SlideShare a Scribd company logo
1 of 8
Download to read offline
1
Abstract--This paper provides a summary of one of the three
planned presentations on the topic of “FACTS Fundamentals,”
for a session sponsored by the DC and FACTS Education
Working Group, under the DC and FACTS Subcommittee of the
T&D Committee. This paper is on Part I of the session and
focuses on a summary of the issues and benefits of applying
FACTS controllers to AC power systems. The overall process for
system studies and analysis associated with FACTS installation
projects and the need for FACTS controller models is also
discussed. Finally, an introduction to the basic circuits of several
FACTS controllers is provided with a focus on their system
performance characteristics. This paper is designed to be
accompanied by the presentation material.
Index Terms--Flexible AC Transmission Systems, FACTS,
Power Electronic Equipment, Power System Stability, Power
System Control
I. INTRODUCTION
With the ongoing expansion and growth of the electric
utility industry, including deregulation in many countries,
numerous changes are continuously being introduced to a
once predictable business. Although electricity is a highly
engineered product, it is increasingly being considered and
handled as a commodity. Thus, transmission systems are
being pushed closer to their stability and thermal limits while
the focus on the quality of power delivered is greater than
ever.
In the evolving utility environment, financial and market
forces are, and will continue to, demand a more optimal and
profitable operation of the power system with respect to
generation, transmission, and distribution. Now, more than
ever, advanced technologies are paramount for the reliable
and secure operation of power systems. To achieve both
operational reliability and financial profitability, it has
become clear that more efficient utilization and control of the
existing transmission system infrastructure is required.
Improved utilization of the existing power system is
provided through the application of advanced control
technologies. Power electronics based equipment, or Flexible
AC Transmission Systems (FACTS), provide proven technical
solutions to address these new operating challenges being
presented today. FACTS technologies allow for improved
transmission system operation with minimal infrastructure
investment, environmental impact, and implementation time
compared to the construction of new transmission lines.
John J. Paserba is with Mitsubishi Electric Power Products, Inc.,
Warrendale, Pennsylvania, USA (e-mail: j.paserba@ieee.org).
Traditional solutions to upgrading the electrical
transmission system infrastructure have been primarily in the
form of new transmission lines, substations, and associated
equipment. However, as experiences have proven over the
past decade or more, the process to permit, site, and construct
new transmission lines has become extremely difficult,
expensive, time-consuming, and controversial. FACTS
technologies provide advanced solutions as cost-effective
alternatives to new transmission line construction.
The potential benefits of FACTS equipment are now
widely recognized by the power systems engineering and
T&D communities. With respect to FACTS equipment,
voltage sourced converter (VSC) technology, which utilizes
self-commutated thyristors/transistors such as GTOs, GCTs,
IGCTs, and IGBTs, has been successfully applied in a number
of installations world-wide for Static Synchronous
Compensators (STATCOM) [1-5], Unified Power Flow
Controllers (UPFC) [6, 7], Convertible Series Compensators
(CSC) [8], back-to-back dc ties (VSC-BTB) [9, 10] and VSC
transmission [11]. In addition to these referenced and other
applications, there are several recently completed
STATCOMs in the U.S., in the states of Vermont [12, 13],
California [14], and Texas [no references available]. In
addition, there are newly planned STATCOMs in Connecticut
[15] and Texas, as well as a small STATCOM (D-VAR)
planned for BC Hydro [16] and several other locations. Other
installations of power electronic equipment includes
Distributed Superconducting Magnetic Energy Storage units
(D-SMES) [17]. These aforementioned transmission system
installations are in addition to the earlier generation of power
electronics systems that utilize line-commutated thyristor
technology for Static Var Compensators (SVC) [18] and
Thyristor Controlled Series Compensators (TCSC) [19-22].
II. CONTROL OF POWER SYSTEMS
A. Generation, Transmission, Distribution
When discussing the creation, movement, and utilization of
electrical power, it can be separated into three areas, which
traditionally determined the way in which electric utility
companies had been organized. These are illustrated in
Figure 1 and are:
• Generation
• Transmission
• Distribution
How FACTS Controllers Benefit
AC Transmission Systems
John J. Paserba, Fellow, IEEE
2
Generation
Mechanical-to-
Electrical Energy
Conversion
Transmission
Distribution
Electrical Power Used
and Electrical-to-Mechanical
Energy Conversion
Generation
Mechanical-to-
Electrical Energy
Conversion
Transmission
Distribution
Electrical Power Used
and Electrical-to-Mechanical
Energy Conversion
Figure 1. Illustration of the creation, movement,
and utilization of electrical power
Although power electronic based equipment is prevalent in
each of these three areas, such as with static excitation
systems for generators and Custom Power equipment in
distribution systems [23], the focus of this paper and
accompanying presentation is on transmission, that is, moving
the power from where it is generated to where it is utilized.
B. Power System Constraints
As noted in the introduction, transmission systems are
being pushed closer to their stability and thermal limits while
the focus on the quality of power delivered is greater than
ever. The limitations of the transmission system can take
many forms and may involve power transfer between areas
(referred to here as transmission bottlenecks) or within a
single area or region (referred to here as a regional constraint)
and may include one or more of the following characteristics:
• Steady-State Power Transfer Limit
• Voltage Stability Limit
• Dynamic Voltage Limit
• Transient Stability Limit
• Power System Oscillation Damping Limit
• Inadvertent Loop Flow Limit
• Thermal Limit
• Short-Circuit Current Limit
• Others
Each transmission bottleneck or regional constraint may
have one or more of these system-level problems. The key to
solving these problems in the most cost-effective and
coordinated manner is by thorough systems engineering
analysis, as described later in this paper.
C. Controllability of Power Systems
To illustrate that the power system only has certain
variables that can be impacted by control, consider the basic
and well-known power-angle curve, shown in Figure 2.
Although this is a steady-state curve and the
implementation of FACTS is primarily for dynamic issues,
this illustration demonstrates the point that there are primarily
three main variables that can be directly controlled in the
power system to impact its performance. These are:
• Voltage
• Angle
• Impedance
One could also make the point that direct control of power
is a fourth variable of controllability in power systems.
ES
@ δ° ER @ 0°
P
X
P
0 90 180
δ
P
E E
X
S R= sin δ
P
0 90 180
δ
P
E E
X
S R= sin δ
Figure 2. Illustration of controllability of power systems
With the establishment of “what” variables can be
controlled in a power system, the next question is “how” these
variables can be controlled. The answer is presented in two
parts: namely conventional equipment and FACTS
controllers.
Examples of Conventional Equipment For Enhancing
Power System Control
• Series Capacitor
-Controls impedance
• Switched Shunt-Capacitor and Reactor
-Controls voltage
• Transformer LTC
-Controls voltage
• Phase Shifting Transformer
-Controls angle
• Synchronous Condenser
-Controls voltage
• Special Stability Controls
-Typically focuses on voltage control but can often
include direct control of power
• Others (When Thermal Limits are Involved)
-Can included reconductoring, raising conductors,
dynamic line monitoring, adding new lines, etc.
Example of FACTS Controllers for Enhancing Power
System Control
• Static Synchronous Compensator (STATCOM)
-Controls voltage
• Static Var Compensator (SVC)
-Controls voltage
• Unified Power Flow Controller (UPFC)
• Convertible Series Compensator (CSC)
• Inter-phase Power Flow Controller (IPFC)
• Static Synchronous Series Controller (SSSC)
3
-Each of the aforementioned (and similar) controllers
impact voltage, impedance, and/or angle (and power)
• Thyristor Controlled Series Compensator (TCSC)
-Controls impedance
• Thyristor Controlled Phase Shifting Transformer
(TCPST)
-Controls angle
• Super Conducting Magnetic Energy Storage (SMES)
-Controls voltage and power
As mentioned earlier, the key to solving transmission
