SlideShare a Scribd company logo
1 of 33
Prof. David R. Jackson
Dept. of ECE
Notes 7
ECE 5317-6351
Microwave Engineering
Fall 2019
Waveguiding Structures
Part 2: Attenuation
1
, ,
  
Adapted from notes by
Prof. Jeffery T. Williams
For most practical waveguides and transmission lines the loss
associated with dielectric loss and conductor loss is relatively small.
To account for these losses we will make this approximation:
c d
  
 
Attenuation constant
due to conductor loss
(ignore dielectric loss)
Attenuation constant due
to dielectric loss
(ignore conductor loss)
Attenuation on Waveguiding Structures
2
Attenuation due to Dielectric Loss: d
Lossy dielectric  complex permittivity
0
1
(1 tan )
(1 tan )
c
c c
c
c
c
c d
r
j
j j
j
j
j
j

 


 

 



 
  
 
 
  
 
 

 

 
 

 

 
 
0 0 (1 tan )
c r rc r r d
k k k j
      
   
 complex wavenumber k
 
Re
k k
 
Note:
k k jk
 
 
3
.
rc r
 
 is denoted as
Note :
2.1 ).
r
 
(e.g., for Teflon
0 (1 tan )
r r d
k k j
  
 
tan 1
 
1 1 / 2 1
z z z
   
for
Assume a small dielectric loss in medium:
Dielectric Attenuation for TEM Mode
Use
 
 
0 1 tan / 2
r r d
k k j
  
  
0
0
1
tan
2
r r
r r d
k k
k k
 
  
 
 
4
where
z
k k

TEM mode:
5
Summary of Dielectric Attenuation
TEM mode
 
 
0
0
Re
Im
1
tan
2
z d
d
r r
d r r d
k j k
k k
k k
k
k
 


  
   
  

 

  


0 1 tan
r r d
k k jk k j
  
 
   
An exact general expression for the dielectric attenuation:
2 2
z d c
k j k k
 
   
Remember: The value kc is always real, regardless of
whether the waveguide filling material is lossy or not.
Note: The radical sign denotes the principal square root:
 
arg z
 
  
6
Dielectric Attenuation for Waveguide Mode
0 1 tan
r r d
k k jk k j
  
 
   
 
2 2
2 2
0
2 2 2
0 0
(1 tan )
tan
z d c
r r d c
r r c r r d
k j k k
k j k
k k jk
 
  
    
   
  
  
2 2 2
0 0
tan
r r d r r c
k k k
    
 
 
1 1
1 / 1
2 2
z z
a z a z a a a z a
a a
   
 
       
   
 
   
 
for
Assume a small dielectric loss:
Then use:
7
Approximation for the wavenumber of a waveguide mode :
Dielectric Attenuation for Waveguide Mode (cont.)
2
0 tan
2
r r d
d
k   



 
2 2
0 r r c
k k
  
 
We assume here that we
are above cutoff.
8
Approximate Dielectric Attenuation (cont.)
 
 
2
2 2 0
0
2 2
0
1 tan
2
r r d
z r r c
r r c
jk
k k k
k k
  
 
 
 
 
  
 

 
Hence, we have:
This gives us:
9
Summary of Dielectric Attenuation
Waveguide mode (TMz or TEz)
2 2
2 2
2 2
2 2
0
2
0
Re
Im
tan
2
z d c
c
d c
r r c
r r d
d
k j k k
k k
k k
k k
k
 


  
  


   
 
  
 

0 1 tan
r r d
k k jk k j
  
 
   
Assuming a small amount of conductor loss:
We can assume that the fields of the lossy guide are approximately the same
as those for lossless guide, except with a small amount of attenuation.
 We can use a “perturbation” method to determine c .
Attenuation due to Conductor Loss
Notes:
 Dielectric loss does not change the shape of the fields at all in a waveguide or
transmission line, since the boundary conditions remain the same (PEC).
 Conductor loss does disturb the fields slightly.
10
This is a very important concept for calculating loss at a metal surface.
Surface Resistance
Plane wave in a good conductor
Note: In this figure, z is the direction normal to the metal surface, not the axis of the
waveguide. Also, the electric field is assumed to be in the x direction for simplicity.
11
z
,
 
