SlideShare a Scribd company logo
1 of 99
RECENT APPROACHES IN URBAN AND HOUSEHOLD PEST
MANAGEMENT.
PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY
Department of Entomology
COURSE NO : ENT -591
Course In-charge: Dr. S.J Rahman
(Senior Professor & University Head)
Chairman: Dr. J.C Sekhar
(Principal Scientist IIMR)
Presented by
Prajwal Gowda MA
M.Sc(Ag) 2nd Year
RAM/2020-50
Dept. of Entomology
Contents
 Introduction
 Categories of Urban Pests
 Types of Household Pests
 Management of Urban & Household pests
 Indigenous & Innovative science in stored grain pest management
 Case Studies
 Conclusion
URBAN PESTS
The urban environment is a complex of habitats developed by humans from natural sites
or agricultural land.
Ex: Houses, villages, gardens, cities, buildings, yards etc.
 Urban pest means a destructive insect or other animal which has human health or
aesthetic implications.
 Urban pests includes turf pests, structural pests, ornamental plant pests, indoor and
outdoor nuisance pests.
 Pest status for insects and other arthropods in the urban environment may or may not be
based on a measurable feature.
W.H Robinson, 2015
 The damage caused to structures by termites or other wood-infesting insects can
be measured.
 The health threat or medical importance, such as from stinging insects, vectors of
diseases cannot be measured by costs.
 Urban pests status studied based on aesthetic & medical consideration.
 Aesthetic injury may be associated with a specific number of individual pests, such
as sighting one to two cockroaches or chirping crickets within 24 h indoors.
 Medical importance insects are those which bite, sting, suck blood, transmit
parasites and pathogens, or because they induce allergies or entomophobia.
Example mosquitoes, head louse and bed bugs.
URBAN PESTs CATEGORIES & EXAMPLES
Urban pests category Examples
Indoor Nuisance Mosquito, ant, flea, louse
Outdoor Nuisance Wasp, hornets, ticks
Turf and Ornamental
Plants
White grub, aphids, plant bugs,
whiteflies, thrips
Home Garden Slug, snail, flea beetle
Structural Termite, carpenter ant, powder post
beetle.
Κ. D. Racke, 2003
Indoor Nuisance Pest Control.
 Broadcast floor sprays may be made for pests such as fleas.
Spot and surface treatments are made to control cockroaches and ants.
 Insecticidal baits are employed for these same invaders.
 Total release aerosol bombs or slow-release pest strips can also be used.
Aerosol bomb Pest strips
Structural Pest Control.
 Distinctive pesticide use patterns are made to control structural pests such as
termites.
 A preventative approach, which involves the treatment of timber with
insecticides (Hgcl2, Chlorpyriphos) prior to construction.
 For buildings under construction, application of insecticide formulations may be
made to the soil underneath the slab or foundation.
 Exposed wood surfaces may be subject to insecticide drenches(imidacloprid) for
control of wood-boring beetle pests.
 In extreme cases an entire structure may be fumigated(sulfuryl fluoride) to provide
control.
Outdoor Nuisance Pest Control.
 High volume- low concentration sprays of insecticides may be made to
exterior building surfaces.
 Insecticidal dusts may also be applied.(e.g., wasp nests, ant mounds).
 Fogging with insecticides may be employed for very mobile pests such as
mosquitoes or blackflies.
 For rodents control, rodenticidal baits are used.
Turf and Ornamental Pest Control.
 Both foliar sprays and granular applications of insecticides may be applied for control of
surface feeding as well as soil- dwelling insect pests.
 For ornamental plants & shrubs, foliar sprays are most commonly followed.
 Poison baiting & use of pheromone can also be done.
Home Garden Pest Control.
 Insecticide sprays, granules, and dusts may all be employed.
 Insecticidal aerosol sprays are also employed on crops such as tomatoes and
potatoes.
 Fruit bearing trees and vines in the home garden are often subject to foliar
insecticide sprays.
MOSQUITOES
Only females bite. One blood meal is sufficient for her to produce many (300) eggs.
Larvae are aquatic. Both sexes of mosquito feed on various juices of flower nectar & fruits.
 Acts as a vector of diseases also.
o Anopheles- Malaria (Proven by Ronald Ross)
o Culex- Filariasis &
o Aedes- Dengue, Chickengunya.
Graham in 1905 was the first to prove mosquito transmission of dengue.
Management
o Use of Mat vaporizers @ one per 30sq m and use of FIK aerosols like propoxur 1%.
o DEET, DEBA & DEPA repellents for skin application – 5g of the lotions are
recommended to offer 6 to 8hrs protection.
o Home electric LED & black light traps (U.V) are also effective. Singhamapatra, 2020
Electronic LED trap Black light Trap
D Trans Allethrin Propoxur
Synthetic pheromone:
 Chemical 1-Octen-3-ol which acts as an
attractant can be used.
 The activity of pheromone persists in the
established breeding place for four days after
application.
Physical method:
 Using infrared radiation. Mosquitoes are attracted by a
500W quartz infrared lamp.
Pingxi Xu et al., 2015
Biocontrol method
 Bacterial insecticide- Bacillus thuringiensis variety israelensis serotype H14, strain 164
is highly effective against early instar larva.
It’s applied at 0.5g/ sq m of water or at 0.5% by knapsack sprayer at 3 weeks interval.
 Bacillus sphaericus also effective against larva.
 By releasing fishes like Gambusia, Poecilia, Tilapia which are larvivorous.
Chemical method.
 Application of fenitrothion at 1g a.i/sq.m on the surface of breeding water.
 Use of mosquito nets of 16 meshes/sq inch impregnated with deltamethrin 2.5% or
lambda cyhalothrin @ 25mg/sq m.
 Repellents containing citronella oil are used, Commercial products are Odomos & Replex
Lacey, 2007
Insecticides (Outside). For adults, spray window screens and around doors and windows.
Use aerosols of pyrethroids like Deltamethrin, Cyfluthrin.
• Fenthion 82.5EC recommended for highly polluted water.
• Standing water can be treated with Methoprene(JH’A) and Diflubenzuron 25WP(IGR)
which are effective against all species at 50g & 100g a.i/ha.
Insecticides (inside).
• Pirimiphos methyl @ 2g/m2 area.
• Spray- Cypermethrin, Ortho Flying Insect Killer (tetramethrin & phenothrin), Ortho
“Mosquito-B-Gon”(0.2% pyrethrins & 1% piperonyl butoxide).
• Temephos can be used in portable water.
Novel methods.
• Wolbachia- Incompatible insect technique.
• Sterile insect Technique.
• RIDL Method.
Brad Kard et al., 2016
Wolbachia spp. are Gram-negative α-proteobacteria which is an obligate intracellular.
It is the most common reproductive parasite in the biosphere.
These include inducing
1. infected females to reproduce without mating (parthenogenesis).
2. Feminization of males such that they become functional phenotypic female.
3. Selective killing of male embryos, and Cytoplasmic incompatibility which prevents
infected males from producing offspring with uninfected females.
They are cytoplasmically inherited (Wolbachia are present in mature eggs, but not mature
sperm- only infected females pass the infection on to their offspring).
Two Types of incompatibility,
 Unidirectional: occurs when sperm from a Wolbachia infected male fertilizes an
uninfected egg. But the reciprocal cross is compatible.
 Bidirectional: occurs when a male & female harbor two different strains of Wolbachia that
are mutually incompatible.
Sthouthamer et al., 1999
2 Kinds of Releases.
 Release of male and female mosquitoes with Wolbachia over a number of weeks.
These mosquitoes then breed with the wild population.
Over time, the percentage of mosquitoes carrying Wolbachia grows until it
remains high without the need for further releases.
 Release of only male mosquitoes with Wolbachia. When these mosquitoes mate
with wild female mosquitoes without Wolbachia, they are unable to reproduce.
This method reduces the ability of mosquitoes to transmit zika, dengue, chikungunya
and yellow fever on to people.
Iturbe-Ormaetxe et al., 2011
CONSEQUENCES.
 Altering the biting position.
 Affects brain tissues of host.
 Interferes viral replication inside
host.
 Affect nutritional status of
host.
 Reduces hosts lifespan.
 Indirectly kills virus.
 Affect host development.
STERILE INSECT TECHNIQUE (SIT):
Genetically manipulated insects are released among the wild populations to make the
matings infructuous (eggs will be non viable or sterile) or to introduce lethal genes
into the eggs of the females so that they do not develop beyond certain stage.
This is also called as autocidal method.
BASIC REQUIREMENTS:
 A method inducing sterility without impairing sexual behaviour of insects.
 Good intermingling of released and natural populations.
 A quantitative information on the natural population density.
 Information on the rate of population increase.
LIMITATIONS
 Not effective against insects that are prolific breeders.
• Sterile insects are not self-replicating and, therefore, cannot become
established in the environment.
• Repeated release of sterile males can further reduce and in cases of isolation
eliminate pest populations.
• The released insects are preferably male, as this is more cost-effective and
the females may in some situations cause damage by laying eggs in the crop,
or, in the case of mosquitoes, taking blood from humans.
• The sterile males compete with wild males to mate with the females,
females that mate with a sterile male produce no offspring,
thus reducing the next generation's population.
Bouyer and Lefrancois, 2014
Bacillus thuringiensis subspecies israelensis (Bti) bacteria is found in soil.
Bti is used as a larvicide to kill larvae before
they can grow into adults that can bite people.
How Bti Works?
• When eaten by mosquito larvae it produces toxins that kill these insects.
How Bti is Used?
• Bti comes in many forms including tablets, pellets, granules, or liquid.
• Bti can be added to standing water, ponds, septic tanks, and pools that are not in use.
The recommended dose is 7.5kg/ha in clean water and 10kg/ha in polluted water.
(source: nvbdcp.gov.in)
Genetically Modified Mosquitoes
An alternative method to sterilize males for population
suppression has been developed in which a self-limiting
gene is introduced into mosquito through genetic
engineering.
 This approach, was called as Release of Insects
Carrying a Dominant Lethal (RIDL).
 The lethal gene can be repressed using an antidote
(tetracycline) so that mosquitoes can be reared to
adulthood in lab facilities prior to the release of males
into wild populations, which then mate with wild
females, producing offspring that die at the larval
stage in the absence of tetracycline.
 This approach is species-specific (like IIT and SIT) &
eliminates the population in the release area. Benelli et al., 2016
HOUSE FLIES
Grey-bodied fly, black stripes on thorax, and slightly hairy appearance.
• These breed in manure, garbage, and fermenting crop wastes.
• They may carry and spread diseases like cholera, dysentery, anthrax & leprosy.
Control
 A flyswatter is very useful.
 Electric light traps & sticky traps are very effective.
 For adults, aerosol bombs are effective.
 Fly paper, insecticidal hanging strips(DDVP) are useful.
Insecticides:
Diflubenzuron @30g/m2 with 3 lit of water.
RTU sprays of Alphacypermethrin @0.1%
Bait: Sugar solution + Imidacloprid @0.5%
Propoxur granules @2% can also be used.
Bed net impregnated with cyfluthrin 5%EW @50mg/m2.
3D Glue trap Chemical Bait Fly Swatter
Bedbugs- Cimex sps
 Wingless insects that usually attack and take a blood meal at night.
 Bed bugs feed on blood of man and animals itching that can lead to scratching and
infection.
 These pests remain hidden near sleeping place during daylight hours.
Note:
• Do not treat bedding with any
chemical; wash in hot water with
detergent and place in hot dryer
for 30 minutes to kill bedbugs.
CONTROL
• Thoroughly vacuum bedstead, floor, cracks, and crevices.
• Climb-Up® Insect Interceptor” capture and exclusion devices placed under bed legs.
• Insecticides- DeltaDust, Drione dust, Cyper TC, Tempo SC Ultra are effective against bed
bugs.
Fleas-Pulex sps & Xenopsylla cheopsis
Larve feed on organic matter. Only adult is parasitic on warm
blooded animals. Both the sexes feed on blood. It’s bite causes
irritation & soreness. It transmits bubonic plague.
Management of Fleas
 Vacuum carpets thoroughly.
 Spray propoxur @0.5%.
 Apply Petcor (pyrethrin+methoprene)@1% over the animals
 DeltaDust can be used to treat lawn.
Headlouse- Pediculus humanus captis
 Due to biting- skin scarred, thickened with brownish spots.
 Transmits relapsing & epidemic typhus fever.
Fleas
Louse
 For Head louse- Lotions of Permethrin 1%, Benzyl alcohol 5%, ivermectin 0.5%,
Malathion 0.5% & Spinosad 0.9% topical suspension.
 Use lindane shampoo 1%. www.cdc.gov/parasites
Social insects that live almost entirely inside wood on which they feed or inside mounds.
Signs of Damage:
 Sightings of termite swarmers (flying termites) or discarded wings – Usually the first
sign of infestation.
 Mud in cracks of timber & mud falling from walls.
 Hollow timbers.
Termites- Odontotermes obesus & Cryptotermes brevis
A method which kills all castes of termite.
 Unpack and assemble stations.
 Place stations over termite infestation.
 Check every 15 days.
Principle
 Attracts termites,
 Feeds termites,
(Cellulose mixed with Beauveria bassiana
spores)
 & kills termites due to white muscardine
disease.
Decke indoor baiting technique
Termiticides.
Can be applied directly to soil or for aboveground surfaces.
 Chlorpyriphos 2% RTU can be used.
 Sprays of Termex (Imidacloprid) 30.5SC @ 0.2% is very effective.
 Termidor (Fipronil)SC @ 0.06%, Cyper TC @ 0.1%, Baseline(bifenthrin),
Permethrin TC.
 To protect wood & buildings (pre/post construction)- Chlorpyriphos 20EC@
50ml/lit is applied.
Additionally, sprays of borate products like Tim-Bor, Bora-Care & Board Defense
treatments to wood surfaces also suggested.
White grub
Drying in Patches