system problems in the most cost-effective and coordinated
manner is by thorough systems analysis. This includes
comparing the system benefits available by conventional
equipment and from FACTS controllers. There is an
important distinction to make when considering the
differences in these two solution options. Figure 3 is an
illustration of a few cycles of voltage at power system
frequency. This figure shows that the speed of mechanical
switches (primarily circuit breakers) for conventional
equipment solutions can be as fast as a couple of cycles of 60
(or 50) Hz. This speed of switching in and of itself may be
fast enough to solve many power system constraints.
Although there is a vast improvement in switching time from
mechanical to power electronic based solutions (Figure 3
illustrates that the speed of power electronics switches is a
fraction of a cycle), the main benefit that FACTS controller
solutions provide is the “cycling/repeatability” and “smooth
control” that accompanies the power electronic based
switching. In other words, a mechanically switched based
(conventional) solution is usually a “one and done” or “on or
off” impact to the power system in the time frame needed for
power system stability, whereas the power electronic based
solution can provide a smooth, continuous, and/or repeatable
option for power system control. Thus by applying power
electronic based solutions to alleviate power system
constraints, it is not just “speed” but “cycling” and “smooth
control” that is gained.
0 1 2
Mechanical Breaker Action
Thyristor Switch Action
0 1 2
Mechanical Breaker Action
Thyristor Switch Action
Figure 3. Illustration of the speed of power system control
D. Benefits of Control of Power Systems
Once power system constraints are identified and through
system studies viable solutions options are identified, the
benefits of the added power system control must be
determined. The following offers a list of such benefits:
• Increased Loading and More Effective Use of
Transmission Corridors
• Added Power Flow Control
• Improved Power System Stability
• Increased System Security
• Increased System Reliability
• Added Flexibility in Siting New Generation
• Elimination or Deferral of the Need for New
Transmission Lines
The advantages in this list are important to achieve in the
overall planning and operation of power systems. However,
for justifying the costs of implementing added power system
control and for comparing conventional solutions to FACTS
controllers, more specific metrics of the benefits to the power
system are often required. Such benefits can usually be tied
back to an area or region for a specific season and year at a
defined dispatch (usually given by an ISO or equivalent) while
meeting the following criteria, for example:
• Voltage Stability Criteria
-e.g., P-V voltage or power criteria with minimum margins
-e.g., Q-V reactive power criteria with minimum margins
• Dynamic Voltage Criteria
-e.g., Avoiding voltage collapse
-e.g., Minimum transient voltage dip/sag criteria
(magnitude and duration)
• Transient Stability Criteria
• Power System Oscillation Damping
-e.g., Minimum damping ratio
• Others
Each of the above-listed items can usually be measured in
terms of a physical quantity such as power transfer through a
critical transmission interface, power plant output, and/or area
or region load level. This allows for a direct quantification of
the benefits of adding power system control and provides a
means to compare such benefits by the various solution
options considered, whether they be conventional or FACTS
based.
III. PHASES OF POWER SYSTEM STUDIES FOR FACTS
INSTALLATION PROJECTS
Figure 4 shows the author’s view of the overall process for
system studies associated with FACTS installation projects.
The presentation that accompanies this paper goes into details
of the various phases of power system studies and what items
must be focused on for each phase including the modeling
requirements. The presentation will start with initial
feasibility studies to determine system constraints and
reinforcement needs, typically undertaken by the
utility/transmission owners, all the way through to the system
studies and modeling issues associated with the every-day
operation of an installed FACTS controller in a specific power
system. The following subsections provide the basic
objectives and selected details for each study phase in a bullet
list format of the presentation material.
4
Initial
Feasibility
Studies
Phase 1
Studies to
Determine Type
of Equipment,
Location, and
Ratings
Phase 2
Typically By Owner or
Owner/Consultant
Pre-
Specification
Studies
Phase 3
Typically By
Owner or
Consultant
Pre-
Manufacturing
and Equipment
Design and
Verification
Studies
Phase 4
Typically By
Vendor
Studies for Post-
Commissioning
System
Operation
Phase 5
Typically By
Owner
Initial
Feasibility
Studies
Phase 1
Initial
Feasibility
Studies
Phase 1
Studies to
Determine Type
of Equipment,
Location, and
Ratings
Phase 2
Studies to
Determine Type
of Equipment,
Location, and
Ratings
Phase 2
Typically By Owner or
Owner/Consultant
Typically By Owner or
Owner/Consultant
Pre-
Specification
Studies
Phase 3
Typically By
Owner or
Consultant
Pre-
Specification
Studies
Phase 3
Pre-
Specification
Studies
Phase 3
Typically By
Owner or
Consultant
Typically By
Owner or
Consultant
Pre-
Manufacturing
and Equipment
Design and
Verification
Studies
Phase 4
Typically By
Vendor
Pre-
Manufacturing
and Equipment
Design and
Verification
Studies
Phase 4
Pre-
Manufacturing
and Equipment
Design and
Verification
Studies
Phase 4
Typically By
Vendor
Typically By
Vendor
Studies for Post-
Commissioning
System
Operation
Phase 5
Typically By
Owner
Studies for Post-
Commissioning
System
Operation
Phase 5
Studies for Post-
Commissioning
System
Operation
Phase 5
Typically By
Owner
Typically By
Owner
Figure 4. Phases of power system studies for FACTS installation projects
A. Phase 1: Initial Feasibility Studies to Determine System
Constraints and Reinforcement Needs
The key objectives for Phase 1 type studies to be discussed
in the presentation that will accompany this paper are:
• Identify Characteristics of the Power System
• Identify System Performance Problems
-Transient instability
-Oscillatory instability
-Dynamic voltage instability
-Voltage collapse
-Thermal ratings (power flow)
• Identify which Transmission Constraints that can be
Examined Independently and which Require a
Coordinated Analysis
• Identify the Reinforcement Needs (Shunt vs. Series and
Fast vs. Slow)
Phase 1 type studies are typically performed by the
transmission owner or its consultant. The main study tools
and FACTS model requirements for Phase 1 type studies are:
• Load Flow Programs
• Stability Programs
• Positive Sequence Modeling Only
• Full Scale Model of the Power System
• Simple Device Models are Adequate for Study Phase 1
The end results (deliverables) of Phase 1 type studies are:
• A Fundamental Understanding of the Characteristics of
the Power System
-Key areas and interfaces affected
• Identification of the System Performance Problems
-Transient instability
-Oscillatory instability
-Dynamic voltage instability
-Voltage collapse
-Thermal ratings (power flow)
• Identification of which Constraints can be Examined
Independently and which Require Coordination
• Identification of the Most Effective “Type” of System
Reinforcements (Shunt vs. Series and Fast vs. Slow)
B. Phase 2: Studies to Determine Type of Equipment,
Location, and Ratings
The key objectives for Phase 2 type studies to be discussed
in the presentation that will accompany this paper are:
• Identify Solution Options, both Conventional and FACTS
and Combinations Thereof
• Evaluate Performance of Solution Options
• Consider Other Issues
-Location
-Economics of the solution options
-Losses
-Interaction with other devices
• Evaluate Economics of Each Option’s Costs vs. Value of
Power System Benefits
Phase 2 type studies are typically performed by the
transmission owner or its consultant. The main study tools
and FACTS model requirements for Phase 2 type studies are:
• Load Flow Programs
• Stability Programs
• Positive Sequence Modeling Only
• Full Scale Model of the Power System
• Device Models
-Load flow models
-Stability models
-Control models
The basic modeling and study requirements for Phase 2
type studies are similar to Phase 1 type studies, with the added
requirement of more detailed device models. Electromagnetic
transients analysis is typically not required at this stage.
5
If the analysis of Phase 1 indicates that the system has a
problem with voltage, then in Phase 2 it is necessary to
identify solution options for system voltage control. These
include:
• For Dynamic (fast) Voltage Instability, Consider:
-Shunt capacitor banks
-Static shunt compensators (e.g., STATCOM, SVC)
-Combination
• For Voltage Collapse (slow), Consider:
-Shunt capacitor banks
-Series capacitors
