SlideShare a Scribd company logo
1 of 59
Download to read offline
State of the art New Theory Order-2 QIGA Experiments Conclusions
Higher-Order Quantum-Inspired
Genetic Algorithms
Robert Nowotniak, Jacek Kucharski
Institute of Applied Computer Science
Lodz University of Technology
Federated Conference on Computer Science
and Information Systems
September 7, 2014
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms
State of the art New Theory Order-2 QIGA Experiments Conclusions
Presentation outline
1 Background, state of the art
2 The new theory  fundamental notions
3 Order-2 Quantum-Inspired Genetic Algorithm (QIGA2)
4 Numerical experiments and results
5 Conclusions
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 1 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum Computing + Artificial Intelligence
← Classical Computing, Computational Intelligence
← Quantum Computational Intelligence?
Quantum Computer REQUIRED
State of the art: Science ction?
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 2 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum Computing + Artificial Intelligence
← Classical Computing, Computational Intelligence
← Quantum-Inspired Computational Intelligence
Quantum Computer NOT REQUIRED
A few hundred papers (total) since late 90's:
1 Quantum-Inspired Neural Networks
2 Quantum-Inspired Fuzzy Systems
3 Quantum-Inspired Genetic Algorithms
4 Quantum-Inspired Immune Systems
5 ...
← Quantum Computational Intelligence?
Quantum Computer REQUIRED
State of the art: Science ction?
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 2 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Qubits and Binary Quantum Genes
|ψ =
√
3
2
α
|0 +
1
2
β
|1
|0
|1
|ψ
α
β
qubit (quantum bit): |ψ = α|0 + β|1
where: α, β ∈ C, |α|2 + |β|2 = 1
Pr({0}) = |α|2
Pr({1}) = |β|2
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Qubits and Binary Quantum Genes
|ψ =
√
2
2
α
|0 +
√
2
2
β
|1
|0
|1
|ψ
α
β
qubit (quantum bit): |ψ = α|0 + β|1
where: α, β ∈ C, |α|2 + |β|2 = 1
Pr({0}) = |α|2
Pr({1}) = |β|2
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Qubits and Binary Quantum Genes
|ψ =
1
3
α
|0 +
2
√
2
3
β
|1
|0
|1
|ψ
α
β
qubit (quantum bit): |ψ = α|0 + β|1
where: α, β ∈ C, |α|2 + |β|2 = 1
Pr({0}) = |α|2
Pr({1}) = |β|2
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Qubits and Binary Quantum Genes
|ψ = 0
α
|0 + 1
β
|1
|0
|1
|ψ
α
β
qubit (quantum bit): |ψ = α|0 + β|1
where: α, β ∈ C, |α|2 + |β|2 = 1
Pr({0}) = |α|2
Pr({1}) = |β|2
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
1 1 0 1 0 1 0
1 0 0 1 0 0 0
0 0 1 0 1 1 0
1 0 0 0 1 0 1
0 0 1 0 0 0 1



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
1 1 0 1 0 1 0
1 0 0 1 0 0 0
0 0 1 0 1 1 0
1 0 0 0 1 0 1
0 0 1 0 0 0 1



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
1 1 0 1 0 1 0
1 0 0 1 0 0 0
0 0 1 0 1 1 0
1 0 0 0 1 0 1
0 0 1 0 0 0 1



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
1 1 0 1 0 1 0
1 0 0 1 0 0 0
0 0 1 0 1 1 0
0 0 1 0 0 0 1
1 0 0 0 1 0 1



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
0 0 0 0 1 0 0
1 0 0 1 0 1 1
1 1 1 0 0 1 0
1 1 0 0 0 1 0
0 0 1 0 1 1 0



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
0 0 0 0 1 0 1
0 1 1 0 1 1 0
1 0 0 1 1 1 0
1 1 0 1 0 1 1
1 1 0 1 0 1 1



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Simple Genetic Algorithm
0 1 0 0 1 0 0
0 0 0 0 1 1 0
0 1 0 1 0 0 1
1 0 0 1 0 0 1
0 1 0 0 0 1 0



population
of solutions
— chromosome
— binary gene
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum-Inspired Genetic Algorithm [1]
0 = 1 = 0101110 =
[1] Han, K.-H., Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593.
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum-Inspired Genetic Algorithm [1]
0 = 1 = 0101110 =



quantum
population
— quantum chromosome
— quantum gene
[1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593.
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum-Inspired Genetic Algorithm [1]
0 = 1 = 0101110 =



quantum
population
— quantum chromosome
— quantum gene
[1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593.
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum-Inspired Genetic Algorithm [1]
0 = 1 = 0101110 =



quantum
population
— quantum chromosome
— quantum gene
[1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593.
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Quantum-Inspired Genetic Algorithm [1]
0 = 1 = 0101110 =



