO
O
N
H
O H
N
N3
O
Type C model: SPPS-Click
56/75
O
NHFmoc
O H
N
O
Wang
resin
O
O
HN
O
H
N
O
N
H
O
H
N
N
H
O
O
NHFmoc
O OtBu
i) DBU/4-methylpiperidine/DMF (3/17/80)
ii)Fmoc-AA-OH, HATU, DIPEA, DMF
x 4 AA
i)
CuI, ascorbic acid, DIPEA,
2.6-lutidine/DMF, 80ºC, MW
ii) DBU/4-methylpiperidine/DMF (3/17/80)
iii) TIS/TFA/H2O
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N
NH2
O
HO O
O
O
HO
O
N
H
O H
N
N3
O
Purity 80%
min0 5 10 15 20
mAU
-100
-50
0
50
100
150
200
250
300
DAD1 A, Sig=214,20 Ref=off (10-01-25074-3301.D)
7.999
8.869
Type C model: SPPS-Click
57/75
Solvent A: 5mM NH4OAc/H2O Solvent B: CH3CN 0-100% B in 15 minutes (λ = 214 nm )
STRUCTURE ANALYSIS
BY
NMR
SPECTROSCOPY
“The biological function of peptides and
proteins is defined by their ability to adopt
well-defined conformations that complement
those of their binding partner […]”
Pedersen DS, Andrew Abell Eur. J. Org. Chem. 2011, 2399-2411
2D J-correlation experiment
2D-NMR spectroscopy: H-H TOCSY
59/75
NH
NH
HO
O
O N
N
H
N
H
NO
O
H
N
O
OH
ON N
O
N
H O
OH
ONN
Hα
Hβ
Hβ
Hβ
γH
δH
δH
Hα
Type B peptide mimic : H-H TOCSY
700 MHz, 25°C,
CD3CN/H2O
ppm
7.27.47.67.88.08.2 ppm
9
8
7
6
5
4
3
2
1
Leu NH
Leu Hα
Leu Hβ
Leu Hγ
Leu Hδ
Leu Hδ
Phe NH
Phe Hα
Phe Hβ
Phe Hβ
In collaboration with K Gheysen, Prof dr J Martins
60/75
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N
NH2
O
HO O
O
CH3 O
Hα Hα
Hα
Hα
Hα
Hα
Hβ
Hβ
Gly1
Gly2
β
700 MHz, 25°C, CD3CN/H2O
Type C peptide mimic : H-H TOCSY
ppm
7.27.47.67.88.08.2 ppm
9
8
7
6
5
4
3
2
1
Phe Hβ
Phe Hβ
Phe Hα
Phe NH
Gly1 Hα
Gly1 Hα
Gly1 NH
Gly2 Hα
Gly2 Hα
Gly2 NH
Ala NH
Ala Hβ
Ala Hα
In collaboration with K Haustraete, K Gheysen, Prof dr J
61/75
Type A peptide mimic : H-H TOCSY
H (NH) signals
700 MHz, 25°C, CD3CN/H2O
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
OHO
O
O
In collaboration with K Gheysen, Prof dr J Martins
62/75
2D nOe-correlation experiment
Coupling through space
2D-NMR spectroscopy: H-H NOESY
63/75
.
1H-1H nOeSY (RED)
600 ms mixing time,
700 MHz, 25°C, CD3CN/H2O (5/1)
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
OHO
O
O
nOe contact
NH H alpha
N to C direction
ppm
7.27.47.67.88.08.28.48.6 ppm
9
8
7
6
5
4
3
2
1
H alpha
Phe
NH Leu
nOe contact
Type A peptide mimic: H-H NOESY
In collaboration with K Gheysen, Prof dr J Martins
64/75
.
NMR-monitoring H/D exchange
N
O
H
N
HN
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
O
O
R1
OO
R3
R4
R2
R5
O
O N
O
D
N
ND
N
D
D
N
N
D
N
D
D
N
O
O
O
O
O
D
N
N
O
O
R1
OO
R3
R4
R2
R5
O
O
H
H
HH H H
CH3CN/D2O
CH3CN/H2O
H replaced by D: NO H BONDING
H remains: H BONDING
Different spin magnetic properties H and D nuclei
H visible vs D invisible in 1
H-NMR region
65/75
Type A peptide mimic: H/D exchange
BLACK: CH3CN/H2O RED: CH3CN/D2O
In collaboration with K Gheysen, Prof dr J Martins
66/75
DO
O
ND
O
D
N
ND
N
D
D
N
N
D
N
D
D
N
O
O
O
O
O
D
N
N
D
O
O
ODO
O
O
NH Phe
(7.65 ppm)
7.11 ppm
H orto (Phe)
7.18 ppm
H meta (Phe)
1.35 ppm
Hβ (Leu)
nOe
contacts
Type B peptide mimic: H-H NOESY
< 5Ǻ
H alpha NH
N to C direction
NH
NH
HO
O
O N
N
H
N
H
N
O
O H
N
O
OH
ON N
R
O
N
H O
OH
ONN
H
H H nOe cont act
BETWEEN
STRANDS
H
H
H
600 ms mixing time
700 MHz, 25°C
CD3CN/H2O (5/1)
In collaboration with K Gheysen, Prof dr J Martins
67/75
Type C peptide mimic: H-H ROESY
ROESY: Off-resonance
H alpha NH
NH H alpha
In collaboration with K Gheysen, Prof dr J Martins
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N
NH2
O
O
O
O OH
nOe contact
non adjacent
residues
(1-8)
H
H N
H
N
O
O
N
NN
OH
O
TURN-like-STRUCTURE
4.97 ppm
triazole-CH2-CO
7.54 ppm
NH Gly2
4.97 pp
“Hα” triazole-C
nOe
crosspeak
7.54 ppm
NH Gly2
4.97 pp
“Hα” triazole-C
7.54 ppm
NH Gly2
4.97 pp
“Hα” triazole-C
7.54 ppm
NH Gly2
4.97 pp
“Hα” triazole-C
4.97 pp
“Hα” triazole-C
nOe
crosspeak
7.94 ppm
NH Gly
68/75
SCREENING OF
MODEL
PEPTIDE MIMICS
AFFINITY CAPILLARY
ELECTROPHORESIS
(ACE)
25 mM Tris-acetate (pH 7.4),
1 mM EDTA and 20% MeOH
Affinity Capillary Electrophoresis
17β-estradiol
Tweezer
peptide
mimics
_
- - EOF + +
Buffer
25 mM Tris-acetate
(pH 7.4)
1 mM EDTA
20% MeOH
Peptide
mimics
17β-estradiol
[E2]= 0 μM
50 μM
100 μM
200 μM
70/75
Minutes
3 4 5 6 7 8 9 10 11 12
AU
-0.002
0.000
0.002
0.004
0.006
0.008
AU
-0.002
0.000
0.002
0.004
0.006
0.008
3.4966527
5.5022470
5.61910831
8.2871694
10.28816021
Minutes
3 4 5 6 7 8 9 10 11 12
AU
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
AU
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
3.1356123
4.794385
4.89020788
7.0561676
8.65415514
Minutes
3 4 5 6 7 8 9 10 11 12
AU
-0.002
0.000
0.002
0.004
0.006
0.008
AU
-0.002
0.000
0.002
0.004
0.006
0.008
3.4966527
5.5022470
5.61910831
8.2871694
10.28816021
Minutes
3 4 5 6 7 8 9 10 11 12
AU
-0.002
0.000
0.002
0.004
0.006
0.008
AU
-0.002
0.000
0.002
0.004
0.006
0.008
3.4136838
5.3101062
5.42720264
7.9521725
9.82717130
Minutes
3 4 5 6 7 8 9 10 11 12
AU
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
AU
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
3.2967105
5.088200
5.19831909
7.6041697
9.38518200
Minutes
3 4 5 6 7 8 9 10 11 12
AU
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
AU
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
3.1356123
4.794385
4.89020788
7.0561676
8.65415514
[E2]=
0 μM
50 μM
100 μM
200 μM
Affinity Capillary Electrophoresis
Type A
PEPTIDE
MIMIC
In collaboration with V Malanchin, Dr. F Lynen, Prof dr P Sandra 71/75
EOF
Dissociation constants (Kd)
In collaboration with V Malanchin, Dr. F Lynen, Prof dr P Sandra
72/75
Strong interactions
range
High affinity ligands
Type A 128 μM
Type B 158 μM
Type C 124 μM
Weak interactions range
Low affinity ligands
(μRL-μR)
Matemathical model
applied
Corresponding equation
Bimolecular binding
curve (model 1) ( )
( )[ ]
[ ]LK
KL
d
dARL
RRL 1
1
max,
1 −
−
+
−
=−
µµ
µµ
Double reciprocal
(model 2)
( ) ( ) [ ] (bRRLRRL LK µµµµµ
+
−
=
− max,
111
X- reciprocal
(model 3)
( )
[ ]
( ) ( RbRRLb
RRL
KK
L
µµµ
µµ
+−−=
−
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
V.1IV.1
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
Type B
C-SPPS
Sequental
double click
Type C
C-SPPS
Linear-SPPS and click
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5
DO
O
ND
O
D
N
ND
N
D
D
N
N
D
N
D
D
N
O
O
O
O
O
D
N
N
D
O
O
ODO
O
O
General Conclusion
TYPE A MODEL PEPTIDE
SPPS: HBTU/DIPEA LONG REACTION TIMES
NMR: CAVITY LARGER THAN 5 Ǻ
ACE: WEAK INTERACTIONS 17β-ESTRADIOL
73/75
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
H
N
N
H
H
N
O
O
H
N
O
OH
ON N R4
R3
NH2
O
R1 O
R2 O
R5NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N
O
N
H
O
OH
ONN
H
H H
H
H
TYPE B MODEL PEPTIDE
CuAAC SOLID PHASE: UP TO THREE DAYS REACTION TIME
NMR: INTERSTRAND H CONTACT. CAVITY NARROWER THAN 5 Ǻ
ACE: WEAK INTERACTIONS WITH 17β-ESTRADIOL
General Conclusion
74/75
O
O
NO2
NHFmoc
HO
O
NO2
NHFmoc
Wang
Resin
Type A
Linear SPPS
V.1IV.1
HO
O
NH
O
H
N
NH
N
H
H
N
N
H
N
H
H
N
O
O
O
O
O
H
N
N
H
O
O
R2
R1
R4
R5
R3
R6
O
O
Wang resin
MSNT, MeIm
DMF/ CH2Cl2
NH
NH
HO
O
O N
N
H
N
H
N
O
O
H
N
O
OH
ON N R1
R2
O
N
H
R3
O
OH
ONN R4
H
H N
H
N
O
O
N
NN
OH
ONH
NH
HO
O
O
H
N
N
H
H
N
O NH2
O
O
O
O OH
TYPE C MODEL PEPTID
SPPS: HATU/DIPEA BETTER EFFICIENC
CuAAC SOLID PHASE: MW ACCELERATES REACTION RATE
NMR: FLEXIBILITY. TURN REGIO
ACE: WEAK INTERACTIONS WITH 17β- ESTRADIO
General Conclusion
75/75
ACKNOWLEDGEMENTS
Prof. dr. A. Madder
Prof. dr. J. Martins
dr. Frederic Lynen
Prof. dr. F. Du Prez
Prof. dr. P. Sandra
Prof. dr. J. Van der Eycken
dr. Steven Van der Plas
dr. Els Van Hoeck
dr. Talha Gökmen
Sara Figaroli
Vivienne Malanchin
UGent people
Jurgen Caroen
Jan Goeman
dr. An Clemmen
Katelijne Gheysen
Katrien Haustraete
Tom Parveliet
UVA people
Prof. dr. Jose Martin
Marie-Curie Foundation
University of Ghent
TWEEZER PEPTIDE MIMICS
OF THE ESTROGEN
RECEPTOR FOR
DETERMINATION OF
ENDOCRINE DISRUPTOR
CHEMICALS
Rosa Romeralo-Tapia
Supervisor: Prof. Dr. Johan Van der Eycken
Laboratory for Organic and Bioorganic SynthesisThesis submitted to obtain the degree of
Doctor in Sciences: Chemistry
13 October 2011