-Static shunt compensators (e.g., STATCOM, SVC)
-Static series compensators (e.g., SSSC)
-Combination
If the analysis of Phase 1 indicates that the system has a
problem with rotor angle stability, then in Phase 2 it is
necessary to identify solution options for this type of problem.
These include:
• For Transient Instability, Consider:
-Series capacitors
-Static shunt compensators (e.g., STATCOM, SVC)
-Static series compensators (e.g., SSSC)
-Combination
• For Oscillatory Instability, Consider:
-Power system stabilizers (PSS)
-Damping controls added to static shunt or series
compensators
The end results (deliverables) of Phase 2 type studies are:
• Identification of Viable Solution Options
-Consider both conventional and FACTS and
combinations thereof
-Rank all viable solutions in terms of system benefits
• Identification of Suitable Location to Install the Solution
Options
-Choice may be obvious or depend on the solution to be
implemented
-Site work and permitting etc. may be a key factor
• Evaluation of Economics of Each Option’s Overall Costs
vs. Value of Power System Benefits
-Rank all viable solutions in terms of overall economics
C. Phase 3: Pre- Specification Studies for Defining
Equipment Requirements
The key objectives for Phase 3 type studies to be discussed
in the presentation that will accompany this paper is:
• To be Able to Write a Technical Specification and RFP to
Submit to Potential Bidders
Phase 3 type studies are typically performed by the
transmission owner or its consultant.
There are a variety of technical items to be published in a
technical specification that must be determined apriori by
system studies. These include, but are not limited to, the
following:
• Device Type, Rating, and Location (From Phase 2
Studies)
• System Descriptions
-Minimum and maximum operating voltage for steady-
state and transient conditions (MCOV, BSL, BIL, etc)
-Minimum, maximum, emergency, and ultimate system
strength and corresponding X/R ratios
-Minimum and maximum frequency excursions
-Maximum unbalance (negative and zero sequence)
• System Dynamic Performance Requirements
-To develop strategies for system steady-state and
transient performance
• Harmonic Limits and System Characteristics
-Maximum individual harmonic distortion (Dn)
-Maximum total harmonic distortion (D)
-Telephone interference limit (TIF)
-Impedance envelopes for normal and contingency
conditions
• High-frequency Interference Issues and Limits
-To determine maximum acceptable limits on power line
carrier (PLC) noise and radio interference (RI) noise
• Other Items to Prepare
-System one-line diagram and impedance map
-Load flow and stability data sets
-Equipment performance requirements
--Control objectives (steady state and transient)
--Response times
--Voltage imbalance
--Availability/Reliability criteria
--Acceptable Failure Rate of components
-Loss evaluation criteria, formula, and associated
cost/penalty
-List of required system studies by vendor (See Phase 4
type studies)
There are numerous other items that belong in the
Technical Specification, but are not directly related to system
study issues. These items will be mentioned in the
presentation that will accompany this paper, but not discussed
in detail.
The end result (deliverable) of Phase 3 type studies is:
• A Technical Specification and RFP to Submit to Potential
Bidders
D. Phase 4: Pre-Manufacturing and Equipment Design and
Verification Studies
The key objectives for Phase 4 type studies to be discussed
in the presentation that will accompany this paper are:
• To Verify to the Owner that the Device Described by the
Specification Meets all System and Equipment
Performance Requirements
6
• To Complete the Detailed Design for Equipment
Manufacturing and Procurement for:
-Control and Protection (Hardware and Software)
-Insulation Coordination
-Inverters
-Filters
-High-voltage and low-voltage equipment
-Etc.
Phase 4 type studies are typically performed by the vendor
after an award of a contract for the FACTS installation.
The end results (deliverables) for Phase 4 type studies are:
• Verification to the Owner that the Device Described by
the Specification Meets all System Requirements and
Equipment Performance Requirements
• Complete Design, Ready for Manufacturing and
Equipment Procurement
E. Phase 5: Studies for Post-Commissioning System
Operation
The key objectives and deliverables for Phase 5 type
studies to be discussed in the presentation that will
accompany this paper are:
• To Confirm the Network Load Flow Conditions are
Within Benchmark Limits
• To Confirm Installed Equipment is Effective to Enhance
Network Steady-state and Dynamic Performance
• To Setup Instrumentation and Obtain Measurements
During Staged Fault Tests and Actual Faults/Dynamic
Events
• To Ensure There are no Adverse Interactions with Other
System Equipment
• To Measure Reliability/Availability of Equipment
• To Establish Operational Losses Algorithm
Phase 5 type studies are typically performed by the
transmission owner.
IV. OVERVIEW OF FACTS CONTROLLER CIRCUITS
This section provides a sample of some of the FACTS
controller circuits and system performance characteristics that
will be discussed during the presentation that accompanies
this paper. The focus of the presentation will not be on the
detail circuit topologies, but rather on the limitations and
controllability of ac systems using the FACTS controllers
along with its basic attributes and configurations.
A. Static Var Compensator
Figure 5 shows the basic circuit for a Static Var
Compensator (SVC). Figure 6 shows its voltage-current
characteristics. These will be discussed in detail in the
presentation that will accompany this paper.
B. Static Synchronous Compensator
Figure 7 shows the basic circuit for a Static Synchronous
Compensator (STATCOM). Figure 8 shows its voltage-
current characteristics. These will be discussed in detail in
the presentation that will accompany this paper.
TSC
TCR
Filter
F
VLow
ISVC
VSVS
ISVS
IMSR
IMSC
MSC
Mechanically
Switched
Capacitor
(MSC)
Mechanically
Switched
Reactor
(MSR)
Static Var Compensator
(SVC)
Figure 5. Circuit for a Static Var Compensator (SVC)
VUtility
Leading Lagging
ISVC
Figure 6. V-I characteristics of a SVC
Power
System
Inverter
Transformer
GTO/GCT
Inverter
Ed
DC Voltage
Source
System
Voltage
~
Vs
Transformer/Reactor
Reactance
I,Q
Inverter
Voltage
~
Vi
Power
System
Inverter
Transformer
GTO/GCT
Inverter
Ed
DC Voltage
Source
Power
System
Inverter
Transformer
GTO/GCT
Inverter
Ed
DC Voltage
Source
System
Voltage
~
Vs
Transformer/Reactor
Reactance
I,Q
Inverter
Voltage
~
Vi
System
Voltage
~
Vs
Transformer/Reactor
Reactance
I,Q
Inverter
Voltage
~
Vi
Figure 7. Circuit for a Static Synchronous Compensator (STATCOM)
VUtility
Leading Lagging
ISTATCOM
Figure 8. V-I characteristics of a STATCOM
7
C. Unified Power Flow Controller
Figure 9 shows the basic circuit for a Unified Power Flow
Controller (UPFC) and Figure 10 shows a Static Synchronous
Series Compensator (SSSC). Figure 11 shows the phasor
diagrams depicting the UPFC operation and its impact on the
power system, and Figure 12 illustrates the control modes of
the series compensator (UPFC or SSSC) (the characteristics
of the shunt portion of the UPFC is similar to Figure 8).
These, along with the V-δ-X phasor characteristics will be
discussed in details in the presentation that will accompany
this paper.
Series
CompensatorShunt
Compensator
Self-Commutated Inverter
Capacitor
Transformer
Series
CompensatorShunt
Compensator
Self-Commutated Inverter
Capacitor
Transformer
Figure 9. Circuit for a Unified Power Flow Controller (UPFC)
Series
Compensator
Self-Commutated Inverter
Capacitor
Transformer
Series
Compensator
Self-Commutated Inverter
Capacitor
Transformer
Figure 10. Circuit for a Static Synchronous Series Compensator (SSSC)
Without UPFC
I=2(V/X)sin(δ/2)
P=(V2/X)sin(δ)
VS
VR
I
jXI
δ
V∆ VRVS V1 V2
jX
2
jX
2
P
I
With UPFC
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
Without UPFC
I=2(V/X)sin(δ/2)
P=(V2/X)sin(δ)
VS
VR
I
jXI
δ
Without UPFC
I=2(V/X)sin(δ/2)
P=(V2/X)sin(δ)
VS
VR
I
jXI
δ
V∆ VRVS V1 V2
jX
2
jX
2
P
I
With UPFC
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
V∆ VRVS V1 V2
jX
2
jX
2
P
I
V∆ VRVS V1 V2
jX
2
jX
2
P
I
With UPFC
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
With UPFC
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
Figure 11. UPFC operation
Impedance Control Mode
V∆=jXCI
I=2Vsin(δ/2)/(X+XC)
Perpendicular Voltage Control Mode
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
Voltage Phase Angle Control Mode
V∆=2V1sin(φ /2) (V1/|V1|) exp[j(π−φ)/2]
I=(2V/X)(sin(δ/2)- cos(δ/2)tan(φ/2))
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
Impedance Control Mode
V∆=jXCI
I=2Vsin(δ/2)/(X+XC)
Impedance Control Mode
V∆=jXCI
I=2Vsin(δ/2)/(X+XC)
Perpendicular Voltage Control Mode
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
Perpendicular Voltage Control Mode
V∆=VC*jXI/|I|
I=(2/X)(Vsin(δ/2)-VC/2)