Nature of damage
Feeds below the soil surface on the roots and
rhizomes of all commonly used turfgrass
& are capable of eliminating the entire root
system.
Symptoms of damage
Turf in such areas can be easily lifted from
the soil surface or rolled like a carpet,
revealing the C-shaped white grubs
underneath.
Management
Apply Chlorpyriphos 50 EC 4 lit/ ha through sprinkler irrigation method.
Spray Clothianidin @0.5ml/lit, bifenthrin @2ml/lit, Imidacloprid @80ml/acre
Newer insecticides are Chlorantraniliprole @0.4ml/lit, Cyantraniliprole @1g/lit.
 Metarhizium brunneum – formerly known as M. anisopliae @1.5 Kg/acre.
 Heterorhabditis bacteriophora @4.5 kg/ha.
 A recently-introduced biological insecticide is Bacillus thuringiensis galleriae @ 1kg/ha.
- A new species of nematodes, Steinernema scarabaei, has been showing promising results
in research studies.
Geethanjali devi et al., (2018)
Stock and Koppenhofer, 2003
M. brunneum H. bacteriophora B. bassiana
The main difference between them is that a snail has a shell and a slug does
not.
SLUGS SNAILS
SLUGS & SNAILS
Damage symptoms
• They are especially active at night, feeding
early in the spring when new growth is
luxurious.
• Large, irregular holes in leaves or petals
and succulent stems snipped in half.
• Silvery, slimy trails of drying mucus.
Ragged Holes
MANAGEMENT
Baiting-
• Acetamiprid 20SP or Emamectin benzoate
5SG are used at 10% as bait in 1kg wheat
husk, 250g jaggery & 25g yeast extract in
water.
• Sugar water and yeast mixed together
which acts as an attractant.
• Use metaldehyde 2.5% at 2kg/acre or Iron
phosphate.
• Use malted beer as an attractant.
Baiting using beer
www.ipm.ucdavis.edu
Barrier
• Use copper barriers around planting beds and trees to give snails and slugs an electric
shock.
(Molluscans use Haemocyanin in their blood to transport oxygen. These Haemocyanin
proteins contain two copper atoms. This makes all molluscans very sensitive to the ingestion
of additional quantities of copper. So it prevents oxygen movement).
SPIDERS
Bites from some are venomous (Recluse & Widow spiders).
-Spiders can affect small children and hypersensitive individuals, causing redness and
swelling of the skin.
-Spiders are mainly beneficial because they feed upon pest insects, but are also a food
source for many birds, reptiles and mammals. So non dangerous spiders should not be
indiscriminately killed.
Control
o Keep spiders out with weather stripping & spider catcher.
o Use of sticky cards placed flat on the floor in room corners kill many spiders.
o Caulk and seal all exterior entry points around door, window and walls.
Venomous Recluse (Violin) Spider Spider catcher
PESTICIDES:
a. Insecticide treatments with sprays and dusts around outside of the wall.
b. Cypermethrin 25EC @0.1%, Deltamethrin spray@ 0.05%, Deltamethrin granules 0.1%
and Drione dust (pyrethrins+piperonyl butoxide) can be used against spiders.
Weather Stripping Glue trap
WASPS AND HORNETS
They build their single comb, paper-like nests under house eaves or in sheltered areas
such as sheds, barns, garages, or within ground cavities (yellow jackets).
Stinging insects build nests near dwelling places and may become nuisance or danger
to those allergic to their sting.
Hornets will only attack to defend their colony.
These are larger in size and has red or orange color body.
Management
 Use screens in buildings.
 If one or two enter, use a flyswatter.
 For underground nests like yellow jackets, apply insecticide directly into the entrance hole
and close over immediately with soil.
Hornet
Wasps nest
Electric swatter
Insecticides:
Spray aerosols of
• Cyfluthrin @0.025%,
• Deltamethrin @0.02%,
• Cyphenothrin @0.2% or
• Lambda cyhalothrin @0.1%.
Hornets nest
Household pests
 Any undesired vertebrates or invertebrates that have a history of living, invading, causing
damage, eating human foods, acting as disease vectors or causing harms in human habitation.
 Household pests constitute any-other unwanted invasion in the home.
Generally household pests are a subset of urban pests.
The common household pests includes- Ants, Silverfish, Powder post beetles, Carpet beetle,
Cloth moth & Cricket.
It prefer moisture, active at night and hide during the day.
 Eat foods high in protein or starch
(e.g., glue or paste, bookbindings, starch in clothing, and rayon fabrics.)
Mullick, 2003
Silverfish- Ctenolepisma sps
Management of silverfish
Spray propoxur @0.5%
Poison baiting: Oatmeal, Sodium fluoride or white arsenic, sugar & common salt.
Very fine sawdust on or beneath wood and small round or oval shot holes in wood surfaces
indicate infestation.
Powder post beetle: Sinoxylon sudanicum
Management:
• Fumigation with methyl bromide.
• Borate liquid applications to wood surfaces are
beneficial.
• Treat wood with Copper sulphate or Zinc
chloride @0.2%.
• Paint with varnish or tar.
Carpet beetle- Anthrena Pimpinella
• Grub & adults bite holes in fabrics like clothings, curtain.
• They also attack silk, insect specimens & dried meat.
Cloth Moth- Trichophaga abruptella
• Larva attack wool, leather, fish meal, dead insects & animals.
Cricket- Gryllus sps
• Live in crevices & males causes nuisance by making chirping
noise at night.
Management
 Use PDCB crystals/Napthalene balls.
 DeltaDust applied to cracks and crevices.
 Spray Demand CS, Dragnet FT, Suspend SC, Tempo SC Ultra.
 Caulk, seal all openings & use of sticky traps was found
effective against cricket.
ANTS- Monomorium criniceps
Feeding on all kinds of food materials,
Including sweets, starches and fatty foods.
Management
 Keep food refrigerated @<10°C.
 Using caulk and screening to exclude ants is effective.
 Home-made bait of syrup mixed with boric acid powder (3 tsp. BA + 100ml. syrup) is
effective.
 When using these baits and traps do not clean near area where baits are placed because
chemical foraging trails can be erased.
Harrison, 2006
Insecticides (indoor).
 Combat® (hydramethylnon) or MaxForce® (fipronil) ant bait gel,
or a contact insecticides like DeltaDust® (deltamethrin) @ 1.25g/lit
or Ortho Home Defense® (bifenthrin) @0.5ml/lit spray have been effective.
-Boric acid is available in liquid bait & also in spray formulation under trade name ‘Terro’.
Insecticides (outdoor).
 Products containing pyrethroids such as cypermethrin @1ml/lit, permethrin @1.5ml/lit and
lambda-cyhalothrin @1ml/lit are effective as perimeter applications.
Cockroaches exit their hiding places at night and feed on all types of food-stuffs as well as
starchy materials such as book binding glues.
- During the day, roaches congregate in dark places such as inside kitchen cabinets and
under sinks & around bathroom fixtures.
 They also feed on milk, soda, beer, cheese, meat and dead insects. They are often attracted
by food residue and garbages.
 It produces foul smell with excreta spread over.
Control
• Caulk to repair holes and cracks in walls.
• Use sticky traps to aid in control.
COCKROACHES- Periplanata americana
Insecticides (indoor).
 RTU sprays of several insecticides that contain permethrin and
bifenthrin are effective.
 Silica gel powder or baits containing boric acid are also effective.
 Products containing hydroprene (Gentrol), or MaxForce®FC Roach
Killer Bait Gel (fipronil) or MaxForce
ProRoach Killer Bait Gel (hydramethylnon) are effective.
 DeltaDust can also be used.
 Imidacloprid gel bait is effective.
 Etofenprox @ 1mg/sq cm.
Imiprothrin + Cypermethrin
Rodents
1. House mouse
- Mus musculus
2. House rat/ Black rat
- Rattus rattus
3. Brown rat /Norway rat /Sewer rat
- Rattus norvegicus
1.House mouse 2.Black rat
3.Sewer rat
 About 4.5% losses are caused due to rodents in storage annually.
 Rodents causes serious damage not only to stored products but also to buildings.
 Rodents not only feed on the grains but also contaminate more than 20% what they
consume, with their faeces, urine and hair.
 Prolonged attacks results in serious quantitative losses, up to 3-4%, of stored products.
 Decrease in quality of the foodstuffs, caused by the filth secretions rodents.
 Indeed, rodents are often the vectors of a number of serious diseases like rabies,
leptospirosis etc
Rodents.
Gubler et al., 2001
 Destroy books, papers, and clothes.
 Chew through electrical wires and increase electrocution risk.
 Cause structural damage to wood, drywall, insulation, and other building materials.
RODENTS MANAGEMENT
1. Ultrasonic technology
1. The ultrasonic deterrent devices
emit a sound undetectable by
humans.
2. The pressure and frequency of this
emitted sound drives mice and rats
away.
PROPER PROOFING
• Apertures should be 6 mm maximum.
• Materials must be resistant to gnawing, e.g. galvanized steel.
TRAPS
Old types
a. Snap neck trap
b. Live catch trap
c. Wonder/ Glue trap
Live trap Snap trap
REPRODUCTIVE INHIBITORS
Given through Bait @ 0.5% -Tetradifon, Furadantin and Colchicine.
A germ cell mutagen, Ethyl methanesulphonate (EMS) and also reduces fertility in both
male and female.
USE OF ANTICOAGULANTS
First-generation/Multiple dose anticoagulants-
Warfarin & fumarin @0.025%,
Diphacinone and Chlorophacinone @0.03%.
-Racumin (coumatetralyl) has been commercialized in India to be used as 0.75% tracking
powder or 0.0375% cereal bait.
Application:
Liquid bait: Warfarin – one part & Water – 19 parts.
Solid bait: Warfarin– one part, Sugar – one part, Vegetable oil – one part & Crushed grain –
17 parts.
Mattison and Thomford, 2020
Second generation/ Single dose anticoagulant rodenticides
These needs to be eaten by rats only once before they die. Since, the rodents feel no
pain, there is no warning & they continue to feed if the bait is attractive.
 difenacoum, brodifacoum,
 bromadiolone RB(Ready Bait) @0.005%,
 flocoumafen and difethiolone(0.0025%).
One piece should be kept at hiding place or runways etc.
Witmer et al.,(2013)
Household Stored Product Pests.
Insects and rodents feed on the stored products & also contaminate them which
make food unfit for human consumption.
Among biotic factors, insects causes nearly 10 -20% of damage to total stored
produce (Tyagi et al., 2019).
About 500 species of insects have been associated with stored grain products.
• 100 species of insect pests of stored products cause economic losses.
• Storage insect pests are categorized into two types.
• Primary storage pests : Insects that damages sound/whole grain.
a) Internal feeders- insects feed entirely within the kernels or grain.
b) External feeders- feed on the grains from outside/ grain surface.
• Secondary storage pests: Insects feed on broken grains or on materials which
are out of condition and dump.
Common Name Scientific Name Host Food
Rice weevil Sitophilus oryzae Rice, wheat, sorghum, barley,
maize.
Lesser grain borer Rhizopertha dominica Rice, wheat, maize.
Angoumois grain moth Sitotroga cerealella Paddy, wheat and maize.
Pulse beetles Callosobruchus chinensis,
C. maculatus
Pulses, gram and bean.
Cigarette beetle Lasioderma serricorne Peanut, spices, turmeric, chillies,
ginger, stored tobacco.
Drug store beetle Stegobium paniceum Turmeric, coriander, ginger, dry
vegetables & animal matter.
INTERNAL FEEDERS.
External feeder
Common Name Scientific Name Host Food
Long headed flour beetle Latheticus oryzae Broken grains, damaged grains
Saw toothed grain beetle Oryzaephilus surinamensis Dry fruits, rice, wheat, maize,
cereals
Grain/flour mites Acarus siro Cereal grains, flour, other
vegetables
Common Name Scientific Name Host Food
Red flour beetle Tribolium castaneum,
T. confusum
Processed foods like flour,
grains, cornflakes
Secondary pests
Rice weevil Lesser grain borer Pulse beetle Cigarette beetle
Drug store beetle Flour beetle Long head flour beetle Grain mites
Recent advances in stored grain pest management
1. Plant volatile organic compounds (PVOC)
Bioactive, typically volatile in nature. PVOC may act as a growth inhibitors, oviposition
deterrents, antifeedants, repellents and chemosterilants.
PVOC are essential oils consist of alcohols, aldehydes and terpenoids and extracts from many
plants (Rajashekar, 2012).
• Aqueous extracts of cocklebur Xanthium strumarium leaf shows insecticidal properties
against C. chinensis (Roy et al., 2014).
• 1, 8 cineole, which was extracted from essential oils of Lamiaceae(mints) plants affects
oviposition of rice weevil.
• The asarone isolated from rhizomes of A. calamus possess chemosterilant properties.
• The essential oils of cardamom (Elletaria cardamum) (Zingiberaceae), Cinnamum
zeylanicum (Lauraceae), Sygium aromaticum (Myrtaceae), Eucalyptus spp. and Azadirachta
indica (Meliaceae) found to have ovicidal effect on the eggs of T. castaneum
(Hong et al., 2018).
Nanoparticles or Nanoformulations
Many forms of nanoparticles used against stored grain pests like Silica Aerogel, Aluminium
oxide (Al2O3), Zinc oxide (ZnO), Copper oxide (Cu2O), Titanium dioxide (TiO2).
 The metal nanoparticles are utilized for making such formulations & these can be used as
insecticides.
 Amorphous silica nano particles have 100 percent mortality against T. castaneum.
 Al2O3 had the strongest deterrent impact on S. oryzae (Keratum et al., 2015).
 Nano-Diatomaceous-earth killed the eggs of T. confusum.
Mode of Action of Nanoparticles
 Insects utilizes a variety of cuticular lipids to maintain their water barrier intact and hence
avoid death due to dehydration.
 When it absorbs nano-silica into the cuticular lipids, If nanoencapsulation is released, then
death occurs due to changes in diffusion, biodegradation, dissolution and osmotic
pressure.
Ionizing Radiation
o Strong ionizing radiation (at a dose of 0.6 kGy) causes death of stored grain insects
by producing highly reactive free radicals or ions.
o Irradiation can effectively kill all life stages of insects.
o All the stages of S. oryzae will be killed 1MHz sound exposure for 5 minutes.
Behavioral Control by Using Insect Pheromones
The pheromones are utilised to trap Tribolium spp, Sitophilus spp, Drugstore beetle and