, ,
  
x
Note:
The tangential
fields determine the
power going into
the metal.
,
 
Surface Resistance (cont.)
Assume
1/2 1/2
1
(1 )
2
2
j
k j j j
   
     
  

 
   
      
     
     
Hence
 
1
2
k k jk j

 
   
2
k k

 
 
The we have (for the metal):
Therefore
1


12
(for the metal)
Surface Resistance (cont.)
Denote
Then we have
2
k k

 
 
1
p
d
k
  

“skin depth” = “depth of penetration”
2
1
p
d
k k



 
 
 
At 3 GHz, the
skin depth for
copper is about
1.2 microns.
13
1
0.37
e

Note: (For z = , fields are down to 37%
of their values at the surface.)
Surface Resistance (cont.)
2



Example: copper (pure)
7
0 4 10 [H/m]
   
  
7
5.8 10 [S/m]
  
Frequency 
1 [Hz] 6.6 [cm]
10 [Hz] 2.1 [cm]
100 [Hz] 6.6 [mm]
1 [kHz] 2.1 [mm]
10 [kHz] 0.66 [mm]
100 [kHz] 0.21 [mm]
1 [MHz] 66 [m]
10 [MHz] 20.1 [m]
100 [MHz] 6.6 [m]
1 [GHz] 2.1 [m]
10 [GHz] 0.66 [m]
100 [GHz] 0.21 [m]
14
Note:
A value of 3.0107 [S/m] is often
assumed for “practical” copper.
Surface Resistance (cont.)
d
P = time-average power dissipated / m2 on S
* *
0
1 1
ˆ
Re( ) Re( )
2 2
d x y z
E H z E H 
   
P
z
x
S
Fields evaluated on this plane
15
where
x y
E H


1
2
(1 )
2
(1 )
c
s
s
j
j j
j
j
j R
Z
   

 
 

 




   
 


 
 

Inside conductor:
2
s
R



“Surface resistance ()”
“Surface impedance ()”
 
1
s s
Z j R
 
16
 
ˆ
t s t
E Z n H
 
Note: To be more general:
n̂  outwardnormal
Surface Resistance (cont.)
Note:
0,
x x
y y
z
E E
H H


air plane wave inmetal
17
 
ˆ
t s t
E Z n H
 
ˆ
t
t
E
H
n



tangential electric field at surface
tangentialmagnetic field at surface
outwardunit normal to conductor surface
 
ˆ
eff
s t
J n H
  eff
t s s
E Z J

“Effective surface current”
The surface impedance gives us the ratio of the
tangential electric field at the surface to the
effective surface current flowing on the object.
Hence we have
Surface Resistance (cont.)
For the “effective” surface
current density we imagine the
actual volume current density to
be collapsed into a planar
surface current.
n̂
Conductor
eff
s
J
Surface Resistance (cont.)
(1 )
1
2
s s
s
Z j R
R

 
 
 
Summary for a Good Conductor
18
 
ˆ
t s t
E Z n H
  (fields at the surface)
2



eff
t s s
E Z J
 (effective surface current)
Surface Resistance (cont.)
1
2
s
R

 
 
Example: copper (pure)
7
0 4 10 [H/m]
   
  
7
5.8 10 [S/m]
  
Frequency Rs
1 [Hz] 2.6110-7 []
10 [Hz] 8.2510-7 []
100 [Hz] 2.6110-6 []
1 [kHz] 8.2510-6 []
10 [kHz] 2.6110-5 []
100 [kHz] 8.2510-5 []
1 [MHz] 2.6110-4 []
10 [MHz] 8.2510-4 []
100 [MHz] 0.00261 []6.6
1 [GHz] 0.00825 []
10 [GHz] 0.0261 []
100 [GHz] 0.0825 []
19
Note:
A value of 3.0107 [S/m] is often
assumed for “practical” copper.
Surface Resistance (cont.)
2
0
1
2
d s t
R H