quantum
population
— quantum chromosome
— quantum gene
[1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593.
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Higher-Order Quantum-Inspired
Evolutionary Algorithms – The New Theory
Fundamental notions of the theory:
Quantum order r ∈ N+ of Quantum-Inspired algorithm:
the size of the biggest quantum register in the algorithm
(e.g. separate qubits-based algorithms are Order-1)
Quantum factor λ ∈ [0, 1] of Quantum-Inspired algorithm:
the ratio of the algorithm space dimension to dimension of
quantum register state space.
λ =
2
r · N
r
2N
where:
N ∈ N+  the problem size
r ∈ {1, . . . , N}  quantum order
λ ∈ [0, 1]  quantum factor
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 6 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Higher-Order Quantum-Inspired
Evolutionary Algorithms – The New Theory
Fundamental notions of the theory:
Quantum order r ∈ N+ of Quantum-Inspired algorithm:
the size of the biggest quantum register in the algorithm
(e.g. separate qubits-based algorithms are Order-1)
Quantum factor λ ∈ [0, 1] of Quantum-Inspired algorithm:
the ratio of the algorithm space dimension to dimension of
quantum register state space.
λ =
2
r · N
r
2N
where:
N ∈ N+  the problem size
r ∈ {1, . . . , N}  quantum order
λ ∈ [0, 1]  quantum factor
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 6 / 20
5 6 7 8 9 10 11
Problem size N
0.0
0.2
0.4
0.6
0.8
1.0
Quantumfactorλ
Quantum factor λ for different r and N
r = 1, r = 2
r = 3
r = 4
r = 5
State of the art New Theory Order-2 QIGA Experiments Conclusions
The Algorithms Spaces
Space Properties Meaning λ, r
binary strings X
nite, discrete set
X = {0, 1}N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ = 0
schemata ΩH
nite, discrete set
ΩH = {0, 1, ∗}N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H=*1*0***
quantum-inspired
chromosomes ΩQI
linear space,
dim(ΩQI) = N 000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ ≈ 10
−6
r = 1
Higher-dimensional spaces
λ → 1
r → N
quantum register
state space H
complex Hilbert space,
dim(H) = 2
N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ = 1
r = N
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 7 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary strings
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
000100111101011
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary strings
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
010011110101110
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary strings
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
101100110011001
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary strings
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
111000111101011
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = ∗1 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = 01 ∗ 01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = 01001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = 01110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = 0 ∗ 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = 01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Schemata
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H = ∗ ∗ ∗ ∗ 0
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary quantum chromosomes
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary quantum chromosomes
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary quantum chromosomes
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary quantum chromosomes
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary quantum chromosomes
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Binary quantum chromosomes
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
The Algorithms Spaces
Space Properties Situation λ, r
binary strings X
nite, discrete set
X = {0, 1}N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ = 0
schemata ΩH
nite, discrete set
ΩH = {0, 1, ∗}N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H=*1*0***
quantum-inspired
chromosomes ΩQI
linear space,
dim(ΩQI) = N 000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ ≈ 10
−6
r = 1
Higher-dimensional spaces
λ → 1
r → N
quantum register
state space H
complex Hilbert space,
dim(H) = 2
N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ = 1
r = N
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 11 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
The Algorithms Spaces
Space Properties Situation λ, r
binary strings X
nite, discrete set
X = {0, 1}N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ = 0
schemata ΩH
nite, discrete set
ΩH = {0, 1, ∗}N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
H=*1*0***
quantum-inspired
chromosomes ΩQI
linear space,
dim(ΩQI) = N 000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ ≈ 10
−6
r = 1
Higher-dimensional spaces
λ → 1
r → N
quantum register
state space H
complex Hilbert space,
dim(H) = 2
N
000...0 010...0 100...0 110...0 111...1
x
0
20
40
60
80
100
f(x)
λ = 1
r = N
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 11 / 20
Higher-Order Quantum-Inspired Algorithms
State of the art New Theory Order-2 QIGA Experiments Conclusions
Order-2 Quantum-Inspired Genetic Algorithm
for Combinatorial Optimization
QIGA2
1: t ← 0
2: Initialize quantum population Q(0)
3: while t ≤ tmax do
4: t ← t + 1
5: Generate P(t) by observing quantum pop. Q(t − 1)
6: Evaluate classical population P(t)
7: Update Q(t)
8: Save best classical individual to b
9: end while
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 12 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Order-2 Quantum-Inspired Genetic Algorithm
for Combinatorial Optimization
Quantum-Inspired Genetic Algorithm:
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 13 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Order-2 Quantum-Inspired Genetic Algorithm
for Combinatorial Optimization
Order-2 Quantum-Inspired Genetic Algorithm:
(quantum modelling of interactions in pairs of genes)
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 13 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Order-2 Quantum-Inspired Genetic Algorithm
for Combinatorial Optimization
Observation of pair of genes in QIGA2 algorithm:
Require: qij = [α0 α1 α2 α3]T  quantum register of 2 qubits
1: r ← uniformly random number from [0,1]
2: if r  |α0|2 then
3: p ← 00
4: else if r  |α0|2 + |α1|2 then
5: p ← 01
6: else if r  |α0|2 + |α1|2 + |α2|2 then
7: p ← 10
8: else
9: p ← 11