Cigarette beetle.
Insect Growth Regulators (IGRs)
Methoprene inhibits the metamorphosis of O. surinamensis at 1 mg/kg,
while hydrophene shows complete inhibition of larval growth in Sitophilus oryzae at a
dose of 10-20 mg/kg.
Spinosad as a natural grain protectant
o This is a low-risk pesticide, can be applied at a rate of 0.3ml/lit.
o It’s effective against psocid species as well as economically important beetle and moth
pests associated with stored grains (Nayak et al., 2005).
Other Synthetic grain protectants
o Reldan 4E (Chlorpyrifos-methyl) @10ml/lit. It’s labeled for use on barley, rice, grain
sorghum and wheat but is not labeled on corn. This does not have activity on lesser
grain borer.
o Storcide II (Chlorpyrifos-methyl + deltamethrin) @5ml/lit. Broad spectrum, effective
against lesser grain borer also.
o Actellic 5E (Pirimiphos-methyl) is registered for use on corn and grain sorghum.
Indigenous practices for eco-friendly storage of food grains and
seeds.
1. Sun drying of grains 11. Use of garlic cloves
2. Use of ash 12. Use of salt & chilli powder
3. Red soil coating 13. Use of Camphor
4. Plastering of bins with clay & cow dung 14. Use of castor powder
5. Storage of pulses with common salt 15. Sand mixture method
6. Turmeric application method 16. Use of dried red chillies
7. Mixing of leaves 17. Use of lime powder
8. Use of neem leaves 18. Use of Tulsi seeds
9. Use of neem leaves & dry chillies 19. Use of custard apple seed powder
10. Use of neem oil 20. Use of ginger & rhizome
Prakash et al., 2016
1. Red soil coating method
Red soil and water are mixed to form a paste in a
container. Seeds are transferred into this pot and
mixed well so that the soil completely adheres to
the seeds.
- Seeds are dried under shade and stored in dark.
Scientific rationale:
i. As it covers the grains, the insect could not able
to feed, lay eggs as it acts as a barrier.
ii. Soil absorbs left out moisture in the seeds.
iii. Improves germination.
Target crops: Pulses, ragi, maize.
2. Use of Ash
Seeds are filled in earthen pots to its 3/4 volume and
rest 1/4th filled by ash. By this method we can store
grains upto 6 months.
Farmer’s view: Wide range of storage pests are
controlled.
Scientific view: i. Ash contains silica which
interferes with insect feeding.
ii. Ash dust reduces the R.H.
iii. Egg laying and larval development could be
hampered because ash dust covers the grain seeds.
Target crops: Pulses
3. Use of Neem oil.
Neem oil is manually applied on pulses to coat
every grain uniformly.
Farmer’s view: The bitter taste of Neem gives
protection against pests and pathogens.
Scientific rationale
 Margosa oil acts as repellent to many insects
such as beetles, moths and weevils.
 Neem oil kills insects at the egg stage itself.
-Neem oil also has antifeedant & molting
inhibitor property.
Target crops: Pulses
4. Mixing of leaves
Calotropis
Chinese chaste
Neem
 Leaves of Neem,
Nirgandi/Chinese chaste tree
(Vitex nigundo), Calotropis are
collected and dried under shade
till it becomes papery. Then
leaves are mixed with seeds.
Farmer’s view: Leaves are readily available.
Scientific rationale: Leaves of Neem, Nirgandi &
Calotropis has very good insecticidal properties and
also acts as antifeedents, repellents and growth
inhibitors.
Target crops: Pulses and cereals
5.Turmeric application method
Turmeric powder is another good method to prevent the
grains from insect pests.
Grains and seeds are mixed with turmeric powder
before storing them in bags. This provides protection for
upto 6-8months.
Farmer’s view: Easy method and kills the storage
pests.
Scientific rationale:
i. Turmerones and arturmerone are the components
which act as insect repellent in turmeric.
ii. Its strong smell keep the insects away from food
grains.
Target crops: Pulses and cereals
Case Study 1
They studied the effect of gamma irradiation emitted by a cesium on sexual maturation
and mating success of males and compared the sexual competitiveness of sterile versus
wild males in the presence of wild females in semi-field(cage) conditions.
In the absence of competition, untreated and sterile males were able to inseminate
the same number of virgin females. Daily mating success of single sterile males followed
the same pattern as for untreated ones.
Lemperiere et al., (2016)
Sterility curve of male Ae. Albopictus
Insemination ability of Untreated vs Sterile male mosquito according to age
NS indicates non significant & * stands for significant difference
Mean fecundity and fertility values of wild females in different conditions
(ratio of sterile male: wild male: wild female)
The competitiveness index of sterile males in semi-field conditions was
only 0.14 when they were released at 1-day old, but improved to 0.53
when the release occurred after a 5-day period in laboratory conditions.
This SIT simulation experiment suggests that sterile males could be
sufficiently competitive to mate with wild females, a 5:1 sterile to wild
male ratio allowed a two-fold reduction of the wild population’s
fertility.
So that it helps in controlling the wild mosquito population.
CONCLUSION
Case Study 2
A gel-baiting technique is the most effective tool to control ants with less insecticides
released into the environment.
 In this study two commercial gel baits; the Boric acid (2.5% boric acid) and the
Fipronil (0.01% fipronil) baits, were evaluated against laboratory made baits (lab
baits).
 The lab baits, consists of : 3% boric acid + fructose (F3) and 3% boric acid +
fructose + molasses (M3) were evaluated based on mortality rates of the common
household ant species: the Monomorium chinensis and the Anoplolepis gracilipes
under lab conditions.
Mortality of M. chinensis at different time interval under lab conditions.
α HAT = Hours after treatment β LT50 values (h) were determined by Probit analysis
Mortality of A. gracilipes at different time interval under lab conditions.
α HAT = Hours after treatment β LT50 values (h) were determined by Probit analysis
Conclusion
 Commercial fipronil bait caused a mortality within a short time.
 Lab bait M3 also had a faster killing speed than the commercial boric acid
bait and the lab bait F3.
Based on the results we can conclude that lab bait M3 was an efficient
ant bait and is a potential alternative control measure to the current
commercial baits.
Case Study 3
The present study was conducted to evaluate the potential of different insecticide-free
baits against house fly by incorporating flower methanol extract of Helianthus
annuus (sunflower) and Tagetes erecta (marigold) at 10%, 20% and 30% bait
formulation of corn syrup, dried milk and water.
Syrup A- made with Fructose, Syrup B- Sweetless(no sugars) & Syrup C-
Sucrose.
However, imidacloprid and thiacloprid (each at 5% concentration) were also included
in the study for comparison.
Case Study 3
Comparison of mean mortality % of housefly exposed to flower extracts
& insecticides in corn syrups after 48h.
Results showed that insecticide baits were superior in causing mortality of adult
housefly, but dependent upon syrup.
 The mortality rate in 30% baits of flower extracts having fructose had a similar
impact as observed in case of imidacloprid and thiacloprid baits.
 A concentrated plant extract could cause the highest mortality up to the impact of
synthetic insecticides.
Therefore, biological baits could play a more active and safer role in the management
of housefly as compared to synthetic insecticides.
Conclusion:
Methods: Aqueous extracts of four different plant materials; ripe fruits of hot pepper,
fruit peelings of orange, leaves of Mexican marigold and bulbs of garlic were
studied against bedbugs in a controlled lab settings and their effect based on chemotaxis
and mortality observed.
 Each treatment; V1, V2, V3, V4 and V5 were treated with 5ml of 10mg/ml of
extracts from Capsicum annuum, fruit peelings of Citrus sinensis, leaves of Tagetes
minuta, bulbs of Allium sativum and a concoction of the four extracts at the ratio of
1:1:1:1 respectively. Treatment V6 was treated with commercial synthetic insecticide
(Bedlum®, acetamiprid as active compound) as a positive control and V7 was
treated with distilled water as a negative control.
Case Study 4
Time of action for plant extracts to cause 100% mortality on bed bugs.
Time of action for plant extracts to cause 100% motility
(Negative chemotaxis) on bedbugs
Conclusion
 Lab findings revealed that the bed bugs possess a negative chemotaxis
(movement away from chemical stimuli) to Concoction & acetamiprid.
 Capsicum annum and C. sinensis had a direct killing effect on the bedbugs.
 The combination of extracts from the four plants showed 100% mortality
within the shortest time of 10 seconds as compared to individual plant extracts.
Bed bug infestations are difficult to eradicate, further aggravated by widespread resistance to
pyrethroid and neonicotinoid insecticides.
This study evaluated the efficacy of the newly developed fungal biopesticide Aprehend™,
containing Beauveria bassiana.
2 Strains of bed bugs are used here
• Harold Harlan strain(indoor) which is susceptible to insecticides
• & Courtyard strain(outdoor) which is resistant to insecticides
Case Study 5
Proportional survival of adult bed bugs after 15 min exposure to fabric treated with
B. bassiana and deltamethrin. Control was treated with water.
Estimate of mean survival time ± standard error.
Conclusion:
 Overall mortality for the Harold Harlan (insecticide-susceptible) strain was high (98–
100%) following exposure to Aprehend™ or Suspend SC (deltamethrin).
 Pyrethroid-resistant courtyard bed bugs also susceptible to infection by B. bassiana,
resulting in MSTs <6 days and >94% overall mortality.
 But, the mortality of insecticide-resistant courtyard bugs to Suspend SC was only 16-
40%.
Aprehend™ is equally effective against both insecticide-susceptible and
insecticide-resistant bed bugs and could provide pest control operators with a promising new
tool.
 Community approach must be followed.
 Adopt less hazardous or non-chemical methods of control.
 Emphasis should be given on reduced risk options like baits.
 Biocontrol should be encouraged which seems to be
sustainable & target specific.
 Studies on botanicals is very much essential, since many
household pests are showing resistance to synthetic pesticides.
 IPM- must be considered for an effective & economical control.
Referenc
es:
• Afzal, H., Ahmed, S., Khan, R.R., Sufian, M., Arshad, M and Qasim, M. 2020. Management of house fly,
Musca domestica L.(Muscidae: Diptera), through botanical baits. Revista Brasileira de Entomologia. 64.
• Barbarin, A.M., Bellicanta, G.S., Osborne, J.A., Schal, C and Jenkins, N.E. 2017. Susceptibility of
insecticide‐resistant bed bugs (Cimex lectularius) to infection by fungal biopesticide. Pest management
science. 73(8): 1568-1573.
• Benelli, G., Jeffries, C.L and Walker, T. 2016. Biological control of mosquito vectors: past, present, and future.
Insects. 7(4): 52.
• Bouyer, J and Lefrançois, T., 2014. Boosting the sterile insect technique to control mosquitoes. Trends in
parasitology. 30(6): 271-273.
• Devi, G. 2018. Nematophagous fungi: Metarhizium anisopliae. International Journal of Environment,
Agriculture and Biotechnology. 3(6): 268-294.
• Iturbe‐Ormaetxe, I., Walker, T and O'Neill, S.L. 2011. Wolbachia and the biological control of mosquito‐borne
disease. European Molecular Biology Organization reports.12(6): 508-518.
• Kafle, L., Neupane, A.C., Wang, Y.M and Gangai, S.R. 2020. Development of New Boric Acid Gel Baits for
Use on Invasive Ants (Hymenoptera: Formicidae). Sociobiology. 67(1): 59-64.
• Nayak, M.K., Daglish, G.J and Byrne, V.S. 2005. Effectiveness of spinosad as a grain protectant against
resistant beetle and psocid pests of stored grain in Australia. Journal of Stored Products Research, 41(4): 455-
467.
• Oliva, C.F., Jacquet, M., Gilles, J., Lemperiere, G., Maquart, P.O., Quilici, S., Schooneman, F., Vreysen, M.J and
Boyer, S. 2012. The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae)
on Reunion Island: mating vigour of sterilized males. PloS one. 7(11): 49414.
• Prakash, B.G., Raghavendra, K.V., Gowthami, R and Shashank, R. 2016. Indigenous practices for eco-friendly
storage of food grains and seeds. Advances in Plants and Agriculture Research. 3(4): 101-107.
• Racke, K.D. 1993. Urban pest control scenarios and chemicals.
• Robinson, W.H. 2005. Handbook of urban insects and Arachnids.
• Roy, B., Amin, M.R., Jalal, S., Kwon, Y.J and Suh, S.J. 2014. Evaluation of common cocklebur Xanthium
strumarium leaf extract as post‐harvest grain protectant of black gram against pulse beetle Callosobruchus
chinensis (Coleoptera: Bruchidae) and isolation of crude compound. Entomological Research. 44(6): 254-261.
• Singhamahapatra, A., Sahoo, L and Sahoo, S. 2020. Mosquito Repellent: A Novel Approach for Human
Protection. In Molecular Identification of Mosquito Vectors and Their Management. Springer. 149-178.
• Stock, S.P and Koppenhofer, A. 2003. Steinernema scarabaei (Rhabditida: Steinernematidae), a natural pathogen
of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey, USA. Nematology. 5(2): 191-204.
• Stouthamer, R., Breeuwer, J.A and Hurst, G.D. 1999. Wolbachia pipientis: microbial manipulator of arthropod
reproduction. Annual Reviews in Microbiology. 53(1): 71-102.
• Walukhu, M.K and Nyukuri, R.W. 2020. Plants extract concoction from Capsicum annuum, Citrus sinensis,
Tagetes minuta and Allium sativum: A potent killer of bedbugs. East Africa Science. 2(1): 92-98.
• Xu, P., Zhu, F., Buss, G.K and Leal, W.S., 2015. 1-Octen-3-ol–the attractant that repels. Faculty of 1000
Research. 4.
Acknowledgements
Course in-charge : Dr. S.J Rahman
(Senior Professor & University Head)
Chairman : Dr. J.C Sekhar
(Principal Scientist IIMR)
Faculty,
Seniors, Juniors
and Friends
Urban and Household Pests Management.pptx