P
In general,
 
 
2
* *
0 0 0 0
1 1 1
Re( ) Re
2 2 2
d x y z s y y s y
E H Z H H R H

  
P
Returning to the power calculation, we have:
For a good conductor, 0
ˆ
eff
s t
J n H
 
Hence
2
1
2
eff
d s s
R J

P
This gives us the power dissipated per
square meter of conductor surface, if we
know the effective surface current density
flowing on the surface.
20
PEC limit:
eff PEC
s s
J J
 eff PEC
s s
J J

Perturbation method : Assume that
Perturbation Method for c
Power flow along the guide:
2
0
( ) z
P z P e 


Power P0 @ z = 0 is calculated from the lossless case.
Power loss (dissipated) per unit length:
 
l
dP z
P
dz
 
2
0
( ) 2 2 ( )
z
l
P z Pe P z

 

  
0
( ) (0)
2 ( ) 2
l l
P z P
P z P
  

21
Note:
 = c for conductor loss
 
 
abs flow
P P z
  
There is a single
conducting
boundary.
0
(0)
2
l
c
P
P
 
*
0
0
1
ˆ
Re
2
S z
P E H zdS

 
 
 
  
 
 
 
 
 

2
0
(0)
2
s
l s
C z
R
P J d

 
Surface resistance of
metal conductors:
2
s
R



ˆ
s
J n H
 
On PEC conductor
Perturbation Method: Waveguide Mode
22
For these calculations, we
neglect loss when we determine
the fields and currents.
S
C
z
0
(0)
2
l
c
P
P
 
*
0
0
2
0
1
ˆ
Re
2
1
2
S z
P E H zdS
Z I

 
 
 
  
 
 
 
 
 


1 2
2 2
1 1
0 0
1 1
(0)
2 2
l s s s s
C C
z z
P R J d R J d
 
 
 
Surface resistance of
metal conductors:  
1 2
2
s
R

  

  or
Perturbation Method: TEM Mode
There are two
conducting
boundaries.
23
 
0 0
lossless
Z Z

ˆ
s
J n H
 
On PEC conductor
For these calculations, we
neglect loss when we determine
the fields and currents.
2
C
S
1
C
z
0
0
2
s
c
R Z
Z


  
   
 
Wheeler Incremental Inductance Rule
24
The Wheeler incremental inductance rule gives an
alternative method for calculating the conductor
attenuation on a transmission line (TEM mode):
It is useful when you have a formula for Z0.
In this formula, (for a given conductor) is the distance by which the
conducting boundary is receded away from the field region.
The top plate of a PPW line
is shown being receded.
The formula is applied for each conductor
and the conductor attenuation from each of
the two conductors is then added.
E E
H. Wheeler, “Formulas for the skin-effect,” Proc. IRE, vol. 30, pp. 412-424, 1942.
2
C
S
1
C
z
Calculation of R for TEM Mode
25
From c we can calculate R (the resistance
per unit length of the transmission line):
0
(0)
2
l
c
P
P
 
2
0 0 0
1
2
P Z I

 
2
0
1
0
2
l
P R I

0
2
c
R
Z
 
0
2 c
R Z 

Assume conductor loss only.
+
-
+
-
 
,
i z z t
 
 
,
i z t
 
,
v z z t
 
 
,
v z t
R z
 L z

G z
 C z

z
Summary of Attenuation Formulas
26
Transmission Line (TEM Mode)
d c
  
 
0
1
tan
2
d r r d
k k
   

 
0 0
(0)
2 2
l
c
R P
Z P
  
  
Re R j L G j C
  
  
Method #1
Method #2
2
0 0 0
1
2
P Z I

1 2
2 2
1 2
0 0
(0)
2 2
s s
l s s
C C
z z
R R
P J d J d
 
 
 