More Related Content

What's hot

Analyzing ligand and small molecule binding activity of solubilized myszka
Analyzing ligand and small molecule binding activity of solubilized myszkaAnalyzing ligand and small molecule binding activity of solubilized myszka
Analyzing ligand and small molecule binding activity of solubilized myszka
Johannesdedooper
 
Synthesis and Characterization of Cationic Surfactants Based (1)
Synthesis and Characterization of Cationic Surfactants     Based (1)Synthesis and Characterization of Cationic Surfactants     Based (1)
Synthesis and Characterization of Cationic Surfactants Based (1)
Nesreen A. Fatthallah
 
Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...
Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...
Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...
ijtsrd
 
Olivia4915UURAF_FINALPoster4
Olivia4915UURAF_FINALPoster4Olivia4915UURAF_FINALPoster4
Olivia4915UURAF_FINALPoster4
Olivia Goethe
 
OMalley2013BMCL_SS
OMalley2013BMCL_SSOMalley2013BMCL_SS
OMalley2013BMCL_SS
Sina Sareth
 
PBL 490 Publication
PBL 490 PublicationPBL 490 Publication
PBL 490 Publication
Jen Klabis
 
DPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal Plants
DPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal PlantsDPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal Plants
DPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal Plants
IOSR Journals
 

What's hot (20)

Analyzing ligand and small molecule binding activity of solubilized myszka
Analyzing ligand and small molecule binding activity of solubilized myszkaAnalyzing ligand and small molecule binding activity of solubilized myszka
Analyzing ligand and small molecule binding activity of solubilized myszka
 
Synthesis and Characterization of Cationic Surfactants Based (1)
Synthesis and Characterization of Cationic Surfactants     Based (1)Synthesis and Characterization of Cationic Surfactants     Based (1)
Synthesis and Characterization of Cationic Surfactants Based (1)
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
Leadops History
Leadops HistoryLeadops History
Leadops History
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
semenov2016
semenov2016semenov2016
semenov2016
 
Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...
Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...
Synthesis, Molecular Docking and Antimicrobial Evaluation of New Tetrahydrobe...
 