More Related Content

What's hot

Types of Termites and there Attributes
Types of Termites and there AttributesTypes of Termites and there Attributes
Types of Termites and there AttributesMANISH JADHAV
 
Management of Whitefly in Cotton Crop
Management of  Whitefly in Cotton CropManagement of  Whitefly in Cotton Crop
Management of Whitefly in Cotton CropJayantyadav94
 
Botanical insecticides
Botanical insecticidesBotanical insecticides
Botanical insecticidesNaresh Deuba
 
Rodents and their management
Rodents and their managementRodents and their management
Rodents and their managementManishkumar Joshi
 
Ecological principles of IPM
Ecological principles of IPMEcological principles of IPM
Ecological principles of IPMHARISH J
 
Agricultural Entomology
Agricultural EntomologyAgricultural Entomology
Agricultural EntomologyGopal Bhandari
 
Cultural Control of Pest
Cultural Control of PestCultural Control of Pest
Cultural Control of PestKarl Obispo
 
Pesticides And Formulations
Pesticides And FormulationsPesticides And Formulations
Pesticides And FormulationsSajid Altaf
 
Mite damage of agricultural crops and its management
Mite damage of agricultural crops and its managementMite damage of agricultural crops and its management
Mite damage of agricultural crops and its managementSubhomay Sinha
 
Lect 18 (handling storage and precautions)
Lect 18 (handling storage and precautions)Lect 18 (handling storage and precautions)
Lect 18 (handling storage and precautions)Student
 
Birds control techniques
Birds control techniquesBirds control techniques
Birds control techniquesJayantyadav94
 
ENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptx
ENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptxENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptx
ENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptxAsst Prof SSNAIK ENTO PJTSAU
 
Biological Pest Control/ Biological Control System
Biological Pest Control/ Biological Control SystemBiological Pest Control/ Biological Control System
Biological Pest Control/ Biological Control SystemChandan Gupta
 

What's hot (20)

Storage pests
Storage pestsStorage pests
Storage pests
 
Types of Termites and there Attributes
Types of Termites and there AttributesTypes of Termites and there Attributes
Types of Termites and there Attributes
 
Management of Whitefly in Cotton Crop
Management of  Whitefly in Cotton CropManagement of  Whitefly in Cotton Crop
Management of Whitefly in Cotton Crop
 
Botanical insecticides
Botanical insecticidesBotanical insecticides
Botanical insecticides
 
Rodents and their management
Rodents and their managementRodents and their management
Rodents and their management
 
Ecological principles of IPM
Ecological principles of IPMEcological principles of IPM
Ecological principles of IPM
 
ENTO 231_L.No.4_Pest Surveillance.ppt
ENTO 231_L.No.4_Pest Surveillance.pptENTO 231_L.No.4_Pest Surveillance.ppt
ENTO 231_L.No.4_Pest Surveillance.ppt
 
Agricultural Entomology
Agricultural EntomologyAgricultural Entomology
Agricultural Entomology
 
Insect biotypes
Insect biotypesInsect biotypes
Insect biotypes
 
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIK
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIKINSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIK
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIK
 
Cultural Control of Pest
Cultural Control of PestCultural Control of Pest
Cultural Control of Pest
 
Pest resurgence
Pest resurgencePest resurgence
Pest resurgence
 
Pesticides And Formulations
Pesticides And FormulationsPesticides And Formulations
Pesticides And Formulations
 
Mite damage of agricultural crops and its management
Mite damage of agricultural crops and its managementMite damage of agricultural crops and its management
Mite damage of agricultural crops and its management
 
Lect 18 (handling storage and precautions)
Lect 18 (handling storage and precautions)Lect 18 (handling storage and precautions)
Lect 18 (handling storage and precautions)
 
Birds control techniques
Birds control techniquesBirds control techniques
Birds control techniques
 
Pesticides spray equipment
Pesticides spray equipment Pesticides spray equipment
Pesticides spray equipment
 
Whiteflies
WhitefliesWhiteflies
Whiteflies
 
ENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptx
ENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptxENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptx
ENTO 332_Lec No.16-Pollinators, Weed Killers and Scavengers.pptx
 
Biological Pest Control/ Biological Control System
Biological Pest Control/ Biological Control SystemBiological Pest Control/ Biological Control System
Biological Pest Control/ Biological Control System
 

Similar to Urban and Household Pests Management.pptx

Microbial control of insect pests
Microbial control of insect pestsMicrobial control of insect pests
Microbial control of insect pestsvivekbps
 
Entomopathogenic nematodes and protozoans— mode of action.ppt
Entomopathogenic nematodes and protozoans— mode of action.pptEntomopathogenic nematodes and protozoans— mode of action.ppt
Entomopathogenic nematodes and protozoans— mode of action.pptbashirlone123
 
MICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDES
MICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDESMICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDES
MICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDESlokismicrobiology
 
BIOLOGICAL_CONTROL.pdf
BIOLOGICAL_CONTROL.pdfBIOLOGICAL_CONTROL.pdf
BIOLOGICAL_CONTROL.pdfMidhatSarfraz
 
Arthropod predators and insect pest control
Arthropod predators and insect pest controlArthropod predators and insect pest control
Arthropod predators and insect pest controlResearchWap
 
PESTS OF MUSHROOM.pptx
PESTS OF MUSHROOM.pptxPESTS OF MUSHROOM.pptx
PESTS OF MUSHROOM.pptxAdityaBhat73
 
Bio-control agents: Insecticidal toxins of Bacillus thuringiensis
Bio-control agents:Insecticidal toxins of Bacillus thuringiensisBio-control agents:Insecticidal toxins of Bacillus thuringiensis
Bio-control agents: Insecticidal toxins of Bacillus thuringiensisManisha G
 
Potential of biocontrol of cotton insect and diseases
Potential of biocontrol of cotton insect and diseasesPotential of biocontrol of cotton insect and diseases
Potential of biocontrol of cotton insect and diseasesHem Raj Pant
 
Plantpathologybymuhammadasifpak 111216045136-phpapp02
Plantpathologybymuhammadasifpak 111216045136-phpapp02Plantpathologybymuhammadasifpak 111216045136-phpapp02
Plantpathologybymuhammadasifpak 111216045136-phpapp02bajuar
 
3. significance of natural control.docx
3. significance of natural control.docx3. significance of natural control.docx
3. significance of natural control.docxSuperior college
 
Fungal insecticides.ppt
Fungal insecticides.pptFungal insecticides.ppt
Fungal insecticides.pptbashirlone123
 
FIGHTING PESTS WITHOUT PESTICIDES
FIGHTING PESTS WITHOUT PESTICIDESFIGHTING PESTS WITHOUT PESTICIDES
FIGHTING PESTS WITHOUT PESTICIDESAmos Watentena
 
Pest management in organic farming
Pest management in organic farming Pest management in organic farming
Pest management in organic farming Tapan Adhikari
 

Similar to Urban and Household Pests Management.pptx (20)

Microbial control of insect pests
Microbial control of insect pestsMicrobial control of insect pests
Microbial control of insect pests
 
Apm 02 final
Apm 02 finalApm 02 final
Apm 02 final
 
Entomopathogenic nematodes and protozoans— mode of action.ppt
Entomopathogenic nematodes and protozoans— mode of action.pptEntomopathogenic nematodes and protozoans— mode of action.ppt
Entomopathogenic nematodes and protozoans— mode of action.ppt
 
MICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDES
MICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDESMICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDES
MICROBIAL INSECTIDES...USES AND APPLICATIONS OF INSECTICIDES
 
BIOLOGICAL_CONTROL.pdf
BIOLOGICAL_CONTROL.pdfBIOLOGICAL_CONTROL.pdf
BIOLOGICAL_CONTROL.pdf
 
C. Elegans Essay
C. Elegans EssayC. Elegans Essay
C. Elegans Essay
 
Gardening Project
Gardening ProjectGardening Project
Gardening Project
 
Arthropod predators and insect pest control
Arthropod predators and insect pest controlArthropod predators and insect pest control
Arthropod predators and insect pest control
 