10: end if
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 14 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Chromosomes in QIGA2
000...0 010...0 100...0 110...0 111...1
x
20
40
60
80
100
f(x)
0.000
1.000
0.000
0.500
|
0.800
0.400
0.800
0.200
|
0.500
0.600
0.700
0.800
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 15 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Chromosomes in QIGA2
000...0 010...0 100...0 110...0 111...1
x
20
40
60
80
100
f(x)
0.500
1.000
2.000
0.500
|
0.800
0.400
0.800
0.200
|
0.500
0.800
0.700
0.500
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 15 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Chromosomes in QIGA2
000...0 010...0 100...0 110...0 111...1
x
20
40
60
80
100
f(x)
0.500
1.000
0.000
0.500
|
0.800
0.400
0.800
0.200
|
0.500
0.800
0.700
0.500
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 15 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Numerical experiments
Performance of four algorithms has been compared:
SGA, QIGA1, GPU-tuned QIGA1, QIGA2
Recognizable benchmark of 20 deceptive combinatorial
optimization problems has been used has been used
(knapsack + SATLIB benchmark)
1 Knapsack problem, problem size N = 100, . . . , 1000
2 SAT (NP-complete),
coding various combinatorial optimization problems,
problem size N = 11, . . . , 1000
Objective:
nd the binary strings that have maximum tness value
Stopping criterion:
Maximum number of tness evaluations: MaxFE = 50, 000.
Average of 50 runs of each algorithm has been compared.
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 16 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Numerical experiments – results
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Numerical experiments – results
0 1000 2000 3000 4000 5000
Fitness evaluation count (FE)
1300
1320
1340
1360
1380
1400
1420
1440
1460
1480
Averagefitnessofthebestindividual Algorithms performance comparison
Problem: knapsack250, size N = 250
QIGA-2
QIGA-1 tuned
QIGA-1
SGA
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Numerical experiments – results
0 1000 2000 3000 4000 5000
Fitness evaluation count (FE)
620
640
660
680
700
720
740
760
Averagefitnessofthebestindividual Algorithms performance comparison
Problem: bejing-252, size N = 252
QIGA-2
QIGA-1 tuned
QIGA-1
SGA
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Numerical experiments – results
0 1000 2000 3000 4000 5000
Fitness evaluation count (FE)
5300
5350
5400
5450
5500
5550
5600
5650
5700
5750
Averagefitnessofthebestindividual Algorithms performance comparison
Problem: knapsack1000, size N = 1000
QIGA-2
QIGA-1 tuned
QIGA-1
SGA
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Problem N SGA QIGA-1 QIGA-1 tuned QIGA-2
anomaly 48 251.4 252.55 254.65 255.25
sat 90 284.9 289.2 293.2 293.7
jnh 100 826.15 831.05 839.05 836.05
knapsack 100 577.709 578.812 592.819 596.476
sat 100 408.6 413.6 418.6 419.7
bejing 125 297.35 302.1 305.35 306.2
sat-uuf 225 886.75 898.25 921.65 921.5
knapsack 250 1387.916 1406.528 1449.905 1467.407
sat1 250 981.45 995.15 1021.2 1023.1
sat2 250 982.95 994.6 1019.1 1020.6
sat3 250 984.2 994.3 1021.3 1019.7
bejing 252 709.85 731.0 724.4 745.75
parity 317 1141.65 1158.2 1179.35 1180.75
knapsack 400 2209.925 2222.160 2284.969 2334.494
knapsack 500 2803.266 2812.740 2869.774 2929.469
bejing 590 1263.8 1343.15 1284.0 1353.2
lran 600 2310.9 2330.35 2386.8 2398.95
bejing 708 1510.65 1605.9 1523.15 1611.55
knapsack 1000 5451.656 5462.718 5568.234 5709.116
lran 1000 3819.65 3848.4 3918.5 3937.3
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 18 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Conclusions
In 17 out of 20 test problems (85%), the authors'
QIGA2 algorithm presented on average a better solution
than both the original and tuned QIGA12 algorithm.
Quantum order r = 2 allows to improve eciency of QIGA
algorithm in combinatorial optimization problems.
QIGA2 running time is about 15-30% faster than QIGA1
(due to simplications in comparison to the previous algorithm)
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 19 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Our Recent Papers on QIEA algorithms
1 Nowotniak, R., Kucharski, J., GPU-based Tuning of Quantum-Inspired Genetic Algorithm for a
Combinatorial Optimization Problem, Bulletin of The Polish Academy of Sciences:
TechnicalSciences, Vol. 60, No. 2, 2012, ISSN 0239-7528
2 Nowotniak, R., Kucharski, J., Meta-optimization of Quantum-Inspired Evolutionary Algorithms in
The Polish Grid Infrastructure, 2nd Scientic Session of TUL PhD Students, ISBN
978-83-7283-490-4
3 Nowotniak, R., Kucharski, J., Meta-optimization of Quantum-Inspired Evolutionary Algorithm,
2010, Proceedings of the XVII International Conference on Information Technology Systems,
ISBN 978-83-7283-378-5
4 Nowotniak, R., Kucharski, J., Building Blocks Propagation in Quantum-Inspired Genetic
Algorithm, 2010, Scientic Bulletin of Academy of Science and Technology, Automatics, 2010,
ISSN 1429-3447
5 Nowotniak, R., Survey of Quantum-Inspired Evolutionary Algorithms, 2010, Proceedings of the
FIMB PhD students conference, ISSN 2082-4831
6 Nowotniak, R., Kucharski J., GPU-based Tuning of Quantum-Inspired Genetic Algorithm for
a Combinatorial Optimization Problem, XIV International Conference System Modelling and
Control, 2011, ISBN 978-83-927875-1-8
7 Nowotniak, R., Quantum-Inspired Evolutionary Algorithms in Search and Optimization, I
Wyjazdowa Sesja Naukowa Doktorantów PŠ, Rogów, ISBN 978-83-7283-411-9
8 Nowotniak, R., Kucharski J., GPU-based massively parallel implementation of metaheuristic
algorithms, Przetwarzanie i analiza sygnaªów w systemach wizji i sterowania, Sªok, 2011
9 Nowotniak, R., Draus C., Nowak M., Rybak G., Modelling Reality In Visual Python, INotice
2011, ISBN 978-83-7283-407-2
10 Je»ewski, S., Šaski, M., Nowotniak, R., Comparison of Algorithms for Simultaneous Localization
and Mapping Problem for Mobile Robot, 2010, Scientic Bulletin of Academy of Science and
Technology, Automatics, ISSN 1429-3447
11 Jopek, Š., Nowotniak, R., Postolski, M., Babout, L., Janaszewski, M., Application of Quantum
Genetic Algorithms in Feature Selection Problem, 2009, Scientic Bulletin of Academy of
Science and Technology, Automatics, ISSN 1429-3447
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 20 / 20
State of the art New Theory Order-2 QIGA Experiments Conclusions
Thank you for your attention
Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms

More Related Content

Viewers also liked

Viewers also liked (11)

stedin jaarverslag 2007
stedin jaarverslag 2007stedin jaarverslag 2007
stedin jaarverslag 2007
 
mac leather craft
mac leather craftmac leather craft
mac leather craft
 
Pembangunan Ekonomi Daerah
Pembangunan Ekonomi DaerahPembangunan Ekonomi Daerah
Pembangunan Ekonomi Daerah
 
Verbinding - Jaarverslag_RCI_over09-2
Verbinding - Jaarverslag_RCI_over09-2Verbinding - Jaarverslag_RCI_over09-2
Verbinding - Jaarverslag_RCI_over09-2
 
Mahikel peñuela ensayo
Mahikel peñuela ensayoMahikel peñuela ensayo
Mahikel peñuela ensayo
 
Retail groups assignments(from group 5)
Retail groups assignments(from group 5)Retail groups assignments(from group 5)
Retail groups assignments(from group 5)
 
Ubuni_Screenwriting Workshop_Writing for Episodic TV_students handout
Ubuni_Screenwriting Workshop_Writing for Episodic TV_students handoutUbuni_Screenwriting Workshop_Writing for Episodic TV_students handout
Ubuni_Screenwriting Workshop_Writing for Episodic TV_students handout
 
Try out ipa smp 2015
Try out ipa smp 2015Try out ipa smp 2015
Try out ipa smp 2015
 
Mahikel peñuela ensayo
Mahikel peñuela ensayoMahikel peñuela ensayo
Mahikel peñuela ensayo
 
Star Credentials
Star CredentialsStar Credentials
Star Credentials
 
LMS
LMSLMS
LMS
 

Similar to Higher-Order Quantum-Inspired Genetic Algorithms

Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum ComputingGDSC PJATK
 
Quantum Computing: The Why and How
Quantum Computing: The Why and HowQuantum Computing: The Why and How
Quantum Computing: The Why and Howinside-BigData.com
 
Fundamentals of Quantum Computing
Fundamentals of Quantum ComputingFundamentals of Quantum Computing
Fundamentals of Quantum Computingachakracu
 
A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...
A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...
A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...Anderson Pinho
 
Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23Aritra Sarkar
 
Quantum Information FINAL.pptx
Quantum Information FINAL.pptxQuantum Information FINAL.pptx
Quantum Information FINAL.pptxgitrahekno
 
Lecture 2 - Bit vs Qubits.pptx
Lecture 2 - Bit vs Qubits.pptxLecture 2 - Bit vs Qubits.pptx
Lecture 2 - Bit vs Qubits.pptxNatKell
 
QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28Aritra Sarkar
 
Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...
Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...
Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...Tom Hubregtsen
 
Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Aritra Sarkar
 
The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1Bruno Fedrici, PhD
 
Quantum nano computing jul 23_2021
Quantum nano computing jul 23_2021Quantum nano computing jul 23_2021
Quantum nano computing jul 23_2021BhagvanK1
 
Genomics algorithms on digital NISQ accelerators - 2019-01-25
Genomics algorithms on digital NISQ accelerators - 2019-01-25Genomics algorithms on digital NISQ accelerators - 2019-01-25
Genomics algorithms on digital NISQ accelerators - 2019-01-25Aritra Sarkar
 
Clustering Theory
Clustering TheoryClustering Theory
Clustering TheorySSA KPI
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum ComputingNicolo Musmeci
 
Macaluso antonio meetup dli 2020-12-15
Macaluso antonio  meetup dli 2020-12-15Macaluso antonio  meetup dli 2020-12-15
Macaluso antonio meetup dli 2020-12-15Deep Learning Italia
 
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...Victor Asanza
 

Similar to Higher-Order Quantum-Inspired Genetic Algorithms (20)

Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum Computing
 
Quantum Computing: The Why and How
Quantum Computing: The Why and HowQuantum Computing: The Why and How
Quantum Computing: The Why and How
 
Fundamentals of Quantum Computing
Fundamentals of Quantum ComputingFundamentals of Quantum Computing
Fundamentals of Quantum Computing
 
A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...
A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...
A New Model for Credit Approval Problems: A Neuro-Genetic System with Quantum...
 
Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23
 
Quantum Computation For AI
Quantum Computation For AIQuantum Computation For AI
Quantum Computation For AI
 
Quantum Information FINAL.pptx
Quantum Information FINAL.pptxQuantum Information FINAL.pptx
Quantum Information FINAL.pptx
 
Lecture 2 - Bit vs Qubits.pptx
Lecture 2 - Bit vs Qubits.pptxLecture 2 - Bit vs Qubits.pptx
Lecture 2 - Bit vs Qubits.pptx
 
QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28
 
Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...
Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...
Aritra Sarkar - Search and Optimisation Algorithms for Genomics on Quantum Ac...
 
Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18
 
The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1
 
GlobalAI2016-Yuwei
GlobalAI2016-YuweiGlobalAI2016-Yuwei
GlobalAI2016-Yuwei
 
Quantum nano computing jul 23_2021
Quantum nano computing jul 23_2021Quantum nano computing jul 23_2021
Quantum nano computing jul 23_2021
 
MASTER_THESIS-libre
MASTER_THESIS-libreMASTER_THESIS-libre
MASTER_THESIS-libre
 
Genomics algorithms on digital NISQ accelerators - 2019-01-25
Genomics algorithms on digital NISQ accelerators - 2019-01-25Genomics algorithms on digital NISQ accelerators - 2019-01-25
Genomics algorithms on digital NISQ accelerators - 2019-01-25
 
Clustering Theory
Clustering TheoryClustering Theory
Clustering Theory
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum Computing
 
Macaluso antonio meetup dli 2020-12-15
Macaluso antonio  meetup dli 2020-12-15Macaluso antonio  meetup dli 2020-12-15
Macaluso antonio meetup dli 2020-12-15
 
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
 

Recently uploaded

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 

Recently uploaded (20)