2014 tinti e soory oxidative actions of hydrogen peroxide in human gingival a...
2014 tinti e soory oxidative actions of hydrogen peroxide in human gingival a...2014 tinti e soory oxidative actions of hydrogen peroxide in human gingival a...
2014 tinti e soory oxidative actions of hydrogen peroxide in human gingival a...
 
317 - In-vitro Antioxidant studies on ethanolic extracts of Boswellia ovalifo...
317 - In-vitro Antioxidant studies on ethanolic extracts of Boswellia ovalifo...317 - In-vitro Antioxidant studies on ethanolic extracts of Boswellia ovalifo...
317 - In-vitro Antioxidant studies on ethanolic extracts of Boswellia ovalifo...
 
Chemical Text Mining for Current Awareness of Pharmaceutical Patents
Chemical Text Mining for Current Awareness of Pharmaceutical PatentsChemical Text Mining for Current Awareness of Pharmaceutical Patents
Chemical Text Mining for Current Awareness of Pharmaceutical Patents
 
A Biotechniques Webinar Seminar on Epigenetics and the Histone Code
A Biotechniques Webinar Seminar on Epigenetics and the Histone CodeA Biotechniques Webinar Seminar on Epigenetics and the Histone Code
A Biotechniques Webinar Seminar on Epigenetics and the Histone Code
 
Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...
Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...
Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...
 
2015 bioinformatics bio_python_part3
2015 bioinformatics bio_python_part32015 bioinformatics bio_python_part3
2015 bioinformatics bio_python_part3
 
In vitro antioxidant properties of the biflavonoid agathisflavone
In vitro antioxidant properties of the biflavonoid agathisflavoneIn vitro antioxidant properties of the biflavonoid agathisflavone
In vitro antioxidant properties of the biflavonoid agathisflavone
 
Olivia4915UURAF_FINALPoster4
Olivia4915UURAF_FINALPoster4Olivia4915UURAF_FINALPoster4
Olivia4915UURAF_FINALPoster4
 
OMalley2013BMCL_SS
OMalley2013BMCL_SSOMalley2013BMCL_SS
OMalley2013BMCL_SS
 
PBL 490 Publication
PBL 490 PublicationPBL 490 Publication
PBL 490 Publication
 
Isotopic labeling
Isotopic labelingIsotopic labeling
Isotopic labeling
 
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
 
DPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal Plants
DPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal PlantsDPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal Plants
DPPH Scavenging Assay of Eighty Four Bangladeshi Medicinal Plants
 

Similar to Rosa_PhD

Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237
Dinesh Barawkar
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulf
J. Edward Semple
 
Session 1 part 2
Session 1 part 2Session 1 part 2
Session 1 part 2
plmiami
 
SF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInalSF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInal
Steve Flynn
 

Similar to Rosa_PhD (20)

Combined Draft 4
Combined Draft 4 Combined Draft 4
Combined Draft 4
 
Assignment 105B.pptx
Assignment 105B.pptxAssignment 105B.pptx
Assignment 105B.pptx
 
Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237
 
clement cc proceedings APS 2015
clement cc proceedings APS 2015clement cc proceedings APS 2015
clement cc proceedings APS 2015
 
Molecular Biology
Molecular Biology Molecular Biology
Molecular Biology
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulf
 
synopsis_2
synopsis_2synopsis_2
synopsis_2
 
Session 1 part 2
Session 1 part 2Session 1 part 2
Session 1 part 2
 
Bioinformatics t9-t10-bio cheminformatics-wimvancriekinge_v2013
Bioinformatics t9-t10-bio cheminformatics-wimvancriekinge_v2013Bioinformatics t9-t10-bio cheminformatics-wimvancriekinge_v2013
Bioinformatics t9-t10-bio cheminformatics-wimvancriekinge_v2013
 
GPU-accelerated Virtual Screening
GPU-accelerated Virtual ScreeningGPU-accelerated Virtual Screening
GPU-accelerated Virtual Screening
 
Pistoia Alliance European Conference 2015 - Stefan Klostermann / Roche
Pistoia Alliance European Conference 2015 - Stefan Klostermann / RochePistoia Alliance European Conference 2015 - Stefan Klostermann / Roche
Pistoia Alliance European Conference 2015 - Stefan Klostermann / Roche
 
cara Baca SWISSADME-TargetPred.pdf
cara Baca SWISSADME-TargetPred.pdfcara Baca SWISSADME-TargetPred.pdf
cara Baca SWISSADME-TargetPred.pdf
 
2015 bioinformatics bio_cheminformatics_wim_vancriekinge
2015 bioinformatics bio_cheminformatics_wim_vancriekinge2015 bioinformatics bio_cheminformatics_wim_vancriekinge
2015 bioinformatics bio_cheminformatics_wim_vancriekinge
 
MCR
MCRMCR
MCR
 
SF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInalSF and PE CTR-IN 2016 Poster_FInal
SF and PE CTR-IN 2016 Poster_FInal
 
SOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISSOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESIS
 
JBEI Highlights August 2015
JBEI Highlights August 2015JBEI Highlights August 2015
JBEI Highlights August 2015
 
GMueller_Barcelona
GMueller_BarcelonaGMueller_Barcelona
GMueller_Barcelona
 
In vitro and high throughput screening (HTS) assays
In vitro and high throughput screening (HTS) assaysIn vitro and high throughput screening (HTS) assays
In vitro and high throughput screening (HTS) assays
 
Grafström - Lush Prize Conference 2014
Grafström - Lush Prize Conference 2014Grafström - Lush Prize Conference 2014
Grafström - Lush Prize Conference 2014
 