PESTS OF MUSHROOM.pptx
PESTS OF MUSHROOM.pptxPESTS OF MUSHROOM.pptx
PESTS OF MUSHROOM.pptx
 
Biological control
Biological controlBiological control
Biological control
 
Pesticide analysis
Pesticide analysis Pesticide analysis
Pesticide analysis
 
Insect resistance
Insect resistanceInsect resistance
Insect resistance
 
Bio-control agents: Insecticidal toxins of Bacillus thuringiensis
Bio-control agents:Insecticidal toxins of Bacillus thuringiensisBio-control agents:Insecticidal toxins of Bacillus thuringiensis
Bio-control agents: Insecticidal toxins of Bacillus thuringiensis
 
Potential of biocontrol of cotton insect and diseases
Potential of biocontrol of cotton insect and diseasesPotential of biocontrol of cotton insect and diseases
Potential of biocontrol of cotton insect and diseases
 
Plantpathologybymuhammadasifpak 111216045136-phpapp02
Plantpathologybymuhammadasifpak 111216045136-phpapp02Plantpathologybymuhammadasifpak 111216045136-phpapp02
Plantpathologybymuhammadasifpak 111216045136-phpapp02
 
Tiger pest control
Tiger pest controlTiger pest control
Tiger pest control
 
3. significance of natural control.docx
3. significance of natural control.docx3. significance of natural control.docx
3. significance of natural control.docx
 
Fungal insecticides.ppt
Fungal insecticides.pptFungal insecticides.ppt
Fungal insecticides.ppt
 
FIGHTING PESTS WITHOUT PESTICIDES
FIGHTING PESTS WITHOUT PESTICIDESFIGHTING PESTS WITHOUT PESTICIDES
FIGHTING PESTS WITHOUT PESTICIDES
 
Pest management in organic farming
Pest management in organic farming Pest management in organic farming
Pest management in organic farming
 

More from Prajwal Gowda M.A

Prajwal Gowda Digital Seminar.pptx
Prajwal Gowda Digital Seminar.pptxPrajwal Gowda Digital Seminar.pptx
Prajwal Gowda Digital Seminar.pptxPrajwal Gowda M.A
 
STOCKHOLM Convention on Persistent Organic Pollutants.pdf
STOCKHOLM Convention on Persistent Organic Pollutants.pdfSTOCKHOLM Convention on Persistent Organic Pollutants.pdf
STOCKHOLM Convention on Persistent Organic Pollutants.pdfPrajwal Gowda M.A
 
Black Soldier Fly by Prajwal.pptx
Black Soldier Fly by Prajwal.pptxBlack Soldier Fly by Prajwal.pptx
Black Soldier Fly by Prajwal.pptxPrajwal Gowda M.A
 
Insecticide Metabolism & Microsomal Oxidation.pptx
Insecticide Metabolism & Microsomal Oxidation.pptxInsecticide Metabolism & Microsomal Oxidation.pptx
Insecticide Metabolism & Microsomal Oxidation.pptxPrajwal Gowda M.A
 
Life Table & Survivorship curves Prajwal.pptx
Life Table & Survivorship curves Prajwal.pptxLife Table & Survivorship curves Prajwal.pptx
Life Table & Survivorship curves Prajwal.pptxPrajwal Gowda M.A
 
Recent outbreak & Invasive Pests of India.pptx
Recent outbreak & Invasive Pests of India.pptxRecent outbreak & Invasive Pests of India.pptx
Recent outbreak & Invasive Pests of India.pptxPrajwal Gowda M.A
 
Braconidae, Chalcididae & Bethylidae.pptx
Braconidae, Chalcididae & Bethylidae.pptxBraconidae, Chalcididae & Bethylidae.pptx
Braconidae, Chalcididae & Bethylidae.pptxPrajwal Gowda M.A
 
Fungicides, Classification, FRAC MoA.pptx
Fungicides, Classification, FRAC MoA.pptxFungicides, Classification, FRAC MoA.pptx
Fungicides, Classification, FRAC MoA.pptxPrajwal Gowda M.A
 
Oogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptx
Oogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptxOogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptx
Oogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptxPrajwal Gowda M.A
 
Pest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptx
Pest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptxPest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptx
Pest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptxPrajwal Gowda M.A
 
Cost Benefit Ratio and Calculation of different concentration of chemicals.pptx
Cost Benefit Ratio and Calculation of different concentration of chemicals.pptxCost Benefit Ratio and Calculation of different concentration of chemicals.pptx
Cost Benefit Ratio and Calculation of different concentration of chemicals.pptxPrajwal Gowda M.A
 
PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...
PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...
PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...Prajwal Gowda M.A
 
Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...
Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...
Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...Prajwal Gowda M.A
 
History of DDT & Theories of DDT mode of action
History of DDT & Theories of DDT mode of actionHistory of DDT & Theories of DDT mode of action
History of DDT & Theories of DDT mode of actionPrajwal Gowda M.A
 
Dyars, Przibram, Hutchinson Ratio.pptx
Dyars, Przibram, Hutchinson Ratio.pptxDyars, Przibram, Hutchinson Ratio.pptx
Dyars, Przibram, Hutchinson Ratio.pptxPrajwal Gowda M.A
 

More from Prajwal Gowda M.A (16)

Prajwal Gowda Digital Seminar.pptx
Prajwal Gowda Digital Seminar.pptxPrajwal Gowda Digital Seminar.pptx
Prajwal Gowda Digital Seminar.pptx
 
STOCKHOLM Convention on Persistent Organic Pollutants.pdf
STOCKHOLM Convention on Persistent Organic Pollutants.pdfSTOCKHOLM Convention on Persistent Organic Pollutants.pdf
STOCKHOLM Convention on Persistent Organic Pollutants.pdf
 
Black Soldier Fly by Prajwal.pptx
Black Soldier Fly by Prajwal.pptxBlack Soldier Fly by Prajwal.pptx
Black Soldier Fly by Prajwal.pptx
 
Insecticide Metabolism & Microsomal Oxidation.pptx
Insecticide Metabolism & Microsomal Oxidation.pptxInsecticide Metabolism & Microsomal Oxidation.pptx
Insecticide Metabolism & Microsomal Oxidation.pptx
 
Life Table & Survivorship curves Prajwal.pptx
Life Table & Survivorship curves Prajwal.pptxLife Table & Survivorship curves Prajwal.pptx
Life Table & Survivorship curves Prajwal.pptx
 
Recent outbreak & Invasive Pests of India.pptx
Recent outbreak & Invasive Pests of India.pptxRecent outbreak & Invasive Pests of India.pptx
Recent outbreak & Invasive Pests of India.pptx
 
Braconidae, Chalcididae & Bethylidae.pptx
Braconidae, Chalcididae & Bethylidae.pptxBraconidae, Chalcididae & Bethylidae.pptx
Braconidae, Chalcididae & Bethylidae.pptx
 
Fungicides, Classification, FRAC MoA.pptx
Fungicides, Classification, FRAC MoA.pptxFungicides, Classification, FRAC MoA.pptx
Fungicides, Classification, FRAC MoA.pptx
 
Oogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptx
Oogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptxOogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptx
Oogenesis in Insects, Histology, Types of Ovarioles & Nourishment.pptx
 
Insect Sense Organs.pptx
Insect Sense Organs.pptxInsect Sense Organs.pptx
Insect Sense Organs.pptx
 
Pest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptx
Pest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptxPest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptx
Pest Risk Analysis, Pesticide Risk Analysis and Cost Benefit Ratio.pptx
 
Cost Benefit Ratio and Calculation of different concentration of chemicals.pptx
Cost Benefit Ratio and Calculation of different concentration of chemicals.pptxCost Benefit Ratio and Calculation of different concentration of chemicals.pptx
Cost Benefit Ratio and Calculation of different concentration of chemicals.pptx
 
PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...
PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...
PCR & It's Various Types, DNA chip method & Serological methods of Seed Healt...
 
Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...
Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...
Electrophoresis, Light Microscope, Transmission & Scanning electron microscop...
 
History of DDT & Theories of DDT mode of action
History of DDT & Theories of DDT mode of actionHistory of DDT & Theories of DDT mode of action
History of DDT & Theories of DDT mode of action
 
Dyars, Przibram, Hutchinson Ratio.pptx
Dyars, Przibram, Hutchinson Ratio.pptxDyars, Przibram, Hutchinson Ratio.pptx
Dyars, Przibram, Hutchinson Ratio.pptx
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