Note: Set R = 0 for d. Set G = 0 for c.
0 1 tan
r r d
k k jk k j
  
 
   
2
C
S
1
C
z
Summary of Attenuation Formulas (cont.)
27
Waveguide (TMz or TEz Mode)
d c
  
 
2 2
Im
d c
k k
   
0
(0)
2
l
c
P
P
 
*
0
0
1
ˆ
Re
2
S z
P E H zdS

 
 
 
  
 
 
 
 
 

2
0
(0)
2
s
l s
C z
R
P J d

 
0 1 tan
r r d
k k jk k j
  
 
   
S
C
z
 
, c
 
Frequency RG59
Coax
WR975
WG
WR159
WG
WR90
WG
WR42
WG
WR19
WG
WR10
WG
1 [MHz] 0.01 NA NA NA NA NA NA
10 [MHz] 0.03 NA NA NA NA NA NA
100 [MHz] 0.11 NA NA NA NA NA NA
1 [GHz] 0.4 0.004 NA NA NA NA NA
5 [GHz] 1.0 OM 0.04 NA NA NA NA
10 [GHz] 1.5 OM OM 0.11 NA NA NA
20 [GHz] 2.3 OM OM OM 0.37 NA NA
50 [GHz] OM OM OM OM OM 1.0 NA
100 [GHz] OM OM OM OM OM OM 3.0
28
Comparison of Attenuation
Approximate attenuation in dB per meter
OM = overmoded
Typical single-mode fiber optic cable: 0.3 dB/km
Typical multimode fiber optic cable: 3 dB/km
NA = below cutoff
Waveguides are getting smaller
Comparison of Waveguide with
Wireless System (Two Antennas)
29
    2
0 z
P z P e 


  2
A
P r
r

Waveguide:
Antenna:
 For small distances, the waveguide delivers more power (no spreading).
 For large distances, the antenna (wireless) system will deliver more power.
(spreading spherical wave)
(attenuating wave)
Wireless System (Two Antennas)
30
Two antennas (transmit and receive):
2
4
t
r t er
P
P G A
r


2
0
4
er r
A G


 
  
 
(from antenna theory)
2
0
2
4 4
t r
r t
G G
P P
r

 

Matched receive antenna:
Here we examine a wireless system in more detail.
Hence, we have:
Pt = power transmitted
Pr = power received
Aer = effective area of receive antenna
Wireless System (Two Antennas) (cont.)
31
2
0
4
r
t r
t
P
G G
P r


 
  
 
Hence, we have:
   
0
10 10 10
dB 10log 20log 20log
4
t r
G G r


 
   
 
 
Total dB of attenuation:
10
dB 10log r
t
P
P
 
   
 
Friis transmission formula
The dB attenuation increases slowly with distance
dB Attenuation:
Comparison of Waveguiding system with Wireless System
32
Waveguiding system:  
dB 8.686 z


Wireless system:    
0
10 10 10
dB 10log 20log 20log
4
t r
G G r


 
   
 
 
: 1.64
t r
G G
 
(a) Two Half - WavelengthDipole Antennas
 
2
2
0
4
: , / 2 1.64
t et et r
G A A D G



 
  
 
 
(b) Dish antenna+Dipole antenna
D = diameter of dish (choose 34 meters)
transmit receive
Examples:
(large dish in NASA Deep Space Network)
dB Attenuation:
Comparison of Waveguiding System with Wireless System
33
Distance Coax Fiber Wireless Wireless
1 m 0.4 0.0003 28.2 -
10 m 4 0.003 48.2 -
100 m 40 0.03 68.2 -
1 km 400 0.3 88.2 39.3
10 km 4000 3 108.2 59.3
100 km - 30 128.2 79.3
1000 km - 300 148.2 99.3
10,000 km - 3000 168.2 119.3
100,000 km - - 188.2 139.3
1,000,000 km - - 208.2 159.3
10,000,000 km - - 228.2 179.3
100,000,000 km - - 248.2 199.3
RG59
1 GHz Single Mode Two Dipoles 34m Dish+Dipole