Rosa_PhD

  • 1. TWEEZER PEPTIDE MIMICS OF THE ESTROGEN RECEPTOR FOR DETERMINATION OF ENDOCRINE DISRUPTOR CHEMICALS Rosa Romeralo-Tapia Supervisor: Prof. Dr. Johan Van der Eycken Laboratory for Organic and Bioorganic SynthesisThesis submitted to obtain the degree of Doctor in Sciences: Chemistry 13 October 2011
  • 2. • Challenges in endocrine disrupting chemicals research: EST-SENDICHEM project 2/75 Overview
  • 3. • Challenges in endocrine disrupting chemicals research: EST-SENDICHEM project • Design artificial receptor 3/75 Overview
  • 4. • Challenges in endocrine disrupting chemicals research: EST-SENDICHEM project • Design artificial receptor • Synthesis type A, B and C tweezer peptide mimics 4/75 Overview
  • 5. • Challenges in endocrine disrupting chemicals research: EST-SENDICHEM project • Design artificial receptor • Synthesis type A, B and C tweezer peptide mimics • Structure analysis by NMR spectroscopy 5/75 Overview
  • 6. • Challenges in endocrine disrupting chemicals research: EST-SENDICHEM project • Design artificial receptor • Synthesis type A, B and C tweezer peptide mimics • Structure analysis by NMR spectroscopy • Screening tweezer peptide mimics by ACE6/75 Overview
  • 8. “Endocrine disruptors are defined as exogenous substances or mixtures that alter the function(s) of the endocrine system and consequently cause adverse health effects in intact organisms, or their progeny or (sub) population”* Definition of EDCs NATURAL and SYNTHETIC HORMONES COOLANTS, PESTICIDES PLASTICISERS HO OH OH Cl Cl Cl Cl Cl O O O O ClCl HO OH Cl Cl Cl Estradiol (E2) Polychlorinated bisphenols (PCBs) Bisphenol-A (BPA) Ethinylestradiol (EE) 1,1,1-Trichloro-2,2-bis- (4'-chlorophenyl)ethane (DDT) Di-n-butylphthalate (DBP) HO *Definition given by International Programme on Chemical Safety 8/75
  • 9. http://www.chemtrust.org.uk ClCl Cl Cl Cl Cl Cl Cl Cl Cl DDT N N N N H Cl N H AtrazinePCBs Effects on wild life DDT spil in Florida Lake Reproduction-related abnormalities DDT and PCB in fat Greenland Premature death Intersex characteristics Atrazine exposure ?? 9/75
  • 10. Challenges in EDC Research • Establish cause-effect relationships • Obtain reliable exposure data • Identify which chemicals cause endocrine disruption 10/75
  • 11. Challenges in EDC Research • Establish cause-effect relationships • Obtain reliable exposure data • Identify which chemicals cause endocrine disruption 11/75
  • 12. NEW SORBENT TO SELECTIVELY RETAiN EDCs FROM WATER EDC-CONTAMINATED WATER Solid phase affinity extraction Prof. dr. Annemieke Madder (Coordinator) Organic and Biomimetic Chemistry   Prof. dr. P. Sandra Separation Sciences Prof. dr. F. Du Prez Polymer Chemistry   Prof. dr. J. Van der Eycken Organic and Bioorganic Synthesis Prof. dr. J. Martins NMR & Structure Analysis  12/75
  • 13. Mode of action of EDCs Hormone-related mechanisms mone synthesis (1) mone transport (2, 3, 11) mone metabolism (4) www.medscape.com Source: Expert Rev Of Obstet Gynacol 2008 13/75
  • 14. Mode of action of EDCs B) Receptor-mediated mechanisms Hormone-related mechanisms mone synthesis (1) mone transport (2, 3, 11) mone metabolism (4) www.medscape.com Source: Expert Rev Of Obstet Gynacol 2008 14/75
  • 15. ://whqlibdoc.who.int B) Receptor mediated EDCs GENISTEIN (natural hormone) ETHINYLESTRADIOL, DIETHYLSTILBESTROL (synthetic hormones) DDT (pesticide), BISPHENOL-A (plasticiser) • Agonist: mimicking the natural hormone ER recognizes • Antagonist: blocking the hormone receptor positions EDCs as ligands Mode of action of EDCs Natural hormone EDC ER ER Estrogen Receptor 15/75
  • 16. NEW SORBENT TO SELECTIVELY RETAiN EDCs FROM WATER (based on receptor-mediated mechanism) EDC-CONTAMINATED WATER Solid phase affinity extraction Van der Plas SE et al. Eur. J. Org. Chem. 2009, 11 (Sp. Iss. SI), 1796-1805 Figaroli S, Madder A. Tetrahedron, 2010, 66, 6912-6918  Solid support (Polymer)  Molecule with affinity to EDCs: MIMIC OF ESTROGEN RECEPTOR 16/75
  • 17. MODEL DESIGNS FOR MIMICS OF HORMONE BINDING DOMAIN ESTROGEN RECEPTOR (HBD-hERα)
  • 18. Design HBD-hERα mimic hERα: 595 AA, 7 active sites C terminal: HBD 297-595 (~300 AA)Brzozowski et al. Nature 1997, 389, 753-758 Tannenbaum et al. Proc. Natl. Acad. Sci. 1998, 95, 5998- ScaffoldScaffold Hormone binding domain Artificial receptor Hormone Binding Activity Few selected Amino acids 18/75
  • 19. ScaffoldScaffold Hormone binding domain ANCHORING AMINO ACIDS EDCs-ER COMPLEXES Design HBD-hERα mimic 19/75
  • 20. Histidine 524 (H11), Arginine 394 (H5), Glutamic acid 353 (H3) hERα-E2 Hydrophilic interactions Design HBD-hERα mimic Amino acids OH HO Estradiol (E2) Tanenbaum D.M et al. Proc. Natl. Acad. Sci. USA 1998, 95, 5998-6003 20/75