Voltage Phase Angle Control Mode
V∆=2V1sin(φ /2) (V1/|V1|) exp[j(π−φ)/2]
I=(2V/X)(sin(δ/2)- cos(δ/2)tan(φ/2))
Voltage Phase Angle Control Mode
V∆=2V1sin(φ /2) (V1/|V1|) exp[j(π−φ)/2]
I=(2V/X)(sin(δ/2)- cos(δ/2)tan(φ/2))
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
VS
VR
I
jXI
2
δ
φ
V∆
jXI
2
V1 V2
Figure 12. Control modes of the series compensator
D. Thyristor Controlled Series Compensator
Figure 13 shows the basic circuit for a Thyristor Controlled
Series Compensator (TCSC). Figure 14 shows its impedance-
current (X-I) characteristics for both a single-module and
multi-module controllers. These will be discussed in detail in
the presentation that will accompany this paper.
1 24444444444444 34444444444444
Multi-Module TCSC
Conventional
Series Capacitor
1 24444 34444
ILine
Figure 13. Circuit for a Thyristor Controlled Series Compensator (TCSC) [19]
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Reactance X (pu on XC)
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Reactance X (pu on XC)Reactance X (pu on XC)
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Reactance X (pu on XC)
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Single Module Multi Module
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Reactance X (pu on XC)
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Reactance X (pu on XC)Reactance X (pu on XC)
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Reactance X (pu on XC)
0 1 2
-2
0
2
3
ILine (pu on ILrated)
Single Module Multi Module
Figure 14. X-I characteristics of a TCSC [19]
V. SUMMARY
This paper provided a summary of one of the three
presentations on the topic of “FACTS Fundamentals,” for a
session sponsored by the DC and FACTS Education Working
Group, under the DC and FACTS Subcommittee of the T&D
Committee. This paper was on Part I of the session and
focused on a summary of the issues and benefits of applying
FACTS controllers to AC power systems. The overall process
for system studies and analysis associated with FACTS
installation projects and the need for FACTS controller
models was also discussed. Finally, an introduction to the
basic circuits of several FACTS controllers was provided with
a focus on their system performance characteristics. This
paper was designed to be accompanied by the presentation
material.
VI. REFERENCES
[1] S. Mori, K. Matsuno, T. Hasegawa, S. Ohnishi, M. Takeda, M. Seto, S.
Murakami, F. Ishiguro, “Development of a Large Static Var Generator
Using Self-Commutated Inverters for Improving Power System Stability,”
IEEE Transactions on Power Systems, Vol. 8, No. 1, February, 1993, pp.
371-377.
[2] M. Hirakawa, H. Somiya, Y. Mino, K. Baba, S. Murakami, Y. Watanabe,
“Application of Self-Commutated Inverters to Substation Reactive Power
Control,” CIGRE Paper 23-205, Paris Session, 1996.
8
[3] C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T.W. Cease,
A. Edris, M. Wilhelm, “TVA STATCOM Project: Design, Installation,
and Commissioning,” CIGRE Paper 14-106, Paris General Session, 1996.
[4] C. Schauder, “STATCOM for Compensation of Large Electric Arc
Furnace Installations,” Proceedings of the IEEE PES Summer Power
Meeting, Edmonton, Alberta, July 1999, pp. 1109-1112.
[5] D.J. Hanson, C. Horwill, B.D. Gemmell, D.R. Monkhouse, “A
STATCOM-Based Relocatable SVC Project in the UK for National Grid,”
Proceedings of the IEEE PES Winter Power Meeting, New York, January
2002.
[6] C. Schauder, E. Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A.
Mehraban, A. Edris, "AEP UPFC Project: Installation, Commissioning and
Operation of The ±160 MVA STATCOM (Phase I)," IEEE Transactions
on Power Delivery Vol. 13, No. 4, October 1998, pp. 1530-1535.
[7] B.A. Renz, A.J.F. Keri, A.S. Mehraban, J.P. Kessinger, C.D. Schauder, L.
Gyugyi, L.J. Kovalsky, A.A. Edris, “World’s First Unified Power Flow
Controller on the AEP System,” CIGRE Paper 14-107, Paris Session,
1998.
[8] B. Fardanesh, M. Henderson, B. Shperling, S. Zelingher, L. Gyugyi, C.
Schauder, B. Lam, J. Mountford, R. Adapa, A. Edris, “Convertible Static
Compensator Application to the New York Transmission System,” CIGRE
Paper 14-103, Paris Session, 1998.
[9] H. Suzuki, M. Takeda, G. Reed, “Application of Voltage Source Converter
Technology to a Back-to-Back DC Link,” Presented at the Panel Session
on FACTS Controllers: Applications and Operational Experience,
Proceedings of the IEEE PES Summer Power Meeting, Edmonton,
Alberta, July 1999.
[10] T. Larsson A. Edris, D. Kidd, F. Aboytes, “Eagle Pass Back-to-Back Tie:
a Dual Purpose Application of Voltage Source Converter Technology,”
Proceedings of the 2001 IEEE PES Summer Power Meeting, Vancouver,
BC, July 2001.
[11] G. Aspland, K. Eriksson, O. Tollerz, “HVDC Light, A Tool for Electric
Power Transmission to Distant Loads,” VI SEPOPE Conference, Salvador,
Brazil, May, 1998.
[12] G. Reed, J. Paserba, T. Croasdaile, M. Takeda, Y. Hamasaki, T. Aritsuka,
N. Morishima, S. Jochi, I. Iyoda, M. Nambu, N. Toki, L. Thomas, G.
Smith, D. LaForest, W. Allard, D. Haas, “The VELCO STATCOM-Based
Transmission System Project,” Proceedings of the 2001 IEEE PES Winter
Power Meeting, Columbus, OH, January/February 2001.
[13] G. Reed, J. Paserba, T. Croasdaile, M. Takeda, N. Morishima, Y.
Hamasaki, L. Thomas, W. Allard, “STATCOM Application at VELCO
Essex Substation,” Panel Session on FACTS Applications to Improve
Power System Dynamic Performance, Proceedings of the IEEE PES T&D
Conference and Exposition, Atlanta, Georgia, October/November 2001.
[14] G. Reed, J. Paserba, T. Croasdaile, R. Westover, S. Jochi, N. Morishima,
M. Takeda, T. Sugiyama, Y. Hamazaki, T. Snow, A. Abed, “SDG&E
Talega STATCOM Project - System Analysis, Design, and
Configuration,” Panel Session on FACTS Technologies: Experiences of
the Past Decade and Developments for the 21st Century in Asia and the
World, Proceedings of the IEEE PES T&D-Asia Conference and
Exposition, Yokahama, Japan, October 2002.
[15] A. Scarfone, B. Oberlin, J. Di Luca Jr., D. Hanson, C. Horwill, M. Allen,
“Dynamic Performance Studies for a ±150 Mvar STATCOM for
Northeast Utilities,” Panel Session on FACTS Applications to Improve
Power System Dynamic Performance, Proceedings of the IEEE PES T&D
Conference and Exposition, Dallas, Texas, September 2003.
[16] N. Reddy, H. Iosfin, “BC Hydro Experience Using a Small STATCOM to
Address Utility Voltage Problems,” Panel Session on FACTS
Applications to Improve Power System Dynamic Performance,
Proceedings of the IEEE PES T&D Conference and Exposition, Dallas,
Texas, September 2003.
[17] S. Kolluri, “Application of Distributed Superconducting Magnetic Energy
Storage Systems (D-SMES) in the Entergy System to Improve Voltage
Stability,” Proceedings of the IEEE PES Winter Power Meeting, New
York, January 2002.
[18] IEEE Special Publication No. 87TH1087-5-PWR on Application of Static
Var Systems for System Dynamic Performance, 1987.
[19] R.J. Piwko, C.A. Wegner, B.L. Damsky, B.C. Furumasu, J.D. Eden, “The
Slatt Thyristor Controlled Series Capacitor Project-Design, Installation,
Commissioning, and System Testing,” CIGRE Paper 14-104, Paris
General Session, 1994.
[20] N. Chistl, R. Hedin, K. Sadek, P. Lutzelberger, P.E. Krause, S.M.
McKenna, A.H. Montoya, D. Torgerson, “Advanced Series Compensation
(ASC) with Thyristor Controlled Impedance,” CIGRE Paper 14/37/38-05,
Paris General Session, 1992.
[21] A.J.F. Keri, B.J. Ware R.A. Byron, M. Chamia, P. Halvarsson, L.
Angquist, “Improving Transmission System Performance Using Controlled
Series Capacitors,” CIGRE Paper 14/37/38-07, Paris General Session,
1992.
[22] C. Gama, “Brazilian North-South Interconnection - Control Application
and Operative Experience with Thyristor Controlled Series Compensation
(TCSC),“ Proceedings of the IEEE PES Summer Power Meeting,
Edmonton, Alberta, July 1999, pp. 1103-1108.
[23] N.G. Hingorani, “Introducing Custom Power,” IEEE Spectrum, June
1995.
VII. BIOGRAPHY
John J. Paserba (Fellow), earned his B.E.E. (‘87) from Gannon University,
Erie, PA., and his M.E. (‘88) from RPI, Troy, NY. Mr. Paserba worked in GE’s
Power Systems Energy Consulting Department for over 10 years before joining
Mitsubishi Electric Power Products Inc. (MEPPI) in 1998. He is the Secretary
for the IEEE PES Power System Dynamic Performance Committee and was the
Chairman for the IEEE PES Power System Stability Subcommittee and the
Convenor of CIGRE Task Force 38.01.07 on Control of Power System
Oscillations. He is also a members of the Editorial Board of the PES Power &
Energy Magazine and was a member of the Editorial Board for the IEEE PES
Transactions on Power Systems. John is also active in the IEEE-USA Student
Professional Awareness area and serves as Vice-Chair of the Student
Professional Awareness Committee (S-PAC), and is the Region 2 S-PAC
Coordinator. He is also an Industrial Representative on the IEEE Regional
Activities Board (RAB) Student Activities Committee (SAC). He is a Fellow
(‘03) member of IEEE.

