SlideShare a Scribd company logo
1 of 37
Difference Operators
Introduction
Types of Operators:
 Forward Difference Operator
 Backward Difference Operator
 Central Difference Operator
 Shift Operator
 Averaging Operator
Difference Operators
Types of operators
Difference Operators

Forward
Difference
Operator
Forward Difference Operator
Definition:
Forward Difference operator,
denoted by  ,as
f(x)=f(x+h)-f(x)
The expression f(x+h)-f(x)
gives the Forward Difference of
f(x) and the operator  is called the
First Forward Difference
Operator. Given the step size h this
formula uses the values at x and
x+h the point at the next step
As it is moving in the forward
direction, it is called the Forward
Difference Operator
Difference Operators
Backward Difference Operator
Definition:
Backward Difference operator,
denoted by , as
 f(x)=f(x)-f(x-h)
Given the step size h note that this
formula uses the values at x and
x-h, the point at the previous step.
As it moves in the backward
direction, it is called the Backward
Difference Operator
Difference Operators
Central Difference Operator
Definition:
Central Difference operator,
denoted by  , is defined by
 f(x) = f(x +
𝒉
𝟐
)-f(x -
𝒉
𝟐
)
Thus ,
𝜹𝟐
f(x) = f(x+h) – 2f(x) + f(x-h)
Difference Operators
Shift Operator
Definition:
Shift operator, denoted by E is the
operator which shifts the value at
the next point with step h, i.e.
E f(x)=f(x+h)
Thus,
E𝒚𝒊 = 𝒚𝒊+𝟏 , 𝐄𝟐𝒚𝒊 = 𝒚𝒊+𝟐
and
𝑬𝒌
𝒚𝒊 = 𝒚𝒊+𝒌
Difference Operators
Definition:
Shift operator, denoted by E is the
operator which shifts the value at
the next point with step h, i.e.
E f(x)=f(x+h)
Thus,
E𝒚𝒊 = 𝒚𝒊+𝟏 , 𝐄𝟐𝒚𝒊 = 𝒚𝒊+𝟐
and
𝑬𝒌𝒚𝒊 = 𝒚𝒊+𝒌
Averaging Operator
Definition:
The Averaging Operator, denoted
by μ , gives the average value
between two central points, i.e.,
μ f(x) =
𝟏
𝟐
[f(x +
𝒉
𝟐
) - f(x -
𝒉
𝟐
)]
Thus,
μ 𝒚𝒊 =
𝟏
𝟐
(𝒚𝒊 +
𝟏
𝟐
+ 𝒚𝒊 −
𝟏
𝟐
)
𝝁𝟐
𝒚𝒊 =
𝟏
𝟐
(𝝁 𝒚𝒊 +
𝟏
𝟐
+ 𝝁 𝒚𝒊 −
𝟏
𝟐
)
=
𝟏
𝟒
(𝒚𝒊 +𝟏 + 2𝒚𝒊 + 𝒚𝒊 −𝟏)
Difference Operators
Relation Between Operators
Different Relations:
 E = ∆ + 1
 𝐸−1
= 1-∇
 E ∇ =∇ E = ∆
 δ = 𝐸
1
2 - 𝐸
−1
2
 ∆ = δ 𝐸
1
2
 E = 𝑒ℎ𝐷
 (1+ ∆)(1-∇) = 1
µ
Difference Operators
Forward Difference Table
Argument
X
Entry
Y=f(x)
First
Differences
∆y
Second
Differences
∆2y
Third Differences
∆3y
𝑥𝑜
𝑥𝑜+ h
𝑥𝑜+ 3h
𝑥𝑜+ 2h
𝑦𝑜
𝑦1
𝑦2
𝑦3
𝑦1 − 𝑦𝑜= ∆𝑦𝑜
𝑦2 −𝑦1 =∆𝑦1
𝑦3 −𝑦2 =∆ 𝑦2
∆𝑦2−∆𝑦1=∆2
𝑦1
∆𝑦1 − ∆𝑦𝑜 =∆2𝑦𝑜
∆2
𝑦1 − ∆2
𝑦𝑜=∆3
𝑦𝑜
Difference Operators
Backward Difference Table
Argument
X
Entry
Y=f(x)
First
Differences
𝛻 y
Second
Differences
𝛻2y
Third Differences
𝛻3
y
𝒙𝒐
𝒙𝒐+ h
𝒙𝒐+ 3h
𝒙𝒐+ 2h
𝒚𝒐
𝒚𝟏
𝒚𝟐
𝒚𝟑
𝒚𝟏 − 𝒚𝒐= 𝜵 𝒚𝒐
𝒚𝟐 − 𝒚𝟏 = 𝜵𝒚𝟏
𝒚𝟑 − 𝒚𝟐 = 𝜵𝟐
𝜵𝒚𝟐 − 𝜵𝒚𝟏 =
𝜵𝟐
𝒚𝟏
𝜵𝒚𝟏 − 𝜵𝒚𝒐 =
𝜵𝟐
𝒚𝒐
𝜵𝟐
𝒚𝟏 − 𝜵𝟐
𝒚𝒐= 𝜵𝟑
𝒚𝒐
Difference Operators
𝒚𝒐
𝒚𝟏
-
𝒙𝒐
𝒙𝒐+ h
𝒙𝒐+ 3h
𝒙𝒐+ 2h
Backward Difference Table
Argument
X
Entry
Y=f(x)
First
Differences
𝛻 y
Second
Differences
𝛻2y
Third Differences
𝛻3
y
𝜵𝒚𝟐 − 𝜵𝒚𝟏 =
𝜵𝟐
𝒚𝟏
𝜵𝒚𝟏 − 𝜵𝒚𝒐 =
𝜵𝟐
𝒚𝒐
𝜵𝟐
𝒚𝟏 − 𝜵𝟐
𝒚𝒐= 𝜵𝟑
𝒚𝒐
Difference Operators
= 𝜵 𝒚𝒐
𝜵 𝒚𝟏
𝒚𝟑
𝒚𝟑
𝒚𝟐
𝒚𝟐
𝒚𝟐
𝒚𝟏
𝒚𝟏
𝒚𝟏
𝒚𝒐