  • 21. A-B rings: Ala 350 (H3), Leu 387 (H5), Leu 391 (H5), Phe 404 (βturn), Met 388 (H5) D ring: Leu 525 (H11), Ile 424 (H7), Gly 521 (H11) hERα-E2 Hydrophobic residues Design HBD-hERα mimic Amino acids Tanenbaum D.M et al. Proc. Natl. Acad. Sci. USA 1998, 95, 5998-6003 21/75
  • 22. DES Hydrophilic contacts Glu 353 Arg 394 His 524 Hydrophobi c contacts Ala 350 Leu 386 Leu 387 Raloxifene Hydrophilic contacts Glu 353 Arg 394 His 524 Hydrophobi c contacts Ala 350 Leu 354 Leu 387 E2 Hydrophilic contacts Glu 353 Arg 394 His 524 Hydrophobi c contacts Ala 350 Leu 387 Met 388 Leu 391 Design HBD-hERα mimic Amino acids Glu Arg His Ala Leu Met Phe Data obtained from Protein Data Bank http:// www.pbd.org DES: diethylstilbestrol E2: 17Beta-estradiol 22/75
  • 23. .H1H2..MGLLTNLADREL..H4..LEILMIGLVWR.. βturn ..H6H7H8H9H10..GMEHL.. Helix 3 Helix 5 Helix 11 H12..C terminal His 524 (H11) Arg 394 (H5) Glu 353 (H3) Ala 350 (H3) Leu 387 (H5) Leu 391 (H5) Phe 404 (βturn) Met 388 (H5) Leu 525 (H11) Ile 424 (H7) Gly 521 (H11) N C H11 H3 H5 H7 Design HBD-hERα mimic Tertiary structure N C C 23/75
  • 24. CHEMICAL PLATFORM ScaffoldScaffold Hormone binding domain Design HBD-hERα mimic 24/75
  • 25. Pg2HN NHPg1 O OH • CO2H to be attached on solid support – Solid phase synthesis • Aromatic ring (planar, Π-Π interactions) • Two amines orthogonally protected • P1-P2: Peptide strands (building blocks= Ala, Leu, Phe, Met, Glu, Arg, His) Design HBD-hERα mimic Dipodal scaffold 25/75
  • 26. Pg2HN NHPg1 O OH • CO2H to be attached on solid support – Solid phase synthesis • Aromatic ring (planar, Π-Π interactions) • Two amines orthogonally protected • P1-P2: Peptide strands (building blocks= Ala, Leu, Phe, Met, Glu, Arg, His) Design HBD-hERα mimic Dipodal scaffold 26/75
  • 27. P g2HN NHPg1 O OH • CO2H to be attached on solid support – Solid phase synthesis • Aromatic ring (planar, Π-Π interactions) • Two amines orthogonally protected (Pg= protective group) • P1-P2: Peptide strands (building blocks= Ala, Leu, Phe, Met, Glu, Arg, His) Design HBD-hERα mimic Dipodal scaffold 27/75
  • 28. P2HN NHP1 O OH • CO2H to be attached on solid support – Solid phase synthesis • Aromatic ring (planar, Π-Π interactions) • Two amines orthogonally protected • P1-P2: Peptide strands (building blocks= Ala, Leu, Phe, Met, Glu, Arg, His) Design HBD-hERα mimic Dipodal scaffold 28/75
  • 30. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5 C N C N HO O NO2 NH2 Fmoc-Cl NaHCO3 dioxane/H2O Model Peptide Mimics Synthesis IV.1: Neustadt BR et al.Tetrahedron Lett. 1998, 39, 5317- 30/75
  • 31. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5 N C N C HO O NO2 NH2 Fmoc-Cl NaHCO3 dioxane/H2O Synthesis IV.1: Neustadt BR et al.Tetrahedron Lett. 1998, 39, 5317- Model Peptide Mimics 31/75
  • 32. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5 C N HO O NO2 NH2 Fmoc-Cl NaHCO3 dioxane/H2O N C Synthesis IV.1: Neustadt BR et al.Tetrahedron Lett. 1998, 39, 5317- Model Peptide Mimics 32/75
  • 33. Type A Model Peptide Mimic based on Linear Fmoc-SPPS 33/75
  • 34. O O NO2 NHFmoc O O NO2 HN O NHFmoc Wang resin l = 1.10 mmol/g (i) 20% piperidine/DMF (ii) Fmoc-Gly-OH, DIC, DMAP, CH2Cl2 (x2) Preactivation reagents (1st coupling) Preactivation reagents (2nd coupling) Loading (mmol/g) Yield (%) Fmoc-Gly-OH, DIC Fmoc-Gly-OH, DIC, HOBt 0.58 57% Fmoc-Gly-OH, DIC, HOBt Fmoc-Gly-OH, DIC, DMAP 0.90 89% Fmoc-Gly-OH, DIC, DMAP Fmoc-Gly-OH, DIC, DMAP 1.00 Quantitative Type A model: Linear SPPS 34/75
  • 35. O O NO2 HN O N H O H N N H O O H N O O O NO2 HN O NHFmoc 1. 20% piperidine/DMF 2. Fmoc-Ala-OH, HBTU, DIPEA, DMF 3. 20% piperidine/DMF 4. Fmoc-Leu-OH, HBTU, DIPEA, DMF 5. 20% piperidine/DMF 6. Fmoc-Phe-OH, HBTU, DIPEA, DMF 7. 20% piperidine/DMF 8. DIPEA/Ac2O/CH2Cl2 (1/1/3) Type A model: Linear SPPS 35/75
  • 36. O O NH2 HN O N H O H N N H O O H N O O O NO2 HN O N H O H N N H O O H N O V.2 V.3 SnCl2. 2H2O DMF Crude cleaved product Crude cleaved product min0 5 10 15 20 mAU 0 50 100 150 200 250 300 350 11.259 min min0 5 10 15 20 mAU 0 200 400 600 800 1000 1200 DAD1 B, Sig=254,20 Ref=off (F:07-11-06056-1201.D) 10.449 min min0 5 10 15 20 mAU 0 200 400 600 800 1000 1200 ) 10.449 min Type A model: Linear SPPS 36/75 Solvent A: 5mM NH4OAc/H2O Solvent B: CH3CN 0-100% B in 15 minutes (λ = 214 nm )
  • 37. O O O NH2 HN O N H O H N N H O O H N 1. Fmoc-Gly-OH, DIC, DMAP, CH2Cl2 (x 2) 2. 20% piperidine/DMF 3. Fmoc-Glu(tBu)-OH, HBTU, DIPEA, DMF (x 2) 4. 20% piperidine/DMF Repeat 3,4 5. Fmoc-Ala-OH, HBTU, DIPEA, NMP Repeat 4 6. DIPEA/Ac2O/CH2Cl2 (1/1/3) (x 2) 7. 95%TFA/H20 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O OHO O O Type A model: Linear SPPS 37/75
  • 38. Type B and C Model Peptide Mimics based on Convergent Cu-Catalyzed 1,3 Dipolar Cycloaddition Reactions 38/75