More Related Content

What's hot

International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...
Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...
Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...IJAPEJOURNAL
 
Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...
Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...
Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...IJAPEJOURNAL
 
DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...
DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...
DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...ijsrd.com
 
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieWIRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieWIRJET Journal
 
Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...
Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...
Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...Editor IJMTER
 
Optimal Placement of FACTS Controller
Optimal Placement of FACTS ControllerOptimal Placement of FACTS Controller
Optimal Placement of FACTS ControllerDivyang soni
 
Mitigation of Voltage Sag for Power Quality Improvement Using DPFC System
Mitigation of Voltage Sag for Power Quality Improvement Using DPFC SystemMitigation of Voltage Sag for Power Quality Improvement Using DPFC System
Mitigation of Voltage Sag for Power Quality Improvement Using DPFC SystemIJMTST Journal
 
Enhancement of Power System Dynamics Using a Novel Series Compensation Scheme
Enhancement of Power System Dynamics Using a Novel Series Compensation SchemeEnhancement of Power System Dynamics Using a Novel Series Compensation Scheme
Enhancement of Power System Dynamics Using a Novel Series Compensation SchemeIJMER
 
Ann based voltage stability margin assessment
Ann based voltage stability margin assessmentAnn based voltage stability margin assessment
Ann based voltage stability margin assessmentNaganathan G Sesaiyan
 
Mitigation of Fault in the Distribution System by using Flexible Distributed ...
Mitigation of Fault in the Distribution System by using Flexible Distributed ...Mitigation of Fault in the Distribution System by using Flexible Distributed ...
Mitigation of Fault in the Distribution System by using Flexible Distributed ...IJMER
 
Online voltage stability margin assessment
Online voltage stability margin assessmentOnline voltage stability margin assessment
Online voltage stability margin assessmentNaganathan G Sesaiyan
 
Mitigation of Voltage Fluctuations in Power System Using STATCOM
Mitigation of Voltage Fluctuations in Power System Using STATCOMMitigation of Voltage Fluctuations in Power System Using STATCOM
Mitigation of Voltage Fluctuations in Power System Using STATCOMIJERA Editor
 

What's hot (19)

D011122934
D011122934D011122934
D011122934
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Review ijaet
Review ijaetReview ijaet
Review ijaet
 
Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...
Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...
Investigation and Comparison of the Effect of Facts Devices, Capacitors and L...
 