𝒚𝒐
𝜵 𝒚𝟐
𝜵 𝒚𝒐
𝜵 𝒚𝟏
𝜵 𝒚𝟐
-
𝒙𝒐
𝒙𝒐+ h
𝒙𝒐+ 3h
𝒙𝒐+ 2h
Backward Difference Table
Argument
X
Entry
Y=f(x)
First
Differences
𝛻 y
Second
Differences
𝛻2y
Third Differences
𝛻3
y
𝜵𝒚𝟐 − 𝜵𝒚𝟏 =
𝜵𝟐
𝒚𝟏
𝜵𝒚𝟏 − 𝜵𝒚𝒐 =
𝜵𝟐
𝒚𝒐
𝜵𝟐
𝒚𝟏 − 𝜵𝟐
𝒚𝒐= 𝜵𝟑
𝒚𝒐
Difference Operators
= 𝜵 𝒚𝒐
𝜵 𝒚𝟏
𝒚𝟑
𝒚𝟑
𝒚𝟐
𝒚𝟐
𝒚𝟐
𝒚𝟏
𝒚𝟏
𝒚𝟏
𝒚𝒐
𝒚𝒐
𝜵 𝒚𝟐
𝜵𝟐
𝒚𝟏 − 𝜵𝟐
𝒚𝒐= 𝜵𝟑
𝒚𝒐
𝜵𝟐
𝒚𝟏 − 𝜵𝟐
𝒚𝒐= 𝜵𝟑
𝒚𝒐
Central Difference table
Difference Operators
Argument
X
Entry
Y=f(x)
First
Differences
δy
Second
Differences
δ2y
Third Differences
δ3
y
𝑥𝑜
𝑥1
𝑥3
𝑥2
𝑦𝑜
𝑦1
𝑦2
𝑦3
δ𝑦1
2
δ𝑦3
2
δ𝑦5
2
δ2𝑦2
δ2
𝑦1
δ3
𝑦3
2
Interpolation
Introduction
 Topics to be covered:
• Newton’s Interpolation Method
• Gauss’s Interpolation Method
• Lagrange’s Interpolation Method
• Stirling’s formula for Central Differences
• Inverse Interpolation
Interpolation
Definition
The process of finding the curve passing through the points (𝑥0, 𝑦0),
(𝑥1, 𝑦1), (𝑥2, 𝑦2),………, (𝑥𝑛, 𝑦𝑛) is called as Interpolation and the curve
obtained is called as Interpolating curve. Interpolating polynomial
passing through the given set of points is Unique. Let 𝑥0, 𝑥1, 𝑥2,….. , 𝑥𝑛
be given set of observations y=f(x) and be the given function, then the
method to find f(𝑥𝑚)∀ 𝑥0 ≤ 𝑥𝑚 ≤ 𝑥𝑛 is called as an INTERPOLATION.
(𝑥0, 𝑦0)
(𝑥1, 𝑦1)
(𝑥𝑛, 𝑦𝑛)
(𝑥𝑛−1, 𝑦𝑛−1)
(𝑥3, 𝑦3)
(𝑥2, 𝑦2)
f(x)
Interpolation
Finite Difference Concept
The Interpolation depends upon Finite Difference Concept. If
be given set of observations and let 𝒚𝟎= f (𝒙𝟎),…., 𝒚𝒏= f
(𝒙𝒏) be their corresponding values for the curve y = f(x) , then
𝒚𝟏 − 𝒚𝟎,….., 𝒚𝒏 − 𝒚𝒏−𝟏 is called as Finite Difference.
Interpolation
Equally Spaced Arguments
When the arguments are equally spaced i.e. 𝒙𝒊 - 𝒙𝒊−𝟏 = h ∀ i then
we can use one of the following differences:
Interpolation
Forward
Differences
Backward
differences
Central
differences
Equally Spaced Arguments
To calculate Equally Spaced Arguments , we use following
methods:
 Newton’s interpolation method for equal interval
• Newton’s Forward Interpolation Formula
• Newton’s Backward Interpolation Formula
 Gauss’s interpolation method for equal interval
• Gauss’s Forward Interpolation Formula
• Gauss’s Backward Interpolation Formula
Interpolation
Equally Spaced Arguments
 To calculate Unequally Spaced Arguments , we use following
method:
Interpolation
Lagrange’s interpolation
method
Newton’s Interpolation
Introduction
 Newton’s Interpolation Method:
• Newton’s Forward Interpolation Formula
• Newton’s Backward Interpolation Formula
Newton’s Interpolation
Newton’s forward Interpolation Method
 Statement:
If 𝑥0 , 𝑥1 , 𝑥2 ,….., 𝑥𝑛 are given set of observations with common
difference h and let 𝑦0, 𝑦1, 𝑦2,….., 𝑦𝑛 are their corresponding values,
where y = f(x) be the given function then
f (𝑥0 + ph) = 𝑦0 + p∆ 𝑦0 +
𝑝(𝑝−1)
2!
∆2
𝑦0+…..+
𝑝 𝑝−1 ……..(𝑝−𝑛−1 )
𝑛!
∆ 𝑛
𝑦0
where,
p =
(𝒙−𝒙𝟎)
𝒉
Newton’s Interpolation
Newton’s backward Interpolation Method
 Statement:
If 𝑥0 , 𝑥1 , 𝑥2 ,….., 𝑥𝑛 are given set of observations with common