  • 39. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click N C N C Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5 N C C N Peptide Mimics Synthesis 39/75
  • 40. Franke R et al. Tetrahedron Lett. 2005, 46, 4479-4482 CuAAC Cu-alkyne azide 1,3-cycloaddition H2N R1 N N N CO2H R2 H2N N O R1 CO2H R2 1 23 4 H H acceptor H acceptor H H donor H donor AMIDE BOND 1,4-SUBSTITUTED TRIAZOLE RING i) N3CH2CO-TSKYREG-OH, CuI ii) Cleavage 1 4 40/75
  • 41. O O NO2 NHFmoc O O NH2 NHFmoc HO O HN NHFmoc O HO O NH2 NHFmoc SnCl2. 2H2O, DMF + (i) 4-pentynoic acid, DIC, CH2Cl2 (ii) 95%TFA/H2O Scaffold towards Click Approach 41/75
  • 42. O O NO2 NHFmoc O O NH2 NHFmoc HO O HN NHFmoc O HO O NH2 NHFmoc HO O HN N H O O SnCl2. 2H2O, DMF + (i) 4-pentynoic acid, DIC, CH2Cl2 (ii) 95%TFA/H2O (i) 4-pentynoic acid, DIC, DMAP, CH2Cl2 (ii) 95%TFA/H2O Scaffold towards Click Approach 42/75
  • 43. O O NO2 NHFmoc O O NH2 NHFmoc HO O HN NHFmoc O HO O NH2 NHFmoc HO O HN N H O O SnCl2. 2H2O, DMF + (i) 4-pentynoic acid, DIC, CH2Cl2 (ii) 95%TFA/H2O (i) 4-pentynoic acid, DIC, DMAP, CH2Cl2 (ii) 95%TFA/H2O HO O HN NHFmoc O(i) 4-pentynoic acid, HBTU, DIPEA, CH2Cl2 (ii) 95%TFA/H2O Scaffold towards Click Approach 43/75
  • 44. O O NO2 NHFmoc O O NH2 NHFmoc HO O HN NHFmoc O HO O NH2 NHFmoc HO O HN N H O O SnCl2. 2H2O, DMF + (i) 4-pentynoic acid, DIC, CH2Cl2 (ii) 95%TFA/H2O (i) 4-pentynoic acid, DIC, DMAP, CH2Cl2 (ii) 95%TFA/H2O O O HN NHFmoc O(i) 4-pentynoic acid, HBTU, DIPEA, CH2Cl2 Scaffold towards Click Approach 44/75 New scaffold
  • 45. Synthesis Azidopeptides O O N H O NH2 O O N H O H N N3 O R1 R2HBTU, DIPEA, DMF (x 2) 2-ClTrt. resin R1 R2 HBTU-mediated Fmoc SPPS AcOH/ TFE/ CH2Cl2 O N3 HO 23-70% crude purity HO O N H O H N N3 O R1 R2 Azido acetic acid coupling to free amine min0 5 10 15 20 mAU 0 200 400 600 800 08-12-11 - 10.502 10.941 11.524 min0 5 10 15 20 mAU 0 200 400 600 800 - - 10.502 10.941 N3CH2CO-Leu-Phe Leu-Phe HOBt Synthesis N CH CO H:Franke R et al. Tetrahedron Lett. 2005, 46, 4479-4482 45/75
  • 46. Imidazole-1-sulfonyl azide hydrochloride: Goddard-Borger ED et al. Org. Lett. 2007, 9, 3793-3800 Devulder V, Backaert F, Van der Eycken J. Ghent University. 2010 O O N H O H N O O N H O H N N3 O R1 R22-Cl Trt. resin R1 R2 HBTU-mediated Fmoc SPPS AcOH/ TFE/ CH2Cl2 CuSO4. 5H2O THF/H2O R3 O NH2 R3 N N S O N3 O HCl OH O N H O H N N3 O R1 R2 R3 58-76% crude purity Synthesis AzidopeptidesDiazo transfer reaction min0 5 10 15 20 mAU 0 200 400 600 800 1000 N3Leu-Leu-Leu-Gly-Leu-Phe-OH N3Leu-Leu-Gly-Leu-Phe-OH Leu-Leu-Leu-Gly-Leu-Phe-OH 46/75
  • 47. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click N C N C Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5 Model Peptide Mimics 47/75
  • 48. O NHFmoc O H N O N N N O H N O N H O OH i) 20%piperidine/DMF ii) 4-pentynoic acid, HBTU, DIPEA, DMF O NHFmoc O H N O HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF NH NH HO O O N N H N H N O O H N O OH ON N O N H O OH ONN HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF i) ii) TFA,H2O (95%) NH NH O O O N N H O O H N O OH ON N Type B model: Sequential Click 48/75 New scaffold
  • 49. O NHFmoc O H N O N N N O H N O N H O OH i) 20%piperidine/DMF ii) 4-pentynoic acid, HBTU, DIPEA, DMF O NHFmoc O H N O HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF NH NH HO O O N N H N H N O O H N O OH ON N O N H O OH ONN HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF i) ii) TFA,H2O (95%) NH NH O O O N N H O O H N O OH ON N Type B model: Sequential Click 49/75
  • 50. O NHFmoc O H N O N N N O H N O N H O OH i) 20%piperidine/DMF ii) 4-pentynoic acid, HBTU, DIPEA, DMF O NHFmoc O H N O HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF NH NH HO O O N N H N H N O O H N O OH ON N O N H O OH ONN HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF i) ii) TFA,H2O (95%) NH NH O O O N N H O O H N O OH ON N Type B model: Sequential Click 50/75
  • 51. O NHFmoc O H N O N N N O H N O N H O OH i) 20%piperidine/DMF ii) 4-pentynoic acid, HBTU, DIPEA, DMF O NHFmoc O H N O HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF NH NH HO O O N N H N H N O O H N O OH ON N O N H O OH ONN HO O N H O H N N3 O CuI, Ascorbic acid, DIPEA, 2,6-lutidine/DMF i) ii) TFA/ H2O (95%) NH NH O O O N N H O O H N O OH ON N Type B model: Sequential Click 51/75
  • 52. NH NH HO O O N N H N H N O O H N O OH ON N O N H O OH ONN Crude product ( 7 steps) min0 5 10 15 20 mAU 0 200 400 600 800 1000 DAD1 A, Sig=214,20 Ref=off (F:09-02-09080-1201.D) 9.225 9.686 10.149 13.340 min0 5 10 15 20 mAU -100 -50 0 50 100 150 200 250 300 DAD1 A, Sig=214,20 Ref=off (F:09-07-02093-0501.D) 10.285 After RP-HPLC Purity 82% Type B model: Sequential Click 52/75 Solvent A: 5mM NH4OAc/H2O Solvent B: CH3CN 0-100% B in 15 minutes (λ = 214 nm )
  • 53. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5N C C N Peptide mimics synthesis 53/75