Hs3414301435
Hs3414301435Hs3414301435
Hs3414301435
 
Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...
Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...
Comparison of FACTS Devices for Two Area Power System Stability Enhancement u...
 
DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...
DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...
DC Bus Voltage Switched Control Method for Three Phase Voltage Source PWM Rec...
 
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieWIRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
IRJET- Enhancement of Power Flow Capability in Power System using UPFC- A RevieW
 
26 k. subramanian
26 k. subramanian26 k. subramanian
26 k. subramanian
 
Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...
Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...
Location of Shunt FACTS Devices for First-Swing Stability Enhancement in Inte...
 
Optimal Placement of FACTS Controller
Optimal Placement of FACTS ControllerOptimal Placement of FACTS Controller
Optimal Placement of FACTS Controller
 
Mitigation of Voltage Sag for Power Quality Improvement Using DPFC System
Mitigation of Voltage Sag for Power Quality Improvement Using DPFC SystemMitigation of Voltage Sag for Power Quality Improvement Using DPFC System
Mitigation of Voltage Sag for Power Quality Improvement Using DPFC System
 
Enhancement of Power System Dynamics Using a Novel Series Compensation Scheme
Enhancement of Power System Dynamics Using a Novel Series Compensation SchemeEnhancement of Power System Dynamics Using a Novel Series Compensation Scheme
Enhancement of Power System Dynamics Using a Novel Series Compensation Scheme
 
D1072535
D1072535D1072535
D1072535
 
Ann based voltage stability margin assessment
Ann based voltage stability margin assessmentAnn based voltage stability margin assessment
Ann based voltage stability margin assessment
 
Mitigation of Fault in the Distribution System by using Flexible Distributed ...
Mitigation of Fault in the Distribution System by using Flexible Distributed ...Mitigation of Fault in the Distribution System by using Flexible Distributed ...
Mitigation of Fault in the Distribution System by using Flexible Distributed ...
 
Online voltage stability margin assessment
Online voltage stability margin assessmentOnline voltage stability margin assessment
Online voltage stability margin assessment
 
Mitigation of Voltage Fluctuations in Power System Using STATCOM
Mitigation of Voltage Fluctuations in Power System Using STATCOMMitigation of Voltage Fluctuations in Power System Using STATCOM
Mitigation of Voltage Fluctuations in Power System Using STATCOM
 
Fact controller
Fact controllerFact controller
Fact controller
 

Viewers also liked

Facts controller survey
Facts controller  surveyFacts controller  survey
Facts controller surveykoperundevi
 
Vishws jain seminar
Vishws jain seminarVishws jain seminar
Vishws jain seminarVishwas Jain
 
The technical seminar
The technical seminarThe technical seminar
The technical seminarArjun Kumar
 
POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012
POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012
POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012Abhishek Chaturvedi
 
Flexible ac transmission system
Flexible ac transmission systemFlexible ac transmission system
Flexible ac transmission systemUday Wankar
 
Flexible ac transmission system
Flexible ac transmission systemFlexible ac transmission system
Flexible ac transmission systemUday Wankar
 
Basic types of facts controllers
Basic types of facts controllersBasic types of facts controllers
Basic types of facts controllersAyyarao T S L V
 
Flexible AC Transmission (FACTS)
Flexible AC Transmission (FACTS)Flexible AC Transmission (FACTS)
Flexible AC Transmission (FACTS)SHIMI S L
 
Flexible Ac Transmission System
Flexible Ac Transmission SystemFlexible Ac Transmission System
Flexible Ac Transmission SystemBrunda R
 
Fuzzy coordination of facts controllers for
Fuzzy coordination of facts controllers forFuzzy coordination of facts controllers for
Fuzzy coordination of facts controllers forSHRUTICH
 

Viewers also liked (15)

Facts controller survey
Facts controller  surveyFacts controller  survey
Facts controller survey
 
Vishws jain seminar
Vishws jain seminarVishws jain seminar
Vishws jain seminar
 
Seminar
SeminarSeminar
Seminar
 
The technical seminar
The technical seminarThe technical seminar
The technical seminar
 
POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012
POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012
POWER SYSTEM STABILITY ENHANCEMENT BY SIMULTANEOUS AC-DC POWER TRANSMISSION_2012
 
facts introducrion
facts introducrion  facts introducrion
facts introducrion
 
Flexible ac transmission system
Flexible ac transmission systemFlexible ac transmission system
Flexible ac transmission system
 
Facts controllers
Facts controllersFacts controllers
Facts controllers
 
Flexible ac transmission system
Flexible ac transmission systemFlexible ac transmission system
Flexible ac transmission system
 
Basic types of facts controllers
Basic types of facts controllersBasic types of facts controllers
Basic types of facts controllers
 
FACTS
FACTS FACTS
FACTS
 
Flexible AC Transmission (FACTS)
Flexible AC Transmission (FACTS)Flexible AC Transmission (FACTS)
Flexible AC Transmission (FACTS)
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Flexible Ac Transmission System
Flexible Ac Transmission SystemFlexible Ac Transmission System
Flexible Ac Transmission System
 
Fuzzy coordination of facts controllers for
Fuzzy coordination of facts controllers forFuzzy coordination of facts controllers for
Fuzzy coordination of facts controllers for
 

Similar to Facts applications

Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...
Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...
Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...rameshss
 
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...IJMER
 
Enhancement of Power Quality by an Application FACTS Devices
Enhancement of Power Quality by an Application FACTS DevicesEnhancement of Power Quality by an Application FACTS Devices
Enhancement of Power Quality by an Application FACTS DevicesIAES-IJPEDS
 
voltage profile improvement in distribution system
voltage profile improvement in distribution systemvoltage profile improvement in distribution system
voltage profile improvement in distribution systemDr Sunil Singh
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER) ijceronline
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Flexible Alternating Current Transmission Systems
Flexible Alternating Current Transmission SystemsFlexible Alternating Current Transmission Systems
Flexible Alternating Current Transmission Systemsijtsrd
 
Ieee transient stability_improvement
Ieee transient stability_improvementIeee transient stability_improvement
Ieee transient stability_improvementvinayraju03
 
Ieee transient stability improvement
Ieee transient stability improvementIeee transient stability improvement
Ieee transient stability improvementvinayraju03
 
Optimal supplementary-damping-controller-design-for-tcsc-employing-rcga
Optimal supplementary-damping-controller-design-for-tcsc-employing-rcgaOptimal supplementary-damping-controller-design-for-tcsc-employing-rcga
Optimal supplementary-damping-controller-design-for-tcsc-employing-rcgaCemal Ardil
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLERA REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLERDHEERAJ DHAKAR
 
Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...
Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...
Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...ijtsrd
 

Similar to Facts applications (20)

Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...
Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...
Transient stability-enhancement-of-power-system-using-upfc-unified-power-flow...
 