Urban and Household Pests Management.pptx

  • 1. RECENT APPROACHES IN URBAN AND HOUSEHOLD PEST MANAGEMENT. PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY Department of Entomology COURSE NO : ENT -591 Course In-charge: Dr. S.J Rahman (Senior Professor & University Head) Chairman: Dr. J.C Sekhar (Principal Scientist IIMR) Presented by Prajwal Gowda MA M.Sc(Ag) 2nd Year RAM/2020-50 Dept. of Entomology
  • 2. Contents  Introduction  Categories of Urban Pests  Types of Household Pests  Management of Urban & Household pests  Indigenous & Innovative science in stored grain pest management  Case Studies  Conclusion
  • 3. URBAN PESTS The urban environment is a complex of habitats developed by humans from natural sites or agricultural land. Ex: Houses, villages, gardens, cities, buildings, yards etc.  Urban pest means a destructive insect or other animal which has human health or aesthetic implications.  Urban pests includes turf pests, structural pests, ornamental plant pests, indoor and outdoor nuisance pests.  Pest status for insects and other arthropods in the urban environment may or may not be based on a measurable feature. W.H Robinson, 2015
  • 4.  The damage caused to structures by termites or other wood-infesting insects can be measured.  The health threat or medical importance, such as from stinging insects, vectors of diseases cannot be measured by costs.  Urban pests status studied based on aesthetic & medical consideration.  Aesthetic injury may be associated with a specific number of individual pests, such as sighting one to two cockroaches or chirping crickets within 24 h indoors.  Medical importance insects are those which bite, sting, suck blood, transmit parasites and pathogens, or because they induce allergies or entomophobia. Example mosquitoes, head louse and bed bugs.
  • 5. URBAN PESTs CATEGORIES & EXAMPLES Urban pests category Examples Indoor Nuisance Mosquito, ant, flea, louse Outdoor Nuisance Wasp, hornets, ticks Turf and Ornamental Plants White grub, aphids, plant bugs, whiteflies, thrips Home Garden Slug, snail, flea beetle Structural Termite, carpenter ant, powder post beetle. Κ. D. Racke, 2003
  • 6. Indoor Nuisance Pest Control.  Broadcast floor sprays may be made for pests such as fleas. Spot and surface treatments are made to control cockroaches and ants.  Insecticidal baits are employed for these same invaders.  Total release aerosol bombs or slow-release pest strips can also be used. Aerosol bomb Pest strips
  • 7. Structural Pest Control.  Distinctive pesticide use patterns are made to control structural pests such as termites.  A preventative approach, which involves the treatment of timber with insecticides (Hgcl2, Chlorpyriphos) prior to construction.  For buildings under construction, application of insecticide formulations may be made to the soil underneath the slab or foundation.  Exposed wood surfaces may be subject to insecticide drenches(imidacloprid) for control of wood-boring beetle pests.  In extreme cases an entire structure may be fumigated(sulfuryl fluoride) to provide control.
  • 8. Outdoor Nuisance Pest Control.  High volume- low concentration sprays of insecticides may be made to exterior building surfaces.  Insecticidal dusts may also be applied.(e.g., wasp nests, ant mounds).  Fogging with insecticides may be employed for very mobile pests such as mosquitoes or blackflies.  For rodents control, rodenticidal baits are used.
  • 9. Turf and Ornamental Pest Control.  Both foliar sprays and granular applications of insecticides may be applied for control of surface feeding as well as soil- dwelling insect pests.  For ornamental plants & shrubs, foliar sprays are most commonly followed.  Poison baiting & use of pheromone can also be done.
  • 10. Home Garden Pest Control.  Insecticide sprays, granules, and dusts may all be employed.  Insecticidal aerosol sprays are also employed on crops such as tomatoes and potatoes.  Fruit bearing trees and vines in the home garden are often subject to foliar insecticide sprays.
  • 11. MOSQUITOES Only females bite. One blood meal is sufficient for her to produce many (300) eggs. Larvae are aquatic. Both sexes of mosquito feed on various juices of flower nectar & fruits.  Acts as a vector of diseases also. o Anopheles- Malaria (Proven by Ronald Ross) o Culex- Filariasis & o Aedes- Dengue, Chickengunya. Graham in 1905 was the first to prove mosquito transmission of dengue. Management o Use of Mat vaporizers @ one per 30sq m and use of FIK aerosols like propoxur 1%. o DEET, DEBA & DEPA repellents for skin application – 5g of the lotions are recommended to offer 6 to 8hrs protection. o Home electric LED & black light traps (U.V) are also effective. Singhamapatra, 2020
  • 12. Electronic LED trap Black light Trap
  • 13. D Trans Allethrin Propoxur
  • 14. Synthetic pheromone:  Chemical 1-Octen-3-ol which acts as an attractant can be used.  The activity of pheromone persists in the established breeding place for four days after application. Physical method:  Using infrared radiation. Mosquitoes are attracted by a 500W quartz infrared lamp. Pingxi Xu et al., 2015
  • 15. Biocontrol method  Bacterial insecticide- Bacillus thuringiensis variety israelensis serotype H14, strain 164 is highly effective against early instar larva. It’s applied at 0.5g/ sq m of water or at 0.5% by knapsack sprayer at 3 weeks interval.  Bacillus sphaericus also effective against larva.  By releasing fishes like Gambusia, Poecilia, Tilapia which are larvivorous. Chemical method.  Application of fenitrothion at 1g a.i/sq.m on the surface of breeding water.  Use of mosquito nets of 16 meshes/sq inch impregnated with deltamethrin 2.5% or lambda cyhalothrin @ 25mg/sq m.  Repellents containing citronella oil are used, Commercial products are Odomos & Replex Lacey, 2007
  • 16. Insecticides (Outside). For adults, spray window screens and around doors and windows. Use aerosols of pyrethroids like Deltamethrin, Cyfluthrin. • Fenthion 82.5EC recommended for highly polluted water. • Standing water can be treated with Methoprene(JH’A) and Diflubenzuron 25WP(IGR) which are effective against all species at 50g & 100g a.i/ha. Insecticides (inside). • Pirimiphos methyl @ 2g/m2 area. • Spray- Cypermethrin, Ortho Flying Insect Killer (tetramethrin & phenothrin), Ortho “Mosquito-B-Gon”(0.2% pyrethrins & 1% piperonyl butoxide). • Temephos can be used in portable water. Novel methods. • Wolbachia- Incompatible insect technique. • Sterile insect Technique. • RIDL Method. Brad Kard et al., 2016
  • 17. Wolbachia spp. are Gram-negative α-proteobacteria which is an obligate intracellular. It is the most common reproductive parasite in the biosphere. These include inducing 1. infected females to reproduce without mating (parthenogenesis). 2. Feminization of males such that they become functional phenotypic female. 3. Selective killing of male embryos, and Cytoplasmic incompatibility which prevents infected males from producing offspring with uninfected females. They are cytoplasmically inherited (Wolbachia are present in mature eggs, but not mature sperm- only infected females pass the infection on to their offspring). Two Types of incompatibility,  Unidirectional: occurs when sperm from a Wolbachia infected male fertilizes an uninfected egg. But the reciprocal cross is compatible.  Bidirectional: occurs when a male & female harbor two different strains of Wolbachia that are mutually incompatible. Sthouthamer et al., 1999
  • 18. 2 Kinds of Releases.  Release of male and female mosquitoes with Wolbachia over a number of weeks. These mosquitoes then breed with the wild population. Over time, the percentage of mosquitoes carrying Wolbachia grows until it remains high without the need for further releases.  Release of only male mosquitoes with Wolbachia. When these mosquitoes mate with wild female mosquitoes without Wolbachia, they are unable to reproduce. This method reduces the ability of mosquitoes to transmit zika, dengue, chikungunya and yellow fever on to people. Iturbe-Ormaetxe et al., 2011
  • 19. CONSEQUENCES.  Altering the biting position.  Affects brain tissues of host.  Interferes viral replication inside host.  Affect nutritional status of host.  Reduces hosts lifespan.  Indirectly kills virus.  Affect host development.
  • 20. STERILE INSECT TECHNIQUE (SIT): Genetically manipulated insects are released among the wild populations to make the matings infructuous (eggs will be non viable or sterile) or to introduce lethal genes into the eggs of the females so that they do not develop beyond certain stage. This is also called as autocidal method. BASIC REQUIREMENTS:  A method inducing sterility without impairing sexual behaviour of insects.  Good intermingling of released and natural populations.  A quantitative information on the natural population density.  Information on the rate of population increase. LIMITATIONS  Not effective against insects that are prolific breeders.
  • 21. • Sterile insects are not self-replicating and, therefore, cannot become established in the environment. • Repeated release of sterile males can further reduce and in cases of isolation eliminate pest populations. • The released insects are preferably male, as this is more cost-effective and the females may in some situations cause damage by laying eggs in the crop, or, in the case of mosquitoes, taking blood from humans. • The sterile males compete with wild males to mate with the females, females that mate with a sterile male produce no offspring, thus reducing the next generation's population. Bouyer and Lefrancois, 2014
  • 22.
  • 23. Bacillus thuringiensis subspecies israelensis (Bti) bacteria is found in soil. Bti is used as a larvicide to kill larvae before they can grow into adults that can bite people. How Bti Works? • When eaten by mosquito larvae it produces toxins that kill these insects. How Bti is Used? • Bti comes in many forms including tablets, pellets, granules, or liquid. • Bti can be added to standing water, ponds, septic tanks, and pools that are not in use. The recommended dose is 7.5kg/ha in clean water and 10kg/ha in polluted water. (source: nvbdcp.gov.in)
  • 24. Genetically Modified Mosquitoes An alternative method to sterilize males for population suppression has been developed in which a self-limiting gene is introduced into mosquito through genetic engineering.  This approach, was called as Release of Insects Carrying a Dominant Lethal (RIDL).  The lethal gene can be repressed using an antidote (tetracycline) so that mosquitoes can be reared to adulthood in lab facilities prior to the release of males into wild populations, which then mate with wild females, producing offspring that die at the larval stage in the absence of tetracycline.  This approach is species-specific (like IIT and SIT) & eliminates the population in the release area. Benelli et al., 2016
  • 25. HOUSE FLIES Grey-bodied fly, black stripes on thorax, and slightly hairy appearance. • These breed in manure, garbage, and fermenting crop wastes. • They may carry and spread diseases like cholera, dysentery, anthrax & leprosy. Control  A flyswatter is very useful.  Electric light traps & sticky traps are very effective.  For adults, aerosol bombs are effective.  Fly paper, insecticidal hanging strips(DDVP) are useful. Insecticides: Diflubenzuron @30g/m2 with 3 lit of water. RTU sprays of Alphacypermethrin @0.1% Bait: Sugar solution + Imidacloprid @0.5% Propoxur granules @2% can also be used. Bed net impregnated with cyfluthrin 5%EW @50mg/m2.
  • 26. 3D Glue trap Chemical Bait Fly Swatter
  • 27. Bedbugs- Cimex sps  Wingless insects that usually attack and take a blood meal at night.  Bed bugs feed on blood of man and animals itching that can lead to scratching and infection.  These pests remain hidden near sleeping place during daylight hours. Note: • Do not treat bedding with any chemical; wash in hot water with detergent and place in hot dryer for 30 minutes to kill bedbugs.
  • 28. CONTROL • Thoroughly vacuum bedstead, floor, cracks, and crevices. • Climb-Up® Insect Interceptor” capture and exclusion devices placed under bed legs. • Insecticides- DeltaDust, Drione dust, Cyper TC, Tempo SC Ultra are effective against bed bugs.
  • 29. Fleas-Pulex sps & Xenopsylla cheopsis Larve feed on organic matter. Only adult is parasitic on warm blooded animals. Both the sexes feed on blood. It’s bite causes irritation & soreness. It transmits bubonic plague. Management of Fleas  Vacuum carpets thoroughly.  Spray propoxur @0.5%.  Apply Petcor (pyrethrin+methoprene)@1% over the animals  DeltaDust can be used to treat lawn. Headlouse- Pediculus humanus captis  Due to biting- skin scarred, thickened with brownish spots.  Transmits relapsing & epidemic typhus fever. Fleas Louse  For Head louse- Lotions of Permethrin 1%, Benzyl alcohol 5%, ivermectin 0.5%, Malathion 0.5% & Spinosad 0.9% topical suspension.  Use lindane shampoo 1%. www.cdc.gov/parasites
  • 30. Social insects that live almost entirely inside wood on which they feed or inside mounds. Signs of Damage:  Sightings of termite swarmers (flying termites) or discarded wings – Usually the first sign of infestation.  Mud in cracks of timber & mud falling from walls.  Hollow timbers. Termites- Odontotermes obesus & Cryptotermes brevis
  • 31. A method which kills all castes of termite.  Unpack and assemble stations.  Place stations over termite infestation.  Check every 15 days. Principle  Attracts termites,  Feeds termites, (Cellulose mixed with Beauveria bassiana spores)  & kills termites due to white muscardine disease. Decke indoor baiting technique
  • 32. Termiticides. Can be applied directly to soil or for aboveground surfaces.  Chlorpyriphos 2% RTU can be used.  Sprays of Termex (Imidacloprid) 30.5SC @ 0.2% is very effective.  Termidor (Fipronil)SC @ 0.06%, Cyper TC @ 0.1%, Baseline(bifenthrin), Permethrin TC.  To protect wood & buildings (pre/post construction)- Chlorpyriphos 20EC@ 50ml/lit is applied. Additionally, sprays of borate products like Tim-Bor, Bora-Care & Board Defense treatments to wood surfaces also suggested.