difference h and let 𝑦0, 𝑦1, 𝑦2,….., 𝑦𝑛 are their corresponding values,
where y = f(x) be the given function then
f (𝑥𝑛 + ph) = 𝑦𝑛 + p∇ 𝑦𝑛 +
𝑝(𝑝+1)
2!
∇ 2
𝑦𝑛+…..+
𝑝 𝑝+1 ……..(𝑝+ 𝑛−1 )
𝑛!
∇ 𝑛
𝑦𝑛
where,
p =
(𝒙−𝒙𝟎)
𝒉
Newton’s Interpolation
Gauss’s Interpolation
Introduction
 Gauss’s Interpolation Method:
• Gauss’s Forward Central Difference Formula
• Gauss’s Backward Central Difference Formula
Gauss’s Interpolation
 Statement:
If … 𝑥−2 , 𝑥−1, 𝑥0 , 𝑥1 ,𝑥2 ,….. are given set of observations with common
difference h and let … 𝑦−2 , 𝑦−1, 𝑦0 , 𝑦1 ,𝑦2 ,….. are their corresponding
values, where y = f(x) be the given function then
𝑦𝑝 = 𝑦0 + p∆ 𝑦0 +
𝑝(𝑝−1)
2!
∆2𝑦−1+
𝑝(𝑝−1) 𝑝+1
3!
∆ 3𝑦−1 +……
where,
p =
(𝒙−𝒙𝟎)
𝒉
Gauss’s Interpolation
Gauss Forward Central Difference Operator
 Statement:
If … , 𝑥−2 , 𝑥−1, 𝑥0 , 𝑥1 ,𝑥2 ,….. are given set of observations with common
difference h and let … 𝑦−2 , 𝑦−1, 𝑦0 , 𝑦1 ,𝑦2 ,….. are their corresponding values,
where y = f(x) be the given function then
𝑦𝑝 = 𝑦0 + p∆ 𝑦−1 +
𝑝(𝑝+1)
2!
∆2
𝑦−1+
𝑝(𝑝−1) 𝑝+1
3!
∆ 3
𝑦−2 +……
where,
p =
(𝒙−𝒙𝟎)
𝒉
Gauss’s Interpolation
Gauss Backward Central Difference Operator
Stirling’s Formula
Introduction
 Statement:
This formula gives the average of the values obtained by Gauss forward
and backward interpolation formulae. For using this formula we should
have – ½ < p< ½.
32
We can get very good estimates if - ¼ < p < ¼.
The formula is:
where,
u =
𝒙−𝒙𝟎
𝒉
Stirling’s Formula
y = 𝒚𝟎 + u(
∆𝒚𝟎 + ∆𝒚−𝟏
𝟐
) +
𝒖𝟐
𝟐!
∆𝟐 𝒚−𝟏 +
𝒖(𝒖𝟐−𝟏)
𝟑!
[
∆𝟑𝒚−𝟏+∆ 𝟑𝒚−𝟐
𝟐
]+……
Lagrange’s Interpolation
Lagrange’s Formula
 Statement:
If 𝑥0 , 𝑥1 , 𝑥2 ,….., 𝑥𝑛 are given set of observations which are not be
equally spaced and let 𝑦0, 𝑦1, 𝑦2,….., 𝑦𝑛 are their corresponding values,
where y = f(x) be the given function then
f(x) =
(𝒙−𝒙𝟏)……..(𝒙−𝒙𝒏)
(𝒙𝟎−𝒙𝟏)……..(𝒙𝟎−𝒙𝒏)
𝒚𝟎 + ……………. +
(𝒙−𝒙𝟎)……..(𝒙−𝒙𝒏−𝟏)
(𝒙𝒏−𝒙𝟎)……..(𝒙𝒏−𝒙𝒏−𝟏)
𝒚𝒏
Lagrange’s Interpolation
Formulas
Difference Operators
 Forward Difference operator:
f(x)=f(x+h)-f(x)
 Backward Difference operator :
 f(x)=f(x)-f(x-h)
 Central Difference operator :
 f(x) = f(x +
𝒉
𝟐
)-f(x -
𝒉
𝟐
)
 Averaging Operator :
μ f(x) =
𝟏
𝟐
[f(x +
𝒉
𝟐
) - f(x -
𝒉
𝟐
)]
 Shift operator :
E f(x)=f(x+h)
Formulas
Interpolation
 Newton’s forward Interpolation Method:
f (𝒙𝟎 + ph) = 𝒚𝟎 + p∆ 𝒚𝟎 +
𝒑(𝒑−𝟏)
𝟐!
∆𝟐
𝒚𝟎+…..+
𝒑 𝒑−𝟏 ……..(𝒑−𝒏−𝟏 )
𝒏!
∆ 𝒏
𝒚𝟎
 Newton’s backward Interpolation Method:
f (𝒙𝒏 + ph) = 𝒚𝒏 + p∇ 𝒚𝒏 +
𝒑(𝒑+𝟏)
𝟐!
∇ 𝟐
𝒚𝒏+…..+
𝒑 𝒑+𝟏 ……..(𝒑+ 𝒏−𝟏 )
𝒏!
∇ 𝒏
𝒚𝒏
 Gauss Forward Central Difference Operator:
𝒚𝒑 = 𝒚𝟎 + p∆ 𝒚𝟎 +
𝒑(𝒑−𝟏)
𝟐!
∆𝟐
𝒚−𝟏+
𝒑(𝒑−𝟏) 𝒑+𝟏
𝟑!
∆ 𝟑
𝒚−𝟏 +……
 Gauss Backward Central Difference Operator:
𝒚𝒑 = 𝒚𝟎 + p∆ 𝒚−𝟏 +
𝒑(𝒑+𝟏)
𝟐!
∆𝟐
𝒚−𝟏+
𝒑(𝒑−𝟏) 𝒑+𝟏
𝟑!
∆ 𝟑𝒚−𝟐 +……
Formulas
Interpolation
 Stirling’s Formula:
y = 𝒚𝟎 + u(
∆𝒚𝟎 + ∆𝒚−𝟏
𝟐
) +
𝒖𝟐
𝟐!
∆𝟐 𝒚−𝟏 +
𝒖(𝒖𝟐−𝟏)
𝟑!
[
∆𝟑𝒚−𝟏+∆ 𝟑𝒚−𝟐
𝟐
]+……
 Lagrange’s Formula
f(x) =
(𝒙−𝒙𝟏)……..(𝒙−𝒙𝒏)
(𝒙𝟎−𝒙𝟏)……..(𝒙𝟎−𝒙𝒏)
𝒚𝟎 + ……………. +
(𝒙−𝒙𝟎)……..(𝒙−𝒙𝒏−𝟏)
(𝒙𝒏−𝒙𝟎)……..(𝒙𝒏−𝒙𝒏−𝟏)
𝒚𝒏