More Related Content

Similar to Waveguiding Structures Part 2 (Attenuation).pptx

Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxRohitNukte
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
Chapter 14
Chapter 14Chapter 14
Chapter 14Tha Mike
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculationSugavanam KR
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxdivakarrvl
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
 
skineffect(2).ppt
skineffect(2).pptskineffect(2).ppt
skineffect(2).pptwhmonkey
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
Dispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideDispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideYong Heui Cho
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 

Similar to Waveguiding Structures Part 2 (Attenuation).pptx (20)

Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptx
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Unit 1
Unit 1Unit 1
Unit 1
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Ee8402 inductance calculation
Ee8402 inductance calculationEe8402 inductance calculation
Ee8402 inductance calculation
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
skineffect(2).ppt
skineffect(2).pptskineffect(2).ppt
skineffect(2).ppt
 
Aes
AesAes
Aes
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
emtl
emtlemtl
emtl
 
Dispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideDispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguide
 
Anodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.pptAnodes_Crosstalk_Overview.ppt
Anodes_Crosstalk_Overview.ppt
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 

Recently uploaded (20)

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 

Waveguiding Structures Part 2 (Attenuation).pptx

  • 1. Prof. David R. Jackson Dept. of ECE Notes 7 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding Structures Part 2: Attenuation 1 , ,    Adapted from notes by Prof. Jeffery T. Williams
  • 2. For most practical waveguides and transmission lines the loss associated with dielectric loss and conductor loss is relatively small. To account for these losses we will make this approximation: c d      Attenuation constant due to conductor loss (ignore dielectric loss) Attenuation constant due to dielectric loss (ignore conductor loss) Attenuation on Waveguiding Structures 2
  • 3. Attenuation due to Dielectric Loss: d Lossy dielectric  complex permittivity 0 1 (1 tan ) (1 tan ) c c c c c c c d r j j j j j j j                                              0 0 (1 tan ) c r rc r r d k k k j             complex wavenumber k   Re k k   Note: k k jk     3 . rc r    is denoted as Note : 2.1 ). r   (e.g., for Teflon
  • 4. 0 (1 tan ) r r d k k j      tan 1   1 1 / 2 1 z z z     for Assume a small dielectric loss in medium: Dielectric Attenuation for TEM Mode Use     0 1 tan / 2 r r d k k j       0 0 1 tan 2 r r r r d k k k k          4 where z k k  TEM mode:
  • 5. 5 Summary of Dielectric Attenuation TEM mode     0 0 Re Im 1 tan 2 z d d r r d r r d k j k k k k k k k                        0 1 tan r r d k k jk k j         
  • 6. An exact general expression for the dielectric attenuation: 2 2 z d c k j k k       Remember: The value kc is always real, regardless of whether the waveguide filling material is lossy or not. Note: The radical sign denotes the principal square root:   arg z      6 Dielectric Attenuation for Waveguide Mode 0 1 tan r r d k k jk k j         