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 

Higher-Order Quantum-Inspired Genetic Algorithms

  • 1. State of the art New Theory Order-2 QIGA Experiments Conclusions Higher-Order Quantum-Inspired Genetic Algorithms Robert Nowotniak, Jacek Kucharski Institute of Applied Computer Science Lodz University of Technology Federated Conference on Computer Science and Information Systems September 7, 2014 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms
  • 2. State of the art New Theory Order-2 QIGA Experiments Conclusions Presentation outline 1 Background, state of the art 2 The new theory fundamental notions 3 Order-2 Quantum-Inspired Genetic Algorithm (QIGA2) 4 Numerical experiments and results 5 Conclusions Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 1 / 20
  • 3. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum Computing + Artificial Intelligence ← Classical Computing, Computational Intelligence ← Quantum Computational Intelligence? Quantum Computer REQUIRED State of the art: Science ction? Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 2 / 20
  • 4. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum Computing + Artificial Intelligence ← Classical Computing, Computational Intelligence ← Quantum-Inspired Computational Intelligence Quantum Computer NOT REQUIRED A few hundred papers (total) since late 90's: 1 Quantum-Inspired Neural Networks 2 Quantum-Inspired Fuzzy Systems 3 Quantum-Inspired Genetic Algorithms 4 Quantum-Inspired Immune Systems 5 ... ← Quantum Computational Intelligence? Quantum Computer REQUIRED State of the art: Science ction? Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 2 / 20
  • 5. State of the art New Theory Order-2 QIGA Experiments Conclusions Qubits and Binary Quantum Genes |ψ = √ 3 2 α |0 + 1 2 β |1 |0 |1 |ψ α β qubit (quantum bit): |ψ = α|0 + β|1 where: α, β ∈ C, |α|2 + |β|2 = 1 Pr({0}) = |α|2 Pr({1}) = |β|2 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
  • 6. State of the art New Theory Order-2 QIGA Experiments Conclusions Qubits and Binary Quantum Genes |ψ = √ 2 2 α |0 + √ 2 2 β |1 |0 |1 |ψ α β qubit (quantum bit): |ψ = α|0 + β|1 where: α, β ∈ C, |α|2 + |β|2 = 1 Pr({0}) = |α|2 Pr({1}) = |β|2 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
  • 7. State of the art New Theory Order-2 QIGA Experiments Conclusions Qubits and Binary Quantum Genes |ψ = 1 3 α |0 + 2 √ 2 3 β |1 |0 |1 |ψ α β qubit (quantum bit): |ψ = α|0 + β|1 where: α, β ∈ C, |α|2 + |β|2 = 1 Pr({0}) = |α|2 Pr({1}) = |β|2 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
  • 8. State of the art New Theory Order-2 QIGA Experiments Conclusions Qubits and Binary Quantum Genes |ψ = 0 α |0 + 1 β |1 |0 |1 |ψ α β qubit (quantum bit): |ψ = α|0 + β|1 where: α, β ∈ C, |α|2 + |β|2 = 1 Pr({0}) = |α|2 Pr({1}) = |β|2 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 3 / 20
  • 9. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 10. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 11. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 12. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 13. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 14. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 15. State of the art New Theory Order-2 QIGA Experiments Conclusions Simple Genetic Algorithm 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0    population of solutions — chromosome — binary gene Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 4 / 20
  • 16. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum-Inspired Genetic Algorithm [1] 0 = 1 = 0101110 = [1] Han, K.-H., Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593. Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
  • 17. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum-Inspired Genetic Algorithm [1] 0 = 1 = 0101110 =    quantum population — quantum chromosome — quantum gene [1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593. Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
  • 18. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum-Inspired Genetic Algorithm [1] 0 = 1 = 0101110 =    quantum population — quantum chromosome — quantum gene [1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593. Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
  • 19. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum-Inspired Genetic Algorithm [1] 0 = 1 = 0101110 =    quantum population — quantum chromosome — quantum gene [1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593. Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
  • 20. State of the art New Theory Order-2 QIGA Experiments Conclusions Quantum-Inspired Genetic Algorithm [1] 0 = 1 = 0101110 =    quantum population — quantum chromosome — quantum gene [1] Han, K.-H.; Kim, J.-H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. Evolutionary Computation, IEEE Transactions on, 2002, 6(6), pp. 580-593. Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 5 / 20
  • 21. State of the art New Theory Order-2 QIGA Experiments Conclusions Higher-Order Quantum-Inspired Evolutionary Algorithms – The New Theory Fundamental notions of the theory: Quantum order r ∈ N+ of Quantum-Inspired algorithm: the size of the biggest quantum register in the algorithm (e.g. separate qubits-based algorithms are Order-1) Quantum factor λ ∈ [0, 1] of Quantum-Inspired algorithm: the ratio of the algorithm space dimension to dimension of quantum register state space. λ = 2 r · N r 2N where: N ∈ N+ the problem size r ∈ {1, . . . , N} quantum order λ ∈ [0, 1] quantum factor Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 6 / 20
  • 22. State of the art New Theory Order-2 QIGA Experiments Conclusions Higher-Order Quantum-Inspired Evolutionary Algorithms – The New Theory Fundamental notions of the theory: Quantum order r ∈ N+ of Quantum-Inspired algorithm: the size of the biggest quantum register in the algorithm (e.g. separate qubits-based algorithms are Order-1) Quantum factor λ ∈ [0, 1] of Quantum-Inspired algorithm: the ratio of the algorithm space dimension to dimension of quantum register state space. λ = 2 r · N r 2N where: N ∈ N+ the problem size r ∈ {1, . . . , N} quantum order λ ∈ [0, 1] quantum factor Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 6 / 20 5 6 7 8 9 10 11 Problem size N 0.0 0.2 0.4 0.6 0.8 1.0 Quantumfactorλ Quantum factor λ for different r and N r = 1, r = 2 r = 3 r = 4 r = 5