More Related Content

Similar to Prerna actual.pptx

Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlightedAmanSaeed11
 
Newton’s Divided Difference Interpolation 18.pptx
Newton’s Divided Difference Interpolation 18.pptxNewton’s Divided Difference Interpolation 18.pptx
Newton’s Divided Difference Interpolation 18.pptxRishabhGupta238479
 
Fuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important resultsFuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important resultsinventionjournals
 
Dericavion e integracion de funciones
Dericavion e integracion de funcionesDericavion e integracion de funciones
Dericavion e integracion de funcionesdiegoalejandroalgara
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdfoxtrot jp R
 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayfoxtrot jp R
 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyfoxtrot jp R
 
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Baasilroy
 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfSantiagoGarridoBulln
 
theorey of ch 3.pptx
theorey of ch 3.pptxtheorey of ch 3.pptx
theorey of ch 3.pptxHome
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qmAnda Tywabi
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggrisimmochacha
 
Complex Variable & Numerical Method
Complex Variable & Numerical MethodComplex Variable & Numerical Method
Complex Variable & Numerical MethodNeel Patel
 

Similar to Prerna actual.pptx (20)

Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlighted
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
Newton’s Divided Difference Interpolation 18.pptx
Newton’s Divided Difference Interpolation 18.pptxNewton’s Divided Difference Interpolation 18.pptx
Newton’s Divided Difference Interpolation 18.pptx
 
Fuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important resultsFuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important results
 
Dericavion e integracion de funciones
Dericavion e integracion de funcionesDericavion e integracion de funciones
Dericavion e integracion de funciones
 
Calculas
CalculasCalculas
Calculas
 
Fourier series
Fourier series Fourier series
Fourier series
 
Interpolation
InterpolationInterpolation
Interpolation
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
 
Ft3 new
Ft3 newFt3 new
Ft3 new
 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
 
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdf
 
theorey of ch 3.pptx
theorey of ch 3.pptxtheorey of ch 3.pptx
theorey of ch 3.pptx
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
 
Complex Variable & Numerical Method
Complex Variable & Numerical MethodComplex Variable & Numerical Method
Complex Variable & Numerical Method
 

More from RehmanRasheed3

More from RehmanRasheed3 (8)

Principle And Working of A Semiconductor Laser.pptx
Principle And Working of A Semiconductor Laser.pptxPrinciple And Working of A Semiconductor Laser.pptx
Principle And Working of A Semiconductor Laser.pptx
 
Cocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxCocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptx
 
chapter17.ppt
chapter17.pptchapter17.ppt
chapter17.ppt
 
cp05.pptx
cp05.pptxcp05.pptx
cp05.pptx
 
CP 04.pptx
CP 04.pptxCP 04.pptx
CP 04.pptx
 
Numerical Methods.pptx
Numerical Methods.pptxNumerical Methods.pptx
Numerical Methods.pptx
 
5-1-reimann-sums.ppt
5-1-reimann-sums.ppt5-1-reimann-sums.ppt
5-1-reimann-sums.ppt
 
Gauss jordan method.pptx
Gauss jordan method.pptxGauss jordan method.pptx
Gauss jordan method.pptx
 