  • 7.   2 2 2 2 0 2 2 2 0 0 (1 tan ) tan z d c r r d c r r c r r d k j k k k j k k k jk                     2 2 2 0 0 tan r r d r r c k k k          1 1 1 / 1 2 2 z z a z a z a a a z a a a                           for Assume a small dielectric loss: Then use: 7 Approximation for the wavenumber of a waveguide mode : Dielectric Attenuation for Waveguide Mode (cont.)
  • 8. 2 0 tan 2 r r d d k         2 2 0 r r c k k      We assume here that we are above cutoff. 8 Approximate Dielectric Attenuation (cont.)     2 2 2 0 0 2 2 0 1 tan 2 r r d z r r c r r c jk k k k k k                    Hence, we have: This gives us:
  • 9. 9 Summary of Dielectric Attenuation Waveguide mode (TMz or TEz) 2 2 2 2 2 2 2 2 0 2 0 Re Im tan 2 z d c c d c r r c r r d d k j k k k k k k k k k                         0 1 tan r r d k k jk k j         
  • 10. Assuming a small amount of conductor loss: We can assume that the fields of the lossy guide are approximately the same as those for lossless guide, except with a small amount of attenuation.  We can use a “perturbation” method to determine c . Attenuation due to Conductor Loss Notes:  Dielectric loss does not change the shape of the fields at all in a waveguide or transmission line, since the boundary conditions remain the same (PEC).  Conductor loss does disturb the fields slightly. 10
  • 11. This is a very important concept for calculating loss at a metal surface. Surface Resistance Plane wave in a good conductor Note: In this figure, z is the direction normal to the metal surface, not the axis of the waveguide. Also, the electric field is assumed to be in the x direction for simplicity. 11 z ,   , ,    x Note: The tangential fields determine the power going into the metal. ,  
  • 12. Surface Resistance (cont.) Assume 1/2 1/2 1 (1 ) 2 2 j k j j j                                        Hence   1 2 k k jk j        2 k k      The we have (for the metal): Therefore 1   12 (for the metal)
  • 13. Surface Resistance (cont.) Denote Then we have 2 k k      1 p d k     “skin depth” = “depth of penetration” 2 1 p d k k          At 3 GHz, the skin depth for copper is about 1.2 microns. 13 1 0.37 e  Note: (For z = , fields are down to 37% of their values at the surface.)
  • 14. Surface Resistance (cont.) 2    Example: copper (pure) 7 0 4 10 [H/m]        7 5.8 10 [S/m]    Frequency  1 [Hz] 6.6 [cm] 10 [Hz] 2.1 [cm] 100 [Hz] 6.6 [mm] 1 [kHz] 2.1 [mm] 10 [kHz] 0.66 [mm] 100 [kHz] 0.21 [mm] 1 [MHz] 66 [m] 10 [MHz] 20.1 [m] 100 [MHz] 6.6 [m] 1 [GHz] 2.1 [m] 10 [GHz] 0.66 [m] 100 [GHz] 0.21 [m] 14 Note: A value of 3.0107 [S/m] is often assumed for “practical” copper.
  • 15. Surface Resistance (cont.) d P = time-average power dissipated / m2 on S * * 0 1 1 ˆ Re( ) Re( ) 2 2 d x y z E H z E H      P z x S Fields evaluated on this plane 15
  • 16. where x y E H   1 2 (1 ) 2 (1 ) c s s j j j j j j R Z                              Inside conductor: 2 s R    “Surface resistance ()” “Surface impedance ()”   1 s s Z j R   16   ˆ t s t E Z n H   Note: To be more general: n̂  outwardnormal Surface Resistance (cont.) Note: 0, x x y y z E E H H   air plane wave inmetal