  • 54. O NHFmoc O H N O Wang resin O O HN O H N O N H O H N N H O O NHFmoc O OtBu i) DBU/4-methylpiperidine/DMF (3/17/80) ii)Fmoc-AA-OH, HATU, DIPEA, DMF x 4 AA i) CuI, ascorbic acid, DIPEA, 2.6-lutidine/DMF, 80ºC, MW ii) DBU/4-methylpiperidine/DMF (3/17/80) iii) TIS/TFA/H2O NH NH HO O O N N H H N N H H N O O H N O OH ON N NH2 O HO O O O HO O N H O H N N3 O Type C model: SPPS-Click 54/75
  • 55. O NHFmoc O H N O Wang resin O O HN O H N O N H O H N N H O O NHFmoc O OtBu i) DBU/4-methylpiperidine/DMF (3/17/80) ii) Fmoc-AA-OH, HATU, DIPEA, DMF x 4 AA i) CuI, ascorbic acid, DIPEA, 2.6-lutidine/DMF, 80ºC, MW ii) DBU/4-methylpiperidine/DMF (3/17/80) iii) TIS/TFA/H2O NH NH HO O O N N H H N N H H N O O H N O OH ON N NH2 O HO O O O HO O N H O H N N3 O Type C model: SPPS-Click 55/75
  • 56. O NHFmoc O H N O Wang resin O O HN O H N O N H O H N N H O O NHFmoc O OtBu i) DBU/4-methylpiperidine/DMF (3/17/80) ii)Fmoc-AA-OH, HATU, DIPEA, DMF x 4 AA i) CuI, ascorbic acid, DIPEA, 2.6-lutidine/DMF, 80ºC, MW (80W) ii) DBU/4-methylpiperidine/DMF (3/17/80) iii) TIS/TFA/H2O NH NH HO O O N N H H N N H H N O O H N O OH ON N NH2 O HO O O O HO O N H O H N N3 O Type C model: SPPS-Click 56/75
  • 57. O NHFmoc O H N O Wang resin O O HN O H N O N H O H N N H O O NHFmoc O OtBu i) DBU/4-methylpiperidine/DMF (3/17/80) ii)Fmoc-AA-OH, HATU, DIPEA, DMF x 4 AA i) CuI, ascorbic acid, DIPEA, 2.6-lutidine/DMF, 80ºC, MW ii) DBU/4-methylpiperidine/DMF (3/17/80) iii) TIS/TFA/H2O NH NH HO O O N N H H N N H H N O O H N O OH ON N NH2 O HO O O O HO O N H O H N N3 O Purity 80% min0 5 10 15 20 mAU -100 -50 0 50 100 150 200 250 300 DAD1 A, Sig=214,20 Ref=off (10-01-25074-3301.D) 7.999 8.869 Type C model: SPPS-Click 57/75 Solvent A: 5mM NH4OAc/H2O Solvent B: CH3CN 0-100% B in 15 minutes (λ = 214 nm )
  • 58. STRUCTURE ANALYSIS BY NMR SPECTROSCOPY “The biological function of peptides and proteins is defined by their ability to adopt well-defined conformations that complement those of their binding partner […]” Pedersen DS, Andrew Abell Eur. J. Org. Chem. 2011, 2399-2411
  • 59. 2D J-correlation experiment 2D-NMR spectroscopy: H-H TOCSY 59/75
  • 60. NH NH HO O O N N H N H NO O H N O OH ON N O N H O OH ONN Hα Hβ Hβ Hβ γH δH δH Hα Type B peptide mimic : H-H TOCSY 700 MHz, 25°C, CD3CN/H2O ppm 7.27.47.67.88.08.2 ppm 9 8 7 6 5 4 3 2 1 Leu NH Leu Hα Leu Hβ Leu Hγ Leu Hδ Leu Hδ Phe NH Phe Hα Phe Hβ Phe Hβ In collaboration with K Gheysen, Prof dr J Martins 60/75
  • 61. NH NH HO O O N N H H N N H H N O O H N O OH ON N NH2 O HO O O CH3 O Hα Hα Hα Hα Hα Hα Hβ Hβ Gly1 Gly2 β 700 MHz, 25°C, CD3CN/H2O Type C peptide mimic : H-H TOCSY ppm 7.27.47.67.88.08.2 ppm 9 8 7 6 5 4 3 2 1 Phe Hβ Phe Hβ Phe Hα Phe NH Gly1 Hα Gly1 Hα Gly1 NH Gly2 Hα Gly2 Hα Gly2 NH Ala NH Ala Hβ Ala Hα In collaboration with K Haustraete, K Gheysen, Prof dr J 61/75
  • 62. Type A peptide mimic : H-H TOCSY H (NH) signals 700 MHz, 25°C, CD3CN/H2O HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O OHO O O In collaboration with K Gheysen, Prof dr J Martins 62/75
  • 63. 2D nOe-correlation experiment Coupling through space 2D-NMR spectroscopy: H-H NOESY 63/75
  • 64. . 1H-1H nOeSY (RED) 600 ms mixing time, 700 MHz, 25°C, CD3CN/H2O (5/1) HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O OHO O O nOe contact NH H alpha N to C direction ppm 7.27.47.67.88.08.28.48.6 ppm 9 8 7 6 5 4 3 2 1 H alpha Phe NH Leu nOe contact Type A peptide mimic: H-H NOESY In collaboration with K Gheysen, Prof dr J Martins 64/75
  • 65. . NMR-monitoring H/D exchange N O H N HN N H H N N H N H H N O O O O O H N N O O R1 OO R3 R4 R2 R5 O O N O D N ND N D D N N D N D D N O O O O O D N N O O R1 OO R3 R4 R2 R5 O O H H HH H H CH3CN/D2O CH3CN/H2O H replaced by D: NO H BONDING H remains: H BONDING Different spin magnetic properties H and D nuclei H visible vs D invisible in 1 H-NMR region 65/75
  • 66. Type A peptide mimic: H/D exchange BLACK: CH3CN/H2O RED: CH3CN/D2O In collaboration with K Gheysen, Prof dr J Martins 66/75 DO O ND O D N ND N D D N N D N D D N O O O O O D N N D O O ODO O O NH Phe (7.65 ppm)
  • 67. 7.11 ppm H orto (Phe) 7.18 ppm H meta (Phe) 1.35 ppm Hβ (Leu) nOe contacts Type B peptide mimic: H-H NOESY < 5Ǻ H alpha NH N to C direction NH NH HO O O N N H N H N O O H N O OH ON N R O N H O OH ONN H H H nOe cont act BETWEEN STRANDS H H H 600 ms mixing time 700 MHz, 25°C CD3CN/H2O (5/1) In collaboration with K Gheysen, Prof dr J Martins 67/75
  • 68. Type C peptide mimic: H-H ROESY ROESY: Off-resonance H alpha NH NH H alpha In collaboration with K Gheysen, Prof dr J Martins NH NH HO O O N N H H N N H H N O O H N O OH ON N NH2 O O O O OH nOe contact non adjacent residues (1-8) H H N H N O O N NN OH O TURN-like-STRUCTURE 4.97 ppm triazole-CH2-CO 7.54 ppm NH Gly2 4.97 pp “Hα” triazole-C nOe crosspeak 7.54 ppm NH Gly2 4.97 pp “Hα” triazole-C 7.54 ppm NH Gly2 4.97 pp “Hα” triazole-C 7.54 ppm NH Gly2 4.97 pp “Hα” triazole-C 4.97 pp “Hα” triazole-C nOe crosspeak 7.94 ppm NH Gly 68/75