  • 23. State of the art New Theory Order-2 QIGA Experiments Conclusions The Algorithms Spaces Space Properties Meaning λ, r binary strings X nite, discrete set X = {0, 1}N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ = 0 schemata ΩH nite, discrete set ΩH = {0, 1, ∗}N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H=*1*0*** quantum-inspired chromosomes ΩQI linear space, dim(ΩQI) = N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ ≈ 10 −6 r = 1 Higher-dimensional spaces λ → 1 r → N quantum register state space H complex Hilbert space, dim(H) = 2 N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ = 1 r = N Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 7 / 20
  • 24. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary strings 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) 000100111101011 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
  • 25. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary strings 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) 010011110101110 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
  • 26. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary strings 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) 101100110011001 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
  • 27. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary strings 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) 111000111101011 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 8 / 20
  • 28. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = ∗1 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 29. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = 01 ∗ 01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 30. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = 01001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 31. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = 01110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 32. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = 0 ∗ 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 33. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = 01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 34. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 35. State of the art New Theory Order-2 QIGA Experiments Conclusions Schemata 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H = ∗ ∗ ∗ ∗ 0 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 9 / 20
  • 36. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary quantum chromosomes Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
  • 37. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary quantum chromosomes Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
  • 38. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary quantum chromosomes Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
  • 39. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary quantum chromosomes Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
  • 40. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary quantum chromosomes Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
  • 41. State of the art New Theory Order-2 QIGA Experiments Conclusions Binary quantum chromosomes Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 10 / 20
  • 42. State of the art New Theory Order-2 QIGA Experiments Conclusions The Algorithms Spaces Space Properties Situation λ, r binary strings X nite, discrete set X = {0, 1}N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ = 0 schemata ΩH nite, discrete set ΩH = {0, 1, ∗}N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H=*1*0*** quantum-inspired chromosomes ΩQI linear space, dim(ΩQI) = N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ ≈ 10 −6 r = 1 Higher-dimensional spaces λ → 1 r → N quantum register state space H complex Hilbert space, dim(H) = 2 N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ = 1 r = N Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 11 / 20
  • 43. State of the art New Theory Order-2 QIGA Experiments Conclusions The Algorithms Spaces Space Properties Situation λ, r binary strings X nite, discrete set X = {0, 1}N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ = 0 schemata ΩH nite, discrete set ΩH = {0, 1, ∗}N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) H=*1*0*** quantum-inspired chromosomes ΩQI linear space, dim(ΩQI) = N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ ≈ 10 −6 r = 1 Higher-dimensional spaces λ → 1 r → N quantum register state space H complex Hilbert space, dim(H) = 2 N 000...0 010...0 100...0 110...0 111...1 x 0 20 40 60 80 100 f(x) λ = 1 r = N Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 11 / 20 Higher-Order Quantum-Inspired Algorithms
  • 44. State of the art New Theory Order-2 QIGA Experiments Conclusions Order-2 Quantum-Inspired Genetic Algorithm for Combinatorial Optimization QIGA2 1: t ← 0 2: Initialize quantum population Q(0) 3: while t ≤ tmax do 4: t ← t + 1 5: Generate P(t) by observing quantum pop. Q(t − 1) 6: Evaluate classical population P(t) 7: Update Q(t) 8: Save best classical individual to b 9: end while Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 12 / 20
  • 45. State of the art New Theory Order-2 QIGA Experiments Conclusions Order-2 Quantum-Inspired Genetic Algorithm for Combinatorial Optimization Quantum-Inspired Genetic Algorithm: Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 13 / 20
  • 46. State of the art New Theory Order-2 QIGA Experiments Conclusions Order-2 Quantum-Inspired Genetic Algorithm for Combinatorial Optimization Order-2 Quantum-Inspired Genetic Algorithm: (quantum modelling of interactions in pairs of genes) Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 13 / 20
  • 47. State of the art New Theory Order-2 QIGA Experiments Conclusions Order-2 Quantum-Inspired Genetic Algorithm for Combinatorial Optimization Observation of pair of genes in QIGA2 algorithm: Require: qij = [α0 α1 α2 α3]T quantum register of 2 qubits 1: r ← uniformly random number from [0,1] 2: if r |α0|2 then 3: p ← 00 4: else if r |α0|2 + |α1|2 then 5: p ← 01 6: else if r |α0|2 + |α1|2 + |α2|2 then 7: p ← 10 8: else 9: p ← 11 10: end if Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 14 / 20
  • 48. State of the art New Theory Order-2 QIGA Experiments Conclusions Chromosomes in QIGA2 000...0 010...0 100...0 110...0 111...1 x 20 40 60 80 100 f(x) 0.000 1.000 0.000 0.500 | 0.800 0.400 0.800 0.200 | 0.500 0.600 0.700 0.800 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 15 / 20