Recently uploaded

RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 

Prerna actual.pptx

  • 2. Introduction Types of Operators:  Forward Difference Operator  Backward Difference Operator  Central Difference Operator  Shift Operator  Averaging Operator Difference Operators
  • 3. Types of operators Difference Operators  Forward Difference Operator
  • 4. Forward Difference Operator Definition: Forward Difference operator, denoted by  ,as f(x)=f(x+h)-f(x) The expression f(x+h)-f(x) gives the Forward Difference of f(x) and the operator  is called the First Forward Difference Operator. Given the step size h this formula uses the values at x and x+h the point at the next step As it is moving in the forward direction, it is called the Forward Difference Operator Difference Operators
  • 5. Backward Difference Operator Definition: Backward Difference operator, denoted by , as  f(x)=f(x)-f(x-h) Given the step size h note that this formula uses the values at x and x-h, the point at the previous step. As it moves in the backward direction, it is called the Backward Difference Operator Difference Operators
  • 6. Central Difference Operator Definition: Central Difference operator, denoted by  , is defined by  f(x) = f(x + 𝒉 𝟐 )-f(x - 𝒉 𝟐 ) Thus , 𝜹𝟐 f(x) = f(x+h) – 2f(x) + f(x-h) Difference Operators
  • 7. Shift Operator Definition: Shift operator, denoted by E is the operator which shifts the value at the next point with step h, i.e. E f(x)=f(x+h) Thus, E𝒚𝒊 = 𝒚𝒊+𝟏 , 𝐄𝟐𝒚𝒊 = 𝒚𝒊+𝟐 and 𝑬𝒌 𝒚𝒊 = 𝒚𝒊+𝒌 Difference Operators Definition: Shift operator, denoted by E is the operator which shifts the value at the next point with step h, i.e. E f(x)=f(x+h) Thus, E𝒚𝒊 = 𝒚𝒊+𝟏 , 𝐄𝟐𝒚𝒊 = 𝒚𝒊+𝟐 and 𝑬𝒌𝒚𝒊 = 𝒚𝒊+𝒌
  • 8. Averaging Operator Definition: The Averaging Operator, denoted by μ , gives the average value between two central points, i.e., μ f(x) = 𝟏 𝟐 [f(x + 𝒉 𝟐 ) - f(x - 𝒉 𝟐 )] Thus, μ 𝒚𝒊 = 𝟏 𝟐 (𝒚𝒊 + 𝟏 𝟐 + 𝒚𝒊 − 𝟏 𝟐 ) 𝝁𝟐 𝒚𝒊 = 𝟏 𝟐 (𝝁 𝒚𝒊 + 𝟏 𝟐 + 𝝁 𝒚𝒊 − 𝟏 𝟐 ) = 𝟏 𝟒 (𝒚𝒊 +𝟏 + 2𝒚𝒊 + 𝒚𝒊 −𝟏) Difference Operators
  • 9. Relation Between Operators Different Relations:  E = ∆ + 1  𝐸−1 = 1-∇  E ∇ =∇ E = ∆  δ = 𝐸 1 2 - 𝐸 −1 2  ∆ = δ 𝐸 1 2  E = 𝑒ℎ𝐷  (1+ ∆)(1-∇) = 1 µ Difference Operators
  • 10. Forward Difference Table Argument X Entry Y=f(x) First Differences ∆y Second Differences ∆2y Third Differences ∆3y 𝑥𝑜 𝑥𝑜+ h 𝑥𝑜+ 3h 𝑥𝑜+ 2h 𝑦𝑜 𝑦1 𝑦2 𝑦3 𝑦1 − 𝑦𝑜= ∆𝑦𝑜 𝑦2 −𝑦1 =∆𝑦1 𝑦3 −𝑦2 =∆ 𝑦2 ∆𝑦2−∆𝑦1=∆2 𝑦1 ∆𝑦1 − ∆𝑦𝑜 =∆2𝑦𝑜 ∆2 𝑦1 − ∆2 𝑦𝑜=∆3 𝑦𝑜 Difference Operators
  • 11. Backward Difference Table Argument X Entry Y=f(x) First Differences 𝛻 y Second Differences 𝛻2y Third Differences 𝛻3 y 𝒙𝒐 𝒙𝒐+ h 𝒙𝒐+ 3h 𝒙𝒐+ 2h 𝒚𝒐 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟏 − 𝒚𝒐= 𝜵 𝒚𝒐 𝒚𝟐 − 𝒚𝟏 = 𝜵𝒚𝟏 𝒚𝟑 − 𝒚𝟐 = 𝜵𝟐 𝜵𝒚𝟐 − 𝜵𝒚𝟏 = 𝜵𝟐 𝒚𝟏 𝜵𝒚𝟏 − 𝜵𝒚𝒐 = 𝜵𝟐 𝒚𝒐 𝜵𝟐 𝒚𝟏 − 𝜵𝟐 𝒚𝒐= 𝜵𝟑 𝒚𝒐 Difference Operators 𝒚𝒐 𝒚𝟏
  • 12. - 𝒙𝒐 𝒙𝒐+ h 𝒙𝒐+ 3h 𝒙𝒐+ 2h Backward Difference Table Argument X Entry Y=f(x) First Differences 𝛻 y Second Differences 𝛻2y Third Differences 𝛻3 y 𝜵𝒚𝟐 − 𝜵𝒚𝟏 = 𝜵𝟐 𝒚𝟏 𝜵𝒚𝟏 − 𝜵𝒚𝒐 = 𝜵𝟐 𝒚𝒐 𝜵𝟐 𝒚𝟏 − 𝜵𝟐 𝒚𝒐= 𝜵𝟑 𝒚𝒐 Difference Operators = 𝜵 𝒚𝒐 𝜵 𝒚𝟏 𝒚𝟑 𝒚𝟑 𝒚𝟐 𝒚𝟐 𝒚𝟐 𝒚𝟏 𝒚𝟏 𝒚𝟏 𝒚𝒐 𝒚𝒐 𝜵 𝒚𝟐