  • 69. SCREENING OF MODEL PEPTIDE MIMICS AFFINITY CAPILLARY ELECTROPHORESIS (ACE)
  • 70. 25 mM Tris-acetate (pH 7.4), 1 mM EDTA and 20% MeOH Affinity Capillary Electrophoresis 17β-estradiol Tweezer peptide mimics _ - - EOF + + Buffer 25 mM Tris-acetate (pH 7.4) 1 mM EDTA 20% MeOH Peptide mimics 17β-estradiol [E2]= 0 μM 50 μM 100 μM 200 μM 70/75
  • 71. Minutes 3 4 5 6 7 8 9 10 11 12 AU -0.002 0.000 0.002 0.004 0.006 0.008 AU -0.002 0.000 0.002 0.004 0.006 0.008 3.4966527 5.5022470 5.61910831 8.2871694 10.28816021 Minutes 3 4 5 6 7 8 9 10 11 12 AU -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 AU -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 3.1356123 4.794385 4.89020788 7.0561676 8.65415514 Minutes 3 4 5 6 7 8 9 10 11 12 AU -0.002 0.000 0.002 0.004 0.006 0.008 AU -0.002 0.000 0.002 0.004 0.006 0.008 3.4966527 5.5022470 5.61910831 8.2871694 10.28816021 Minutes 3 4 5 6 7 8 9 10 11 12 AU -0.002 0.000 0.002 0.004 0.006 0.008 AU -0.002 0.000 0.002 0.004 0.006 0.008 3.4136838 5.3101062 5.42720264 7.9521725 9.82717130 Minutes 3 4 5 6 7 8 9 10 11 12 AU -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 AU -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 3.2967105 5.088200 5.19831909 7.6041697 9.38518200 Minutes 3 4 5 6 7 8 9 10 11 12 AU -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 AU -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 3.1356123 4.794385 4.89020788 7.0561676 8.65415514 [E2]= 0 μM 50 μM 100 μM 200 μM Affinity Capillary Electrophoresis Type A PEPTIDE MIMIC In collaboration with V Malanchin, Dr. F Lynen, Prof dr P Sandra 71/75 EOF
  • 72. Dissociation constants (Kd) In collaboration with V Malanchin, Dr. F Lynen, Prof dr P Sandra 72/75 Strong interactions range High affinity ligands Type A 128 μM Type B 158 μM Type C 124 μM Weak interactions range Low affinity ligands (μRL-μR) Matemathical model applied Corresponding equation Bimolecular binding curve (model 1) ( ) ( )[ ] [ ]LK KL d dARL RRL 1 1 max, 1 − − + − =− µµ µµ Double reciprocal (model 2) ( ) ( ) [ ] (bRRLRRL LK µµµµµ + − = − max, 111 X- reciprocal (model 3) ( ) [ ] ( ) ( RbRRLb RRL KK L µµµ µµ +−−= −
  • 73. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin V.1IV.1 Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 Type B C-SPPS Sequental double click Type C C-SPPS Linear-SPPS and click NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5 DO O ND O D N ND N D D N N D N D D N O O O O O D N N D O O ODO O O General Conclusion TYPE A MODEL PEPTIDE SPPS: HBTU/DIPEA LONG REACTION TIMES NMR: CAVITY LARGER THAN 5 Ǻ ACE: WEAK INTERACTIONS 17β-ESTRADIOL 73/75
  • 74. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H H N N H H N O O H N O OH ON N R4 R3 NH2 O R1 O R2 O R5NH NH HO O O N N H N H N O O H N O OH ON N O N H O OH ONN H H H H H TYPE B MODEL PEPTIDE CuAAC SOLID PHASE: UP TO THREE DAYS REACTION TIME NMR: INTERSTRAND H CONTACT. CAVITY NARROWER THAN 5 Ǻ ACE: WEAK INTERACTIONS WITH 17β-ESTRADIOL General Conclusion 74/75
  • 75. O O NO2 NHFmoc HO O NO2 NHFmoc Wang Resin Type A Linear SPPS V.1IV.1 HO O NH O H N NH N H H N N H N H H N O O O O O H N N H O O R2 R1 R4 R5 R3 R6 O O Wang resin MSNT, MeIm DMF/ CH2Cl2 NH NH HO O O N N H N H N O O H N O OH ON N R1 R2 O N H R3 O OH ONN R4 H H N H N O O N NN OH ONH NH HO O O H N N H H N O NH2 O O O O OH TYPE C MODEL PEPTID SPPS: HATU/DIPEA BETTER EFFICIENC CuAAC SOLID PHASE: MW ACCELERATES REACTION RATE NMR: FLEXIBILITY. TURN REGIO ACE: WEAK INTERACTIONS WITH 17β- ESTRADIO General Conclusion 75/75
  • 76. ACKNOWLEDGEMENTS Prof. dr. A. Madder Prof. dr. J. Martins dr. Frederic Lynen Prof. dr. F. Du Prez Prof. dr. P. Sandra Prof. dr. J. Van der Eycken dr. Steven Van der Plas dr. Els Van Hoeck dr. Talha Gökmen Sara Figaroli Vivienne Malanchin UGent people Jurgen Caroen Jan Goeman dr. An Clemmen Katelijne Gheysen Katrien Haustraete Tom Parveliet UVA people Prof. dr. Jose Martin Marie-Curie Foundation University of Ghent
  • 77. TWEEZER PEPTIDE MIMICS OF THE ESTROGEN RECEPTOR FOR DETERMINATION OF ENDOCRINE DISRUPTOR CHEMICALS Rosa Romeralo-Tapia Supervisor: Prof. Dr. Johan Van der Eycken Laboratory for Organic and Bioorganic SynthesisThesis submitted to obtain the degree of Doctor in Sciences: Chemistry 13 October 2011

Editor's Notes

  1. CÓMO SE DIFERENCIAN (A PRIORI-ANTES DE NOESY) GLY1 DE GLY2?
  2. Receptores artificilaes, ya con uso de esctructuras no proteicas, quimica orgaica mas amplia Uso Tipo de sintesis
  3. Receptores artificilaes, ya con uso de esctructuras no proteicas, quimica orgaica mas amplia Uso Tipo de sintesis