  • 17. 17   ˆ t s t E Z n H   ˆ t t E H n    tangential electric field at surface tangentialmagnetic field at surface outwardunit normal to conductor surface   ˆ eff s t J n H   eff t s s E Z J  “Effective surface current” The surface impedance gives us the ratio of the tangential electric field at the surface to the effective surface current flowing on the object. Hence we have Surface Resistance (cont.) For the “effective” surface current density we imagine the actual volume current density to be collapsed into a planar surface current. n̂ Conductor eff s J
  • 18. Surface Resistance (cont.) (1 ) 1 2 s s s Z j R R        Summary for a Good Conductor 18   ˆ t s t E Z n H   (fields at the surface) 2    eff t s s E Z J  (effective surface current)
  • 19. Surface Resistance (cont.) 1 2 s R      Example: copper (pure) 7 0 4 10 [H/m]        7 5.8 10 [S/m]    Frequency Rs 1 [Hz] 2.6110-7 [] 10 [Hz] 8.2510-7 [] 100 [Hz] 2.6110-6 [] 1 [kHz] 8.2510-6 [] 10 [kHz] 2.6110-5 [] 100 [kHz] 8.2510-5 [] 1 [MHz] 2.6110-4 [] 10 [MHz] 8.2510-4 [] 100 [MHz] 0.00261 []6.6 1 [GHz] 0.00825 [] 10 [GHz] 0.0261 [] 100 [GHz] 0.0825 [] 19 Note: A value of 3.0107 [S/m] is often assumed for “practical” copper.
  • 20. Surface Resistance (cont.) 2 0 1 2 d s t R H  P In general,     2 * * 0 0 0 0 1 1 1 Re( ) Re 2 2 2 d x y z s y y s y E H Z H H R H     P Returning to the power calculation, we have: For a good conductor, 0 ˆ eff s t J n H   Hence 2 1 2 eff d s s R J  P This gives us the power dissipated per square meter of conductor surface, if we know the effective surface current density flowing on the surface. 20 PEC limit: eff PEC s s J J  eff PEC s s J J  Perturbation method : Assume that
  • 21. Perturbation Method for c Power flow along the guide: 2 0 ( ) z P z P e    Power P0 @ z = 0 is calculated from the lossless case. Power loss (dissipated) per unit length:   l dP z P dz   2 0 ( ) 2 2 ( ) z l P z Pe P z        0 ( ) (0) 2 ( ) 2 l l P z P P z P     21 Note:  = c for conductor loss     abs flow P P z   
  • 22. There is a single conducting boundary. 0 (0) 2 l c P P   * 0 0 1 ˆ Re 2 S z P E H zdS                      2 0 (0) 2 s l s C z R P J d    Surface resistance of metal conductors: 2 s R    ˆ s J n H   On PEC conductor Perturbation Method: Waveguide Mode 22 For these calculations, we neglect loss when we determine the fields and currents. S C z
  • 23. 0 (0) 2 l c P P   * 0 0 2 0 1 ˆ Re 2 1 2 S z P E H zdS Z I                       1 2 2 2 1 1 0 0 1 1 (0) 2 2 l s s s s C C z z P R J d R J d       Surface resistance of metal conductors:   1 2 2 s R        or Perturbation Method: TEM Mode There are two conducting boundaries. 23   0 0 lossless Z Z  ˆ s J n H   On PEC conductor For these calculations, we neglect loss when we determine the fields and currents. 2 C S 1 C z
  • 24. 0 0 2 s c R Z Z            Wheeler Incremental Inductance Rule 24 The Wheeler incremental inductance rule gives an alternative method for calculating the conductor attenuation on a transmission line (TEM mode): It is useful when you have a formula for Z0. In this formula, (for a given conductor) is the distance by which the conducting boundary is receded away from the field region. The top plate of a PPW line is shown being receded. The formula is applied for each conductor and the conductor attenuation from each of the two conductors is then added. E E H. Wheeler, “Formulas for the skin-effect,” Proc. IRE, vol. 30, pp. 412-424, 1942. 2 C S 1 C z