  • 33. White grub Drying in Patches Nature of damage Feeds below the soil surface on the roots and rhizomes of all commonly used turfgrass & are capable of eliminating the entire root system. Symptoms of damage Turf in such areas can be easily lifted from the soil surface or rolled like a carpet, revealing the C-shaped white grubs underneath.
  • 34. Management Apply Chlorpyriphos 50 EC 4 lit/ ha through sprinkler irrigation method. Spray Clothianidin @0.5ml/lit, bifenthrin @2ml/lit, Imidacloprid @80ml/acre Newer insecticides are Chlorantraniliprole @0.4ml/lit, Cyantraniliprole @1g/lit.  Metarhizium brunneum – formerly known as M. anisopliae @1.5 Kg/acre.  Heterorhabditis bacteriophora @4.5 kg/ha.  A recently-introduced biological insecticide is Bacillus thuringiensis galleriae @ 1kg/ha. - A new species of nematodes, Steinernema scarabaei, has been showing promising results in research studies. Geethanjali devi et al., (2018) Stock and Koppenhofer, 2003
  • 35. M. brunneum H. bacteriophora B. bassiana
  • 36. The main difference between them is that a snail has a shell and a slug does not. SLUGS SNAILS SLUGS & SNAILS
  • 37. Damage symptoms • They are especially active at night, feeding early in the spring when new growth is luxurious. • Large, irregular holes in leaves or petals and succulent stems snipped in half. • Silvery, slimy trails of drying mucus. Ragged Holes
  • 38. MANAGEMENT Baiting- • Acetamiprid 20SP or Emamectin benzoate 5SG are used at 10% as bait in 1kg wheat husk, 250g jaggery & 25g yeast extract in water. • Sugar water and yeast mixed together which acts as an attractant. • Use metaldehyde 2.5% at 2kg/acre or Iron phosphate. • Use malted beer as an attractant. Baiting using beer www.ipm.ucdavis.edu
  • 39. Barrier • Use copper barriers around planting beds and trees to give snails and slugs an electric shock. (Molluscans use Haemocyanin in their blood to transport oxygen. These Haemocyanin proteins contain two copper atoms. This makes all molluscans very sensitive to the ingestion of additional quantities of copper. So it prevents oxygen movement).
  • 40. SPIDERS Bites from some are venomous (Recluse & Widow spiders). -Spiders can affect small children and hypersensitive individuals, causing redness and swelling of the skin. -Spiders are mainly beneficial because they feed upon pest insects, but are also a food source for many birds, reptiles and mammals. So non dangerous spiders should not be indiscriminately killed. Control o Keep spiders out with weather stripping & spider catcher. o Use of sticky cards placed flat on the floor in room corners kill many spiders. o Caulk and seal all exterior entry points around door, window and walls.
  • 41. Venomous Recluse (Violin) Spider Spider catcher
  • 42. PESTICIDES: a. Insecticide treatments with sprays and dusts around outside of the wall. b. Cypermethrin 25EC @0.1%, Deltamethrin spray@ 0.05%, Deltamethrin granules 0.1% and Drione dust (pyrethrins+piperonyl butoxide) can be used against spiders. Weather Stripping Glue trap
  • 43. WASPS AND HORNETS They build their single comb, paper-like nests under house eaves or in sheltered areas such as sheds, barns, garages, or within ground cavities (yellow jackets). Stinging insects build nests near dwelling places and may become nuisance or danger to those allergic to their sting. Hornets will only attack to defend their colony. These are larger in size and has red or orange color body. Management  Use screens in buildings.  If one or two enter, use a flyswatter.  For underground nests like yellow jackets, apply insecticide directly into the entrance hole and close over immediately with soil. Hornet
  • 44. Wasps nest Electric swatter Insecticides: Spray aerosols of • Cyfluthrin @0.025%, • Deltamethrin @0.02%, • Cyphenothrin @0.2% or • Lambda cyhalothrin @0.1%. Hornets nest
  • 45. Household pests  Any undesired vertebrates or invertebrates that have a history of living, invading, causing damage, eating human foods, acting as disease vectors or causing harms in human habitation.  Household pests constitute any-other unwanted invasion in the home. Generally household pests are a subset of urban pests. The common household pests includes- Ants, Silverfish, Powder post beetles, Carpet beetle, Cloth moth & Cricket. It prefer moisture, active at night and hide during the day.  Eat foods high in protein or starch (e.g., glue or paste, bookbindings, starch in clothing, and rayon fabrics.) Mullick, 2003 Silverfish- Ctenolepisma sps
  • 46. Management of silverfish Spray propoxur @0.5% Poison baiting: Oatmeal, Sodium fluoride or white arsenic, sugar & common salt. Very fine sawdust on or beneath wood and small round or oval shot holes in wood surfaces indicate infestation. Powder post beetle: Sinoxylon sudanicum Management: • Fumigation with methyl bromide. • Borate liquid applications to wood surfaces are beneficial. • Treat wood with Copper sulphate or Zinc chloride @0.2%. • Paint with varnish or tar.
  • 47. Carpet beetle- Anthrena Pimpinella • Grub & adults bite holes in fabrics like clothings, curtain. • They also attack silk, insect specimens & dried meat. Cloth Moth- Trichophaga abruptella • Larva attack wool, leather, fish meal, dead insects & animals. Cricket- Gryllus sps • Live in crevices & males causes nuisance by making chirping noise at night. Management  Use PDCB crystals/Napthalene balls.  DeltaDust applied to cracks and crevices.  Spray Demand CS, Dragnet FT, Suspend SC, Tempo SC Ultra.  Caulk, seal all openings & use of sticky traps was found effective against cricket.
  • 48. ANTS- Monomorium criniceps Feeding on all kinds of food materials, Including sweets, starches and fatty foods. Management  Keep food refrigerated @<10°C.  Using caulk and screening to exclude ants is effective.  Home-made bait of syrup mixed with boric acid powder (3 tsp. BA + 100ml. syrup) is effective.  When using these baits and traps do not clean near area where baits are placed because chemical foraging trails can be erased. Harrison, 2006
  • 49. Insecticides (indoor).  Combat® (hydramethylnon) or MaxForce® (fipronil) ant bait gel, or a contact insecticides like DeltaDust® (deltamethrin) @ 1.25g/lit or Ortho Home Defense® (bifenthrin) @0.5ml/lit spray have been effective. -Boric acid is available in liquid bait & also in spray formulation under trade name ‘Terro’. Insecticides (outdoor).  Products containing pyrethroids such as cypermethrin @1ml/lit, permethrin @1.5ml/lit and lambda-cyhalothrin @1ml/lit are effective as perimeter applications.
  • 50. Cockroaches exit their hiding places at night and feed on all types of food-stuffs as well as starchy materials such as book binding glues. - During the day, roaches congregate in dark places such as inside kitchen cabinets and under sinks & around bathroom fixtures.  They also feed on milk, soda, beer, cheese, meat and dead insects. They are often attracted by food residue and garbages.  It produces foul smell with excreta spread over. Control • Caulk to repair holes and cracks in walls. • Use sticky traps to aid in control. COCKROACHES- Periplanata americana
  • 51. Insecticides (indoor).  RTU sprays of several insecticides that contain permethrin and bifenthrin are effective.  Silica gel powder or baits containing boric acid are also effective.  Products containing hydroprene (Gentrol), or MaxForce®FC Roach Killer Bait Gel (fipronil) or MaxForce ProRoach Killer Bait Gel (hydramethylnon) are effective.  DeltaDust can also be used.  Imidacloprid gel bait is effective.  Etofenprox @ 1mg/sq cm. Imiprothrin + Cypermethrin
  • 52.
  • 53. Rodents 1. House mouse - Mus musculus 2. House rat/ Black rat - Rattus rattus 3. Brown rat /Norway rat /Sewer rat - Rattus norvegicus 1.House mouse 2.Black rat 3.Sewer rat
  • 54.  About 4.5% losses are caused due to rodents in storage annually.  Rodents causes serious damage not only to stored products but also to buildings.  Rodents not only feed on the grains but also contaminate more than 20% what they consume, with their faeces, urine and hair.  Prolonged attacks results in serious quantitative losses, up to 3-4%, of stored products.  Decrease in quality of the foodstuffs, caused by the filth secretions rodents.  Indeed, rodents are often the vectors of a number of serious diseases like rabies, leptospirosis etc Rodents. Gubler et al., 2001
  • 55.  Destroy books, papers, and clothes.  Chew through electrical wires and increase electrocution risk.  Cause structural damage to wood, drywall, insulation, and other building materials.
  • 56. RODENTS MANAGEMENT 1. Ultrasonic technology 1. The ultrasonic deterrent devices emit a sound undetectable by humans. 2. The pressure and frequency of this emitted sound drives mice and rats away.
  • 57. PROPER PROOFING • Apertures should be 6 mm maximum. • Materials must be resistant to gnawing, e.g. galvanized steel. TRAPS Old types a. Snap neck trap b. Live catch trap c. Wonder/ Glue trap Live trap Snap trap
  • 58. REPRODUCTIVE INHIBITORS Given through Bait @ 0.5% -Tetradifon, Furadantin and Colchicine. A germ cell mutagen, Ethyl methanesulphonate (EMS) and also reduces fertility in both male and female. USE OF ANTICOAGULANTS First-generation/Multiple dose anticoagulants- Warfarin & fumarin @0.025%, Diphacinone and Chlorophacinone @0.03%. -Racumin (coumatetralyl) has been commercialized in India to be used as 0.75% tracking powder or 0.0375% cereal bait. Application: Liquid bait: Warfarin – one part & Water – 19 parts. Solid bait: Warfarin– one part, Sugar – one part, Vegetable oil – one part & Crushed grain – 17 parts. Mattison and Thomford, 2020
  • 59. Second generation/ Single dose anticoagulant rodenticides These needs to be eaten by rats only once before they die. Since, the rodents feel no pain, there is no warning & they continue to feed if the bait is attractive.  difenacoum, brodifacoum,  bromadiolone RB(Ready Bait) @0.005%,  flocoumafen and difethiolone(0.0025%). One piece should be kept at hiding place or runways etc. Witmer et al.,(2013)
  • 60. Household Stored Product Pests. Insects and rodents feed on the stored products & also contaminate them which make food unfit for human consumption. Among biotic factors, insects causes nearly 10 -20% of damage to total stored produce (Tyagi et al., 2019). About 500 species of insects have been associated with stored grain products. • 100 species of insect pests of stored products cause economic losses. • Storage insect pests are categorized into two types. • Primary storage pests : Insects that damages sound/whole grain. a) Internal feeders- insects feed entirely within the kernels or grain. b) External feeders- feed on the grains from outside/ grain surface. • Secondary storage pests: Insects feed on broken grains or on materials which are out of condition and dump.
  • 61. Common Name Scientific Name Host Food Rice weevil Sitophilus oryzae Rice, wheat, sorghum, barley, maize. Lesser grain borer Rhizopertha dominica Rice, wheat, maize. Angoumois grain moth Sitotroga cerealella Paddy, wheat and maize. Pulse beetles Callosobruchus chinensis, C. maculatus Pulses, gram and bean. Cigarette beetle Lasioderma serricorne Peanut, spices, turmeric, chillies, ginger, stored tobacco. Drug store beetle Stegobium paniceum Turmeric, coriander, ginger, dry vegetables & animal matter. INTERNAL FEEDERS.
  • 62. External feeder Common Name Scientific Name Host Food Long headed flour beetle Latheticus oryzae Broken grains, damaged grains Saw toothed grain beetle Oryzaephilus surinamensis Dry fruits, rice, wheat, maize, cereals Grain/flour mites Acarus siro Cereal grains, flour, other vegetables Common Name Scientific Name Host Food Red flour beetle Tribolium castaneum, T. confusum Processed foods like flour, grains, cornflakes Secondary pests
  • 63. Rice weevil Lesser grain borer Pulse beetle Cigarette beetle Drug store beetle Flour beetle Long head flour beetle Grain mites
  • 64. Recent advances in stored grain pest management 1. Plant volatile organic compounds (PVOC) Bioactive, typically volatile in nature. PVOC may act as a growth inhibitors, oviposition deterrents, antifeedants, repellents and chemosterilants. PVOC are essential oils consist of alcohols, aldehydes and terpenoids and extracts from many plants (Rajashekar, 2012). • Aqueous extracts of cocklebur Xanthium strumarium leaf shows insecticidal properties against C. chinensis (Roy et al., 2014). • 1, 8 cineole, which was extracted from essential oils of Lamiaceae(mints) plants affects oviposition of rice weevil. • The asarone isolated from rhizomes of A. calamus possess chemosterilant properties. • The essential oils of cardamom (Elletaria cardamum) (Zingiberaceae), Cinnamum zeylanicum (Lauraceae), Sygium aromaticum (Myrtaceae), Eucalyptus spp. and Azadirachta indica (Meliaceae) found to have ovicidal effect on the eggs of T. castaneum (Hong et al., 2018).
  • 65. Nanoparticles or Nanoformulations Many forms of nanoparticles used against stored grain pests like Silica Aerogel, Aluminium oxide (Al2O3), Zinc oxide (ZnO), Copper oxide (Cu2O), Titanium dioxide (TiO2).  The metal nanoparticles are utilized for making such formulations & these can be used as insecticides.  Amorphous silica nano particles have 100 percent mortality against T. castaneum.  Al2O3 had the strongest deterrent impact on S. oryzae (Keratum et al., 2015).  Nano-Diatomaceous-earth killed the eggs of T. confusum. Mode of Action of Nanoparticles  Insects utilizes a variety of cuticular lipids to maintain their water barrier intact and hence avoid death due to dehydration.  When it absorbs nano-silica into the cuticular lipids, If nanoencapsulation is released, then death occurs due to changes in diffusion, biodegradation, dissolution and osmotic pressure.