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
 
Enhancement of Power Quality by an Application FACTS Devices
Enhancement of Power Quality by an Application FACTS DevicesEnhancement of Power Quality by an Application FACTS Devices
Enhancement of Power Quality by an Application FACTS Devices
 
voltage profile improvement in distribution system
voltage profile improvement in distribution systemvoltage profile improvement in distribution system
voltage profile improvement in distribution system
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Flexible Alternating Current Transmission Systems
Flexible Alternating Current Transmission SystemsFlexible Alternating Current Transmission Systems
Flexible Alternating Current Transmission Systems
 
J1103035766
J1103035766J1103035766
J1103035766
 
Ieee transient stability_improvement
Ieee transient stability_improvementIeee transient stability_improvement
Ieee transient stability_improvement
 
Ieee transient stability improvement
Ieee transient stability improvementIeee transient stability improvement
Ieee transient stability improvement
 
Optimal supplementary-damping-controller-design-for-tcsc-employing-rcga
Optimal supplementary-damping-controller-design-for-tcsc-employing-rcgaOptimal supplementary-damping-controller-design-for-tcsc-employing-rcga
Optimal supplementary-damping-controller-design-for-tcsc-employing-rcga
 
Base1
Base1Base1
Base1
 
Ijetr021134
Ijetr021134Ijetr021134
Ijetr021134
 
Ijetr021134
Ijetr021134Ijetr021134
Ijetr021134
 
project report on IPFC
project report on IPFCproject report on IPFC
project report on IPFC
 
F1075157
F1075157F1075157
F1075157
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
FACTS Controller.
FACTS Controller.FACTS Controller.
FACTS Controller.
 
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLERA REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
A REVIEW PAPER ON A D-FACTS CONTROLLER: ENHANCED POWER FLOW CONTROLLER
 
Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...
Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...
Simulation of 3 Phase, 24 Pulse GTO Converter for Flow Control of Transmissio...
 