  • 25. Calculation of R for TEM Mode 25 From c we can calculate R (the resistance per unit length of the transmission line): 0 (0) 2 l c P P   2 0 0 0 1 2 P Z I    2 0 1 0 2 l P R I  0 2 c R Z   0 2 c R Z   Assume conductor loss only. + - + -   , i z z t     , i z t   , v z z t     , v z t R z  L z  G z  C z  z
  • 26. Summary of Attenuation Formulas 26 Transmission Line (TEM Mode) d c      0 1 tan 2 d r r d k k        0 0 (0) 2 2 l c R P Z P       Re R j L G j C       Method #1 Method #2 2 0 0 0 1 2 P Z I  1 2 2 2 1 2 0 0 (0) 2 2 s s l s s C C z z R R P J d J d       Note: Set R = 0 for d. Set G = 0 for c. 0 1 tan r r d k k jk k j          2 C S 1 C z
  • 27. Summary of Attenuation Formulas (cont.) 27 Waveguide (TMz or TEz Mode) d c      2 2 Im d c k k     0 (0) 2 l c P P   * 0 0 1 ˆ Re 2 S z P E H zdS                      2 0 (0) 2 s l s C z R P J d    0 1 tan r r d k k jk k j          S C z   , c  
  • 28. Frequency RG59 Coax WR975 WG WR159 WG WR90 WG WR42 WG WR19 WG WR10 WG 1 [MHz] 0.01 NA NA NA NA NA NA 10 [MHz] 0.03 NA NA NA NA NA NA 100 [MHz] 0.11 NA NA NA NA NA NA 1 [GHz] 0.4 0.004 NA NA NA NA NA 5 [GHz] 1.0 OM 0.04 NA NA NA NA 10 [GHz] 1.5 OM OM 0.11 NA NA NA 20 [GHz] 2.3 OM OM OM 0.37 NA NA 50 [GHz] OM OM OM OM OM 1.0 NA 100 [GHz] OM OM OM OM OM OM 3.0 28 Comparison of Attenuation Approximate attenuation in dB per meter OM = overmoded Typical single-mode fiber optic cable: 0.3 dB/km Typical multimode fiber optic cable: 3 dB/km NA = below cutoff Waveguides are getting smaller
  • 29. Comparison of Waveguide with Wireless System (Two Antennas) 29     2 0 z P z P e      2 A P r r  Waveguide: Antenna:  For small distances, the waveguide delivers more power (no spreading).  For large distances, the antenna (wireless) system will deliver more power. (spreading spherical wave) (attenuating wave)
  • 30. Wireless System (Two Antennas) 30 Two antennas (transmit and receive): 2 4 t r t er P P G A r   2 0 4 er r A G          (from antenna theory) 2 0 2 4 4 t r r t G G P P r     Matched receive antenna: Here we examine a wireless system in more detail. Hence, we have: Pt = power transmitted Pr = power received Aer = effective area of receive antenna
  • 31. Wireless System (Two Antennas) (cont.) 31 2 0 4 r t r t P G G P r          Hence, we have:     0 10 10 10 dB 10log 20log 20log 4 t r G G r             Total dB of attenuation: 10 dB 10log r t P P         Friis transmission formula The dB attenuation increases slowly with distance
  • 32. dB Attenuation: Comparison of Waveguiding system with Wireless System 32 Waveguiding system:   dB 8.686 z   Wireless system:     0 10 10 10 dB 10log 20log 20log 4 t r G G r             : 1.64 t r G G   (a) Two Half - WavelengthDipole Antennas   2 2 0 4 : , / 2 1.64 t et et r G A A D G             (b) Dish antenna+Dipole antenna D = diameter of dish (choose 34 meters) transmit receive Examples: (large dish in NASA Deep Space Network)
  • 33. dB Attenuation: Comparison of Waveguiding System with Wireless System 33 Distance Coax Fiber Wireless Wireless 1 m 0.4 0.0003 28.2 - 10 m 4 0.003 48.2 - 100 m 40 0.03 68.2 - 1 km 400 0.3 88.2 39.3 10 km 4000 3 108.2 59.3 100 km - 30 128.2 79.3 1000 km - 300 148.2 99.3 10,000 km - 3000 168.2 119.3 100,000 km - - 188.2 139.3 1,000,000 km - - 208.2 159.3 10,000,000 km - - 228.2 179.3 100,000,000 km - - 248.2 199.3 RG59 1 GHz Single Mode Two Dipoles 34m Dish+Dipole