  • 13. 𝜵 𝒚𝒐 𝜵 𝒚𝟏 𝜵 𝒚𝟐 - 𝒙𝒐 𝒙𝒐+ h 𝒙𝒐+ 3h 𝒙𝒐+ 2h Backward Difference Table Argument X Entry Y=f(x) First Differences 𝛻 y Second Differences 𝛻2y Third Differences 𝛻3 y 𝜵𝒚𝟐 − 𝜵𝒚𝟏 = 𝜵𝟐 𝒚𝟏 𝜵𝒚𝟏 − 𝜵𝒚𝒐 = 𝜵𝟐 𝒚𝒐 𝜵𝟐 𝒚𝟏 − 𝜵𝟐 𝒚𝒐= 𝜵𝟑 𝒚𝒐 Difference Operators = 𝜵 𝒚𝒐 𝜵 𝒚𝟏 𝒚𝟑 𝒚𝟑 𝒚𝟐 𝒚𝟐 𝒚𝟐 𝒚𝟏 𝒚𝟏 𝒚𝟏 𝒚𝒐 𝒚𝒐 𝜵 𝒚𝟐
  • 14. 𝜵𝟐 𝒚𝟏 − 𝜵𝟐 𝒚𝒐= 𝜵𝟑 𝒚𝒐 𝜵𝟐 𝒚𝟏 − 𝜵𝟐 𝒚𝒐= 𝜵𝟑 𝒚𝒐
  • 15. Central Difference table Difference Operators Argument X Entry Y=f(x) First Differences δy Second Differences δ2y Third Differences δ3 y 𝑥𝑜 𝑥1 𝑥3 𝑥2 𝑦𝑜 𝑦1 𝑦2 𝑦3 δ𝑦1 2 δ𝑦3 2 δ𝑦5 2 δ2𝑦2 δ2 𝑦1 δ3 𝑦3 2
  • 17. Introduction  Topics to be covered: • Newton’s Interpolation Method • Gauss’s Interpolation Method • Lagrange’s Interpolation Method • Stirling’s formula for Central Differences • Inverse Interpolation Interpolation
  • 18. Definition The process of finding the curve passing through the points (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2),………, (𝑥𝑛, 𝑦𝑛) is called as Interpolation and the curve obtained is called as Interpolating curve. Interpolating polynomial passing through the given set of points is Unique. Let 𝑥0, 𝑥1, 𝑥2,….. , 𝑥𝑛 be given set of observations y=f(x) and be the given function, then the method to find f(𝑥𝑚)∀ 𝑥0 ≤ 𝑥𝑚 ≤ 𝑥𝑛 is called as an INTERPOLATION. (𝑥0, 𝑦0) (𝑥1, 𝑦1) (𝑥𝑛, 𝑦𝑛) (𝑥𝑛−1, 𝑦𝑛−1) (𝑥3, 𝑦3) (𝑥2, 𝑦2) f(x) Interpolation
  • 19. Finite Difference Concept The Interpolation depends upon Finite Difference Concept. If be given set of observations and let 𝒚𝟎= f (𝒙𝟎),…., 𝒚𝒏= f (𝒙𝒏) be their corresponding values for the curve y = f(x) , then 𝒚𝟏 − 𝒚𝟎,….., 𝒚𝒏 − 𝒚𝒏−𝟏 is called as Finite Difference. Interpolation
  • 20. Equally Spaced Arguments When the arguments are equally spaced i.e. 𝒙𝒊 - 𝒙𝒊−𝟏 = h ∀ i then we can use one of the following differences: Interpolation Forward Differences Backward differences Central differences
  • 21. Equally Spaced Arguments To calculate Equally Spaced Arguments , we use following methods:  Newton’s interpolation method for equal interval • Newton’s Forward Interpolation Formula • Newton’s Backward Interpolation Formula  Gauss’s interpolation method for equal interval • Gauss’s Forward Interpolation Formula • Gauss’s Backward Interpolation Formula Interpolation
  • 22. Equally Spaced Arguments  To calculate Unequally Spaced Arguments , we use following method: Interpolation Lagrange’s interpolation method
  • 24. Introduction  Newton’s Interpolation Method: • Newton’s Forward Interpolation Formula • Newton’s Backward Interpolation Formula Newton’s Interpolation
  • 25. Newton’s forward Interpolation Method  Statement: If 𝑥0 , 𝑥1 , 𝑥2 ,….., 𝑥𝑛 are given set of observations with common difference h and let 𝑦0, 𝑦1, 𝑦2,….., 𝑦𝑛 are their corresponding values, where y = f(x) be the given function then f (𝑥0 + ph) = 𝑦0 + p∆ 𝑦0 + 𝑝(𝑝−1) 2! ∆2 𝑦0+…..+ 𝑝 𝑝−1 ……..(𝑝−𝑛−1 ) 𝑛! ∆ 𝑛 𝑦0 where, p = (𝒙−𝒙𝟎) 𝒉 Newton’s Interpolation