  • 66. Ionizing Radiation o Strong ionizing radiation (at a dose of 0.6 kGy) causes death of stored grain insects by producing highly reactive free radicals or ions. o Irradiation can effectively kill all life stages of insects. o All the stages of S. oryzae will be killed 1MHz sound exposure for 5 minutes. Behavioral Control by Using Insect Pheromones The pheromones are utilised to trap Tribolium spp, Sitophilus spp, Drugstore beetle and Cigarette beetle. Insect Growth Regulators (IGRs) Methoprene inhibits the metamorphosis of O. surinamensis at 1 mg/kg, while hydrophene shows complete inhibition of larval growth in Sitophilus oryzae at a dose of 10-20 mg/kg.
  • 67. Spinosad as a natural grain protectant o This is a low-risk pesticide, can be applied at a rate of 0.3ml/lit. o It’s effective against psocid species as well as economically important beetle and moth pests associated with stored grains (Nayak et al., 2005). Other Synthetic grain protectants o Reldan 4E (Chlorpyrifos-methyl) @10ml/lit. It’s labeled for use on barley, rice, grain sorghum and wheat but is not labeled on corn. This does not have activity on lesser grain borer. o Storcide II (Chlorpyrifos-methyl + deltamethrin) @5ml/lit. Broad spectrum, effective against lesser grain borer also. o Actellic 5E (Pirimiphos-methyl) is registered for use on corn and grain sorghum.
  • 68. Indigenous practices for eco-friendly storage of food grains and seeds. 1. Sun drying of grains 11. Use of garlic cloves 2. Use of ash 12. Use of salt & chilli powder 3. Red soil coating 13. Use of Camphor 4. Plastering of bins with clay & cow dung 14. Use of castor powder 5. Storage of pulses with common salt 15. Sand mixture method 6. Turmeric application method 16. Use of dried red chillies 7. Mixing of leaves 17. Use of lime powder 8. Use of neem leaves 18. Use of Tulsi seeds 9. Use of neem leaves & dry chillies 19. Use of custard apple seed powder 10. Use of neem oil 20. Use of ginger & rhizome Prakash et al., 2016
  • 69. 1. Red soil coating method Red soil and water are mixed to form a paste in a container. Seeds are transferred into this pot and mixed well so that the soil completely adheres to the seeds. - Seeds are dried under shade and stored in dark. Scientific rationale: i. As it covers the grains, the insect could not able to feed, lay eggs as it acts as a barrier. ii. Soil absorbs left out moisture in the seeds. iii. Improves germination. Target crops: Pulses, ragi, maize.
  • 70. 2. Use of Ash Seeds are filled in earthen pots to its 3/4 volume and rest 1/4th filled by ash. By this method we can store grains upto 6 months. Farmer’s view: Wide range of storage pests are controlled. Scientific view: i. Ash contains silica which interferes with insect feeding. ii. Ash dust reduces the R.H. iii. Egg laying and larval development could be hampered because ash dust covers the grain seeds. Target crops: Pulses
  • 71. 3. Use of Neem oil. Neem oil is manually applied on pulses to coat every grain uniformly. Farmer’s view: The bitter taste of Neem gives protection against pests and pathogens. Scientific rationale  Margosa oil acts as repellent to many insects such as beetles, moths and weevils.  Neem oil kills insects at the egg stage itself. -Neem oil also has antifeedant & molting inhibitor property. Target crops: Pulses
  • 72. 4. Mixing of leaves Calotropis Chinese chaste Neem  Leaves of Neem, Nirgandi/Chinese chaste tree (Vitex nigundo), Calotropis are collected and dried under shade till it becomes papery. Then leaves are mixed with seeds. Farmer’s view: Leaves are readily available. Scientific rationale: Leaves of Neem, Nirgandi & Calotropis has very good insecticidal properties and also acts as antifeedents, repellents and growth inhibitors. Target crops: Pulses and cereals
  • 73. 5.Turmeric application method Turmeric powder is another good method to prevent the grains from insect pests. Grains and seeds are mixed with turmeric powder before storing them in bags. This provides protection for upto 6-8months. Farmer’s view: Easy method and kills the storage pests. Scientific rationale: i. Turmerones and arturmerone are the components which act as insect repellent in turmeric. ii. Its strong smell keep the insects away from food grains. Target crops: Pulses and cereals
  • 74. Case Study 1 They studied the effect of gamma irradiation emitted by a cesium on sexual maturation and mating success of males and compared the sexual competitiveness of sterile versus wild males in the presence of wild females in semi-field(cage) conditions. In the absence of competition, untreated and sterile males were able to inseminate the same number of virgin females. Daily mating success of single sterile males followed the same pattern as for untreated ones. Lemperiere et al., (2016)
  • 75. Sterility curve of male Ae. Albopictus
  • 76. Insemination ability of Untreated vs Sterile male mosquito according to age NS indicates non significant & * stands for significant difference
  • 77. Mean fecundity and fertility values of wild females in different conditions (ratio of sterile male: wild male: wild female)
  • 78. The competitiveness index of sterile males in semi-field conditions was only 0.14 when they were released at 1-day old, but improved to 0.53 when the release occurred after a 5-day period in laboratory conditions. This SIT simulation experiment suggests that sterile males could be sufficiently competitive to mate with wild females, a 5:1 sterile to wild male ratio allowed a two-fold reduction of the wild population’s fertility. So that it helps in controlling the wild mosquito population. CONCLUSION
  • 79. Case Study 2 A gel-baiting technique is the most effective tool to control ants with less insecticides released into the environment.  In this study two commercial gel baits; the Boric acid (2.5% boric acid) and the Fipronil (0.01% fipronil) baits, were evaluated against laboratory made baits (lab baits).  The lab baits, consists of : 3% boric acid + fructose (F3) and 3% boric acid + fructose + molasses (M3) were evaluated based on mortality rates of the common household ant species: the Monomorium chinensis and the Anoplolepis gracilipes under lab conditions.
  • 80. Mortality of M. chinensis at different time interval under lab conditions. α HAT = Hours after treatment β LT50 values (h) were determined by Probit analysis
  • 81. Mortality of A. gracilipes at different time interval under lab conditions. α HAT = Hours after treatment β LT50 values (h) were determined by Probit analysis
  • 82. Conclusion  Commercial fipronil bait caused a mortality within a short time.  Lab bait M3 also had a faster killing speed than the commercial boric acid bait and the lab bait F3. Based on the results we can conclude that lab bait M3 was an efficient ant bait and is a potential alternative control measure to the current commercial baits.
  • 83. Case Study 3 The present study was conducted to evaluate the potential of different insecticide-free baits against house fly by incorporating flower methanol extract of Helianthus annuus (sunflower) and Tagetes erecta (marigold) at 10%, 20% and 30% bait formulation of corn syrup, dried milk and water. Syrup A- made with Fructose, Syrup B- Sweetless(no sugars) & Syrup C- Sucrose. However, imidacloprid and thiacloprid (each at 5% concentration) were also included in the study for comparison. Case Study 3
  • 84. Comparison of mean mortality % of housefly exposed to flower extracts & insecticides in corn syrups after 48h.
  • 85. Results showed that insecticide baits were superior in causing mortality of adult housefly, but dependent upon syrup.  The mortality rate in 30% baits of flower extracts having fructose had a similar impact as observed in case of imidacloprid and thiacloprid baits.  A concentrated plant extract could cause the highest mortality up to the impact of synthetic insecticides. Therefore, biological baits could play a more active and safer role in the management of housefly as compared to synthetic insecticides. Conclusion:
  • 86. Methods: Aqueous extracts of four different plant materials; ripe fruits of hot pepper, fruit peelings of orange, leaves of Mexican marigold and bulbs of garlic were studied against bedbugs in a controlled lab settings and their effect based on chemotaxis and mortality observed.  Each treatment; V1, V2, V3, V4 and V5 were treated with 5ml of 10mg/ml of extracts from Capsicum annuum, fruit peelings of Citrus sinensis, leaves of Tagetes minuta, bulbs of Allium sativum and a concoction of the four extracts at the ratio of 1:1:1:1 respectively. Treatment V6 was treated with commercial synthetic insecticide (Bedlum®, acetamiprid as active compound) as a positive control and V7 was treated with distilled water as a negative control. Case Study 4
  • 87. Time of action for plant extracts to cause 100% mortality on bed bugs.
  • 88. Time of action for plant extracts to cause 100% motility (Negative chemotaxis) on bedbugs
  • 89. Conclusion  Lab findings revealed that the bed bugs possess a negative chemotaxis (movement away from chemical stimuli) to Concoction & acetamiprid.  Capsicum annum and C. sinensis had a direct killing effect on the bedbugs.  The combination of extracts from the four plants showed 100% mortality within the shortest time of 10 seconds as compared to individual plant extracts.
  • 90. Bed bug infestations are difficult to eradicate, further aggravated by widespread resistance to pyrethroid and neonicotinoid insecticides. This study evaluated the efficacy of the newly developed fungal biopesticide Aprehend™, containing Beauveria bassiana. 2 Strains of bed bugs are used here • Harold Harlan strain(indoor) which is susceptible to insecticides • & Courtyard strain(outdoor) which is resistant to insecticides Case Study 5
  • 91. Proportional survival of adult bed bugs after 15 min exposure to fabric treated with B. bassiana and deltamethrin. Control was treated with water.
  • 92.
  • 93. Estimate of mean survival time ± standard error.
  • 94. Conclusion:  Overall mortality for the Harold Harlan (insecticide-susceptible) strain was high (98– 100%) following exposure to Aprehend™ or Suspend SC (deltamethrin).  Pyrethroid-resistant courtyard bed bugs also susceptible to infection by B. bassiana, resulting in MSTs <6 days and >94% overall mortality.  But, the mortality of insecticide-resistant courtyard bugs to Suspend SC was only 16- 40%. Aprehend™ is equally effective against both insecticide-susceptible and insecticide-resistant bed bugs and could provide pest control operators with a promising new tool.
  • 95.  Community approach must be followed.  Adopt less hazardous or non-chemical methods of control.  Emphasis should be given on reduced risk options like baits.  Biocontrol should be encouraged which seems to be sustainable & target specific.  Studies on botanicals is very much essential, since many household pests are showing resistance to synthetic pesticides.  IPM- must be considered for an effective & economical control.
  • 96. Referenc es: • Afzal, H., Ahmed, S., Khan, R.R., Sufian, M., Arshad, M and Qasim, M. 2020. Management of house fly, Musca domestica L.(Muscidae: Diptera), through botanical baits. Revista Brasileira de Entomologia. 64. • Barbarin, A.M., Bellicanta, G.S., Osborne, J.A., Schal, C and Jenkins, N.E. 2017. Susceptibility of insecticide‐resistant bed bugs (Cimex lectularius) to infection by fungal biopesticide. Pest management science. 73(8): 1568-1573. • Benelli, G., Jeffries, C.L and Walker, T. 2016. Biological control of mosquito vectors: past, present, and future. Insects. 7(4): 52. • Bouyer, J and Lefrançois, T., 2014. Boosting the sterile insect technique to control mosquitoes. Trends in parasitology. 30(6): 271-273. • Devi, G. 2018. Nematophagous fungi: Metarhizium anisopliae. International Journal of Environment, Agriculture and Biotechnology. 3(6): 268-294. • Iturbe‐Ormaetxe, I., Walker, T and O'Neill, S.L. 2011. Wolbachia and the biological control of mosquito‐borne disease. European Molecular Biology Organization reports.12(6): 508-518. • Kafle, L., Neupane, A.C., Wang, Y.M and Gangai, S.R. 2020. Development of New Boric Acid Gel Baits for Use on Invasive Ants (Hymenoptera: Formicidae). Sociobiology. 67(1): 59-64. • Nayak, M.K., Daglish, G.J and Byrne, V.S. 2005. Effectiveness of spinosad as a grain protectant against resistant beetle and psocid pests of stored grain in Australia. Journal of Stored Products Research, 41(4): 455- 467.
  • 97. • Oliva, C.F., Jacquet, M., Gilles, J., Lemperiere, G., Maquart, P.O., Quilici, S., Schooneman, F., Vreysen, M.J and Boyer, S. 2012. The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males. PloS one. 7(11): 49414. • Prakash, B.G., Raghavendra, K.V., Gowthami, R and Shashank, R. 2016. Indigenous practices for eco-friendly storage of food grains and seeds. Advances in Plants and Agriculture Research. 3(4): 101-107. • Racke, K.D. 1993. Urban pest control scenarios and chemicals. • Robinson, W.H. 2005. Handbook of urban insects and Arachnids. • Roy, B., Amin, M.R., Jalal, S., Kwon, Y.J and Suh, S.J. 2014. Evaluation of common cocklebur Xanthium strumarium leaf extract as post‐harvest grain protectant of black gram against pulse beetle Callosobruchus chinensis (Coleoptera: Bruchidae) and isolation of crude compound. Entomological Research. 44(6): 254-261. • Singhamahapatra, A., Sahoo, L and Sahoo, S. 2020. Mosquito Repellent: A Novel Approach for Human Protection. In Molecular Identification of Mosquito Vectors and Their Management. Springer. 149-178. • Stock, S.P and Koppenhofer, A. 2003. Steinernema scarabaei (Rhabditida: Steinernematidae), a natural pathogen of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey, USA. Nematology. 5(2): 191-204. • Stouthamer, R., Breeuwer, J.A and Hurst, G.D. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Reviews in Microbiology. 53(1): 71-102. • Walukhu, M.K and Nyukuri, R.W. 2020. Plants extract concoction from Capsicum annuum, Citrus sinensis, Tagetes minuta and Allium sativum: A potent killer of bedbugs. East Africa Science. 2(1): 92-98. • Xu, P., Zhu, F., Buss, G.K and Leal, W.S., 2015. 1-Octen-3-ol–the attractant that repels. Faculty of 1000 Research. 4.
  • 98. Acknowledgements Course in-charge : Dr. S.J Rahman (Senior Professor & University Head) Chairman : Dr. J.C Sekhar (Principal Scientist IIMR) Faculty, Seniors, Juniors and Friends