  • 49. State of the art New Theory Order-2 QIGA Experiments Conclusions Chromosomes in QIGA2 000...0 010...0 100...0 110...0 111...1 x 20 40 60 80 100 f(x) 0.500 1.000 2.000 0.500 | 0.800 0.400 0.800 0.200 | 0.500 0.800 0.700 0.500 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 15 / 20
  • 50. State of the art New Theory Order-2 QIGA Experiments Conclusions Chromosomes in QIGA2 000...0 010...0 100...0 110...0 111...1 x 20 40 60 80 100 f(x) 0.500 1.000 0.000 0.500 | 0.800 0.400 0.800 0.200 | 0.500 0.800 0.700 0.500 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 15 / 20
  • 51. State of the art New Theory Order-2 QIGA Experiments Conclusions Numerical experiments Performance of four algorithms has been compared: SGA, QIGA1, GPU-tuned QIGA1, QIGA2 Recognizable benchmark of 20 deceptive combinatorial optimization problems has been used has been used (knapsack + SATLIB benchmark) 1 Knapsack problem, problem size N = 100, . . . , 1000 2 SAT (NP-complete), coding various combinatorial optimization problems, problem size N = 11, . . . , 1000 Objective: nd the binary strings that have maximum tness value Stopping criterion: Maximum number of tness evaluations: MaxFE = 50, 000. Average of 50 runs of each algorithm has been compared. Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 16 / 20
  • 52. State of the art New Theory Order-2 QIGA Experiments Conclusions Numerical experiments – results Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
  • 53. State of the art New Theory Order-2 QIGA Experiments Conclusions Numerical experiments – results 0 1000 2000 3000 4000 5000 Fitness evaluation count (FE) 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 Averagefitnessofthebestindividual Algorithms performance comparison Problem: knapsack250, size N = 250 QIGA-2 QIGA-1 tuned QIGA-1 SGA Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
  • 54. State of the art New Theory Order-2 QIGA Experiments Conclusions Numerical experiments – results 0 1000 2000 3000 4000 5000 Fitness evaluation count (FE) 620 640 660 680 700 720 740 760 Averagefitnessofthebestindividual Algorithms performance comparison Problem: bejing-252, size N = 252 QIGA-2 QIGA-1 tuned QIGA-1 SGA Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
  • 55. State of the art New Theory Order-2 QIGA Experiments Conclusions Numerical experiments – results 0 1000 2000 3000 4000 5000 Fitness evaluation count (FE) 5300 5350 5400 5450 5500 5550 5600 5650 5700 5750 Averagefitnessofthebestindividual Algorithms performance comparison Problem: knapsack1000, size N = 1000 QIGA-2 QIGA-1 tuned QIGA-1 SGA Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 17 / 20
  • 56. State of the art New Theory Order-2 QIGA Experiments Conclusions Problem N SGA QIGA-1 QIGA-1 tuned QIGA-2 anomaly 48 251.4 252.55 254.65 255.25 sat 90 284.9 289.2 293.2 293.7 jnh 100 826.15 831.05 839.05 836.05 knapsack 100 577.709 578.812 592.819 596.476 sat 100 408.6 413.6 418.6 419.7 bejing 125 297.35 302.1 305.35 306.2 sat-uuf 225 886.75 898.25 921.65 921.5 knapsack 250 1387.916 1406.528 1449.905 1467.407 sat1 250 981.45 995.15 1021.2 1023.1 sat2 250 982.95 994.6 1019.1 1020.6 sat3 250 984.2 994.3 1021.3 1019.7 bejing 252 709.85 731.0 724.4 745.75 parity 317 1141.65 1158.2 1179.35 1180.75 knapsack 400 2209.925 2222.160 2284.969 2334.494 knapsack 500 2803.266 2812.740 2869.774 2929.469 bejing 590 1263.8 1343.15 1284.0 1353.2 lran 600 2310.9 2330.35 2386.8 2398.95 bejing 708 1510.65 1605.9 1523.15 1611.55 knapsack 1000 5451.656 5462.718 5568.234 5709.116 lran 1000 3819.65 3848.4 3918.5 3937.3 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 18 / 20
  • 57. State of the art New Theory Order-2 QIGA Experiments Conclusions Conclusions In 17 out of 20 test problems (85%), the authors' QIGA2 algorithm presented on average a better solution than both the original and tuned QIGA12 algorithm. Quantum order r = 2 allows to improve eciency of QIGA algorithm in combinatorial optimization problems. QIGA2 running time is about 15-30% faster than QIGA1 (due to simplications in comparison to the previous algorithm) Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 19 / 20
  • 58. State of the art New Theory Order-2 QIGA Experiments Conclusions Our Recent Papers on QIEA algorithms 1 Nowotniak, R., Kucharski, J., GPU-based Tuning of Quantum-Inspired Genetic Algorithm for a Combinatorial Optimization Problem, Bulletin of The Polish Academy of Sciences: TechnicalSciences, Vol. 60, No. 2, 2012, ISSN 0239-7528 2 Nowotniak, R., Kucharski, J., Meta-optimization of Quantum-Inspired Evolutionary Algorithms in The Polish Grid Infrastructure, 2nd Scientic Session of TUL PhD Students, ISBN 978-83-7283-490-4 3 Nowotniak, R., Kucharski, J., Meta-optimization of Quantum-Inspired Evolutionary Algorithm, 2010, Proceedings of the XVII International Conference on Information Technology Systems, ISBN 978-83-7283-378-5 4 Nowotniak, R., Kucharski, J., Building Blocks Propagation in Quantum-Inspired Genetic Algorithm, 2010, Scientic Bulletin of Academy of Science and Technology, Automatics, 2010, ISSN 1429-3447 5 Nowotniak, R., Survey of Quantum-Inspired Evolutionary Algorithms, 2010, Proceedings of the FIMB PhD students conference, ISSN 2082-4831 6 Nowotniak, R., Kucharski J., GPU-based Tuning of Quantum-Inspired Genetic Algorithm for a Combinatorial Optimization Problem, XIV International Conference System Modelling and Control, 2011, ISBN 978-83-927875-1-8 7 Nowotniak, R., Quantum-Inspired Evolutionary Algorithms in Search and Optimization, I Wyjazdowa Sesja Naukowa Doktorantów PŠ, Rogów, ISBN 978-83-7283-411-9 8 Nowotniak, R., Kucharski J., GPU-based massively parallel implementation of metaheuristic algorithms, Przetwarzanie i analiza sygnaªów w systemach wizji i sterowania, Sªok, 2011 9 Nowotniak, R., Draus C., Nowak M., Rybak G., Modelling Reality In Visual Python, INotice 2011, ISBN 978-83-7283-407-2 10 Je»ewski, S., Šaski, M., Nowotniak, R., Comparison of Algorithms for Simultaneous Localization and Mapping Problem for Mobile Robot, 2010, Scientic Bulletin of Academy of Science and Technology, Automatics, ISSN 1429-3447 11 Jopek, Š., Nowotniak, R., Postolski, M., Babout, L., Janaszewski, M., Application of Quantum Genetic Algorithms in Feature Selection Problem, 2009, Scientic Bulletin of Academy of Science and Technology, Automatics, ISSN 1429-3447 Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms 20 / 20
  • 59. State of the art New Theory Order-2 QIGA Experiments Conclusions Thank you for your attention Robert Nowotniak, Jacek Kucharski Higher-Order Quantum-Inspired Genetic Algorithms