  • 26. Newton’s backward Interpolation Method  Statement: If 𝑥0 , 𝑥1 , 𝑥2 ,….., 𝑥𝑛 are given set of observations with common difference h and let 𝑦0, 𝑦1, 𝑦2,….., 𝑦𝑛 are their corresponding values, where y = f(x) be the given function then f (𝑥𝑛 + ph) = 𝑦𝑛 + p∇ 𝑦𝑛 + 𝑝(𝑝+1) 2! ∇ 2 𝑦𝑛+…..+ 𝑝 𝑝+1 ……..(𝑝+ 𝑛−1 ) 𝑛! ∇ 𝑛 𝑦𝑛 where, p = (𝒙−𝒙𝟎) 𝒉 Newton’s Interpolation
  • 28. Introduction  Gauss’s Interpolation Method: • Gauss’s Forward Central Difference Formula • Gauss’s Backward Central Difference Formula Gauss’s Interpolation
  • 29.  Statement: If … 𝑥−2 , 𝑥−1, 𝑥0 , 𝑥1 ,𝑥2 ,….. are given set of observations with common difference h and let … 𝑦−2 , 𝑦−1, 𝑦0 , 𝑦1 ,𝑦2 ,….. are their corresponding values, where y = f(x) be the given function then 𝑦𝑝 = 𝑦0 + p∆ 𝑦0 + 𝑝(𝑝−1) 2! ∆2𝑦−1+ 𝑝(𝑝−1) 𝑝+1 3! ∆ 3𝑦−1 +…… where, p = (𝒙−𝒙𝟎) 𝒉 Gauss’s Interpolation Gauss Forward Central Difference Operator
  • 30.  Statement: If … , 𝑥−2 , 𝑥−1, 𝑥0 , 𝑥1 ,𝑥2 ,….. are given set of observations with common difference h and let … 𝑦−2 , 𝑦−1, 𝑦0 , 𝑦1 ,𝑦2 ,….. are their corresponding values, where y = f(x) be the given function then 𝑦𝑝 = 𝑦0 + p∆ 𝑦−1 + 𝑝(𝑝+1) 2! ∆2 𝑦−1+ 𝑝(𝑝−1) 𝑝+1 3! ∆ 3 𝑦−2 +…… where, p = (𝒙−𝒙𝟎) 𝒉 Gauss’s Interpolation Gauss Backward Central Difference Operator
  • 32. Introduction  Statement: This formula gives the average of the values obtained by Gauss forward and backward interpolation formulae. For using this formula we should have – ½ < p< ½. 32 We can get very good estimates if - ¼ < p < ¼. The formula is: where, u = 𝒙−𝒙𝟎 𝒉 Stirling’s Formula y = 𝒚𝟎 + u( ∆𝒚𝟎 + ∆𝒚−𝟏 𝟐 ) + 𝒖𝟐 𝟐! ∆𝟐 𝒚−𝟏 + 𝒖(𝒖𝟐−𝟏) 𝟑! [ ∆𝟑𝒚−𝟏+∆ 𝟑𝒚−𝟐 𝟐 ]+……
  • 34. Lagrange’s Formula  Statement: If 𝑥0 , 𝑥1 , 𝑥2 ,….., 𝑥𝑛 are given set of observations which are not be equally spaced and let 𝑦0, 𝑦1, 𝑦2,….., 𝑦𝑛 are their corresponding values, where y = f(x) be the given function then f(x) = (𝒙−𝒙𝟏)……..(𝒙−𝒙𝒏) (𝒙𝟎−𝒙𝟏)……..(𝒙𝟎−𝒙𝒏) 𝒚𝟎 + ……………. + (𝒙−𝒙𝟎)……..(𝒙−𝒙𝒏−𝟏) (𝒙𝒏−𝒙𝟎)……..(𝒙𝒏−𝒙𝒏−𝟏) 𝒚𝒏 Lagrange’s Interpolation
  • 35. Formulas Difference Operators  Forward Difference operator: f(x)=f(x+h)-f(x)  Backward Difference operator :  f(x)=f(x)-f(x-h)  Central Difference operator :  f(x) = f(x + 𝒉 𝟐 )-f(x - 𝒉 𝟐 )  Averaging Operator : μ f(x) = 𝟏 𝟐 [f(x + 𝒉 𝟐 ) - f(x - 𝒉 𝟐 )]  Shift operator : E f(x)=f(x+h)
  • 36. Formulas Interpolation  Newton’s forward Interpolation Method: f (𝒙𝟎 + ph) = 𝒚𝟎 + p∆ 𝒚𝟎 + 𝒑(𝒑−𝟏) 𝟐! ∆𝟐 𝒚𝟎+…..+ 𝒑 𝒑−𝟏 ……..(𝒑−𝒏−𝟏 ) 𝒏! ∆ 𝒏 𝒚𝟎  Newton’s backward Interpolation Method: f (𝒙𝒏 + ph) = 𝒚𝒏 + p∇ 𝒚𝒏 + 𝒑(𝒑+𝟏) 𝟐! ∇ 𝟐 𝒚𝒏+…..+ 𝒑 𝒑+𝟏 ……..(𝒑+ 𝒏−𝟏 ) 𝒏! ∇ 𝒏 𝒚𝒏  Gauss Forward Central Difference Operator: 𝒚𝒑 = 𝒚𝟎 + p∆ 𝒚𝟎 + 𝒑(𝒑−𝟏) 𝟐! ∆𝟐 𝒚−𝟏+ 𝒑(𝒑−𝟏) 𝒑+𝟏 𝟑! ∆ 𝟑 𝒚−𝟏 +……  Gauss Backward Central Difference Operator: 𝒚𝒑 = 𝒚𝟎 + p∆ 𝒚−𝟏 + 𝒑(𝒑+𝟏) 𝟐! ∆𝟐 𝒚−𝟏+ 𝒑(𝒑−𝟏) 𝒑+𝟏 𝟑! ∆ 𝟑𝒚−𝟐 +……
  • 37. Formulas Interpolation  Stirling’s Formula: y = 𝒚𝟎 + u( ∆𝒚𝟎 + ∆𝒚−𝟏 𝟐 ) + 𝒖𝟐 𝟐! ∆𝟐 𝒚−𝟏 + 𝒖(𝒖𝟐−𝟏) 𝟑! [ ∆𝟑𝒚−𝟏+∆ 𝟑𝒚−𝟐 𝟐 ]+……  Lagrange’s Formula f(x) = (𝒙−𝒙𝟏)……..(𝒙−𝒙𝒏) (𝒙𝟎−𝒙𝟏)……..(𝒙𝟎−𝒙𝒏) 𝒚𝟎 + ……………. + (𝒙−𝒙𝟎)……..(𝒙−𝒙𝒏−𝟏) (𝒙𝒏−𝒙𝟎)……..(𝒙𝒏−𝒙𝒏−𝟏) 𝒚𝒏