Recently uploaded

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Facts applications

  • 1. 1 Abstract--This paper provides a summary of one of the three planned presentations on the topic of “FACTS Fundamentals,” for a session sponsored by the DC and FACTS Education Working Group, under the DC and FACTS Subcommittee of the T&D Committee. This paper is on Part I of the session and focuses on a summary of the issues and benefits of applying FACTS controllers to AC power systems. The overall process for system studies and analysis associated with FACTS installation projects and the need for FACTS controller models is also discussed. Finally, an introduction to the basic circuits of several FACTS controllers is provided with a focus on their system performance characteristics. This paper is designed to be accompanied by the presentation material. Index Terms--Flexible AC Transmission Systems, FACTS, Power Electronic Equipment, Power System Stability, Power System Control I. INTRODUCTION With the ongoing expansion and growth of the electric utility industry, including deregulation in many countries, numerous changes are continuously being introduced to a once predictable business. Although electricity is a highly engineered product, it is increasingly being considered and handled as a commodity. Thus, transmission systems are being pushed closer to their stability and thermal limits while the focus on the quality of power delivered is greater than ever. In the evolving utility environment, financial and market forces are, and will continue to, demand a more optimal and profitable operation of the power system with respect to generation, transmission, and distribution. Now, more than ever, advanced technologies are paramount for the reliable and secure operation of power systems. To achieve both operational reliability and financial profitability, it has become clear that more efficient utilization and control of the existing transmission system infrastructure is required. Improved utilization of the existing power system is provided through the application of advanced control technologies. Power electronics based equipment, or Flexible AC Transmission Systems (FACTS), provide proven technical solutions to address these new operating challenges being presented today. FACTS technologies allow for improved transmission system operation with minimal infrastructure investment, environmental impact, and implementation time compared to the construction of new transmission lines. John J. Paserba is with Mitsubishi Electric Power Products, Inc., Warrendale, Pennsylvania, USA (e-mail: j.paserba@ieee.org). Traditional solutions to upgrading the electrical transmission system infrastructure have been primarily in the form of new transmission lines, substations, and associated equipment. However, as experiences have proven over the past decade or more, the process to permit, site, and construct new transmission lines has become extremely difficult, expensive, time-consuming, and controversial. FACTS technologies provide advanced solutions as cost-effective alternatives to new transmission line construction. The potential benefits of FACTS equipment are now widely recognized by the power systems engineering and T&D communities. With respect to FACTS equipment, voltage sourced converter (VSC) technology, which utilizes self-commutated thyristors/transistors such as GTOs, GCTs, IGCTs, and IGBTs, has been successfully applied in a number of installations world-wide for Static Synchronous Compensators (STATCOM) [1-5], Unified Power Flow Controllers (UPFC) [6, 7], Convertible Series Compensators (CSC) [8], back-to-back dc ties (VSC-BTB) [9, 10] and VSC transmission [11]. In addition to these referenced and other applications, there are several recently completed STATCOMs in the U.S., in the states of Vermont [12, 13], California [14], and Texas [no references available]. In addition, there are newly planned STATCOMs in Connecticut [15] and Texas, as well as a small STATCOM (D-VAR) planned for BC Hydro [16] and several other locations. Other installations of power electronic equipment includes Distributed Superconducting Magnetic Energy Storage units (D-SMES) [17]. These aforementioned transmission system installations are in addition to the earlier generation of power electronics systems that utilize line-commutated thyristor technology for Static Var Compensators (SVC) [18] and Thyristor Controlled Series Compensators (TCSC) [19-22]. II. CONTROL OF POWER SYSTEMS A. Generation, Transmission, Distribution When discussing the creation, movement, and utilization of electrical power, it can be separated into three areas, which traditionally determined the way in which electric utility companies had been organized. These are illustrated in Figure 1 and are: • Generation • Transmission • Distribution How FACTS Controllers Benefit AC Transmission Systems John J. Paserba, Fellow, IEEE
  • 2. 2 Generation Mechanical-to- Electrical Energy Conversion Transmission Distribution Electrical Power Used and Electrical-to-Mechanical Energy Conversion Generation Mechanical-to- Electrical Energy Conversion Transmission Distribution Electrical Power Used and Electrical-to-Mechanical Energy Conversion Figure 1. Illustration of the creation, movement, and utilization of electrical power Although power electronic based equipment is prevalent in each of these three areas, such as with static excitation systems for generators and Custom Power equipment in distribution systems [23], the focus of this paper and accompanying presentation is on transmission, that is, moving the power from where it is generated to where it is utilized. B. Power System Constraints As noted in the introduction, transmission systems are being pushed closer to their stability and thermal limits while the focus on the quality of power delivered is greater than ever. The limitations of the transmission system can take many forms and may involve power transfer between areas (referred to here as transmission bottlenecks) or within a single area or region (referred to here as a regional constraint) and may include one or more of the following characteristics: • Steady-State Power Transfer Limit • Voltage Stability Limit • Dynamic Voltage Limit • Transient Stability Limit • Power System Oscillation Damping Limit • Inadvertent Loop Flow Limit • Thermal Limit • Short-Circuit Current Limit • Others Each transmission bottleneck or regional constraint may have one or more of these system-level problems. The key to solving these problems in the most cost-effective and coordinated manner is by thorough systems engineering analysis, as described later in this paper. C. Controllability of Power Systems To illustrate that the power system only has certain variables that can be impacted by control, consider the basic and well-known power-angle curve, shown in Figure 2. Although this is a steady-state curve and the implementation of FACTS is primarily for dynamic issues, this illustration demonstrates the point that there are primarily three main variables that can be directly controlled in the power system to impact its performance. These are: • Voltage • Angle • Impedance One could also make the point that direct control of power is a fourth variable of controllability in power systems. ES @ δ° ER @ 0° P X P 0 90 180 δ P E E X S R= sin δ P 0 90 180 δ P E E X S R= sin δ Figure 2. Illustration of controllability of power systems With the establishment of “what” variables can be controlled in a power system, the next question is “how” these variables can be controlled. The answer is presented in two parts: namely conventional equipment and FACTS controllers. Examples of Conventional Equipment For Enhancing Power System Control • Series Capacitor -Controls impedance • Switched Shunt-Capacitor and Reactor -Controls voltage • Transformer LTC -Controls voltage • Phase Shifting Transformer -Controls angle • Synchronous Condenser -Controls voltage • Special Stability Controls -Typically focuses on voltage control but can often include direct control of power • Others (When Thermal Limits are Involved) -Can included reconductoring, raising conductors, dynamic line monitoring, adding new lines, etc. Example of FACTS Controllers for Enhancing Power System Control • Static Synchronous Compensator (STATCOM) -Controls voltage • Static Var Compensator (SVC) -Controls voltage • Unified Power Flow Controller (UPFC) • Convertible Series Compensator (CSC) • Inter-phase Power Flow Controller (IPFC) • Static Synchronous Series Controller (SSSC)
  • 3. 3 -Each of the aforementioned (and similar) controllers impact voltage, impedance, and/or angle (and power) • Thyristor Controlled Series Compensator (TCSC) -Controls impedance • Thyristor Controlled Phase Shifting Transformer (TCPST) -Controls angle • Super Conducting Magnetic Energy Storage (SMES) -Controls voltage and power As mentioned earlier, the key to solving transmission system problems in the most cost-effective and coordinated manner is by thorough systems analysis. This includes comparing the system benefits available by conventional equipment and from FACTS controllers. There is an important distinction to make when considering the differences in these two solution options. Figure 3 is an illustration of a few cycles of voltage at power system frequency. This figure shows that the speed of mechanical switches (primarily circuit breakers) for conventional equipment solutions can be as fast as a couple of cycles of 60 (or 50) Hz. This speed of switching in and of itself may be fast enough to solve many power system constraints. Although there is a vast improvement in switching time from mechanical to power electronic based solutions (Figure 3 illustrates that the speed of power electronics switches is a fraction of a cycle), the main benefit that FACTS controller solutions provide is the “cycling/repeatability” and “smooth control” that accompanies the power electronic based switching. In other words, a mechanically switched based (conventional) solution is usually a “one and done” or “on or off” impact to the power system in the time frame needed for power system stability, whereas the power electronic based solution can provide a smooth, continuous, and/or repeatable option for power system control. Thus by applying power electronic based solutions to alleviate power system constraints, it is not just “speed” but “cycling” and “smooth control” that is gained. 0 1 2 Mechanical Breaker Action Thyristor Switch Action 0 1 2 Mechanical Breaker Action Thyristor Switch Action Figure 3. Illustration of the speed of power system control D. Benefits of Control of Power Systems Once power system constraints are identified and through system studies viable solutions options are identified, the benefits of the added power system control must be determined. The following offers a list of such benefits: • Increased Loading and More Effective Use of Transmission Corridors • Added Power Flow Control • Improved Power System Stability • Increased System Security • Increased System Reliability • Added Flexibility in Siting New Generation • Elimination or Deferral of the Need for New Transmission Lines The advantages in this list are important to achieve in the overall planning and operation of power systems. However, for justifying the costs of implementing added power system control and for comparing conventional solutions to FACTS controllers, more specific metrics of the benefits to the power system are often required. Such benefits can usually be tied back to an area or region for a specific season and year at a defined dispatch (usually given by an ISO or equivalent) while meeting the following criteria, for example: • Voltage Stability Criteria -e.g., P-V voltage or power criteria with minimum margins -e.g., Q-V reactive power criteria with minimum margins • Dynamic Voltage Criteria -e.g., Avoiding voltage collapse -e.g., Minimum transient voltage dip/sag criteria (magnitude and duration) • Transient Stability Criteria • Power System Oscillation Damping -e.g., Minimum damping ratio • Others Each of the above-listed items can usually be measured in terms of a physical quantity such as power transfer through a critical transmission interface, power plant output, and/or area or region load level. This allows for a direct quantification of the benefits of adding power system control and provides a means to compare such benefits by the various solution options considered, whether they be conventional or FACTS based. III. PHASES OF POWER SYSTEM STUDIES FOR FACTS INSTALLATION PROJECTS Figure 4 shows the author’s view of the overall process for system studies associated with FACTS installation projects. The presentation that accompanies this paper goes into details of the various phases of power system studies and what items must be focused on for each phase including the modeling requirements. The presentation will start with initial feasibility studies to determine system constraints and reinforcement needs, typically undertaken by the utility/transmission owners, all the way through to the system studies and modeling issues associated with the every-day operation of an installed FACTS controller in a specific power system. The following subsections provide the basic objectives and selected details for each study phase in a bullet list format of the presentation material.
  • 4. 4 Initial Feasibility Studies Phase 1 Studies to Determine Type of Equipment, Location, and Ratings Phase 2 Typically By Owner or Owner/Consultant Pre- Specification Studies Phase 3 Typically By Owner or Consultant Pre- Manufacturing and Equipment Design and Verification Studies Phase 4 Typically By Vendor Studies for Post- Commissioning System Operation Phase 5 Typically By Owner Initial Feasibility Studies Phase 1 Initial Feasibility Studies Phase 1 Studies to Determine Type of Equipment, Location, and Ratings Phase 2 Studies to Determine Type of Equipment, Location, and Ratings Phase 2 Typically By Owner or Owner/Consultant Typically By Owner or Owner/Consultant Pre- Specification Studies Phase 3 Typically By Owner or Consultant Pre- Specification Studies Phase 3 Pre- Specification Studies Phase 3 Typically By Owner or Consultant Typically By Owner or Consultant Pre- Manufacturing and Equipment Design and Verification Studies Phase 4 Typically By Vendor Pre- Manufacturing and Equipment Design and Verification Studies Phase 4 Pre- Manufacturing and Equipment Design and Verification Studies Phase 4 Typically By Vendor Typically By Vendor Studies for Post- Commissioning System Operation Phase 5 Typically By Owner Studies for Post- Commissioning System Operation Phase 5 Studies for Post- Commissioning System Operation Phase 5 Typically By Owner Typically By Owner Figure 4. Phases of power system studies for FACTS installation projects A. Phase 1: Initial Feasibility Studies to Determine System Constraints and Reinforcement Needs The key objectives for Phase 1 type studies to be discussed in the presentation that will accompany this paper are: • Identify Characteristics of the Power System • Identify System Performance Problems -Transient instability -Oscillatory instability -Dynamic voltage instability -Voltage collapse -Thermal ratings (power flow) • Identify which Transmission Constraints that can be Examined Independently and which Require a Coordinated Analysis • Identify the Reinforcement Needs (Shunt vs. Series and Fast vs. Slow) Phase 1 type studies are typically performed by the transmission owner or its consultant. The main study tools and FACTS model requirements for Phase 1 type studies are: • Load Flow Programs • Stability Programs • Positive Sequence Modeling Only • Full Scale Model of the Power System • Simple Device Models are Adequate for Study Phase 1 The end results (deliverables) of Phase 1 type studies are: • A Fundamental Understanding of the Characteristics of the Power System -Key areas and interfaces affected • Identification of the System Performance Problems -Transient instability -Oscillatory instability -Dynamic voltage instability -Voltage collapse -Thermal ratings (power flow) • Identification of which Constraints can be Examined Independently and which Require Coordination • Identification of the Most Effective “Type” of System Reinforcements (Shunt vs. Series and Fast vs. Slow) B. Phase 2: Studies to Determine Type of Equipment, Location, and Ratings The key objectives for Phase 2 type studies to be discussed in the presentation that will accompany this paper are: • Identify Solution Options, both Conventional and FACTS and Combinations Thereof • Evaluate Performance of Solution Options • Consider Other Issues -Location -Economics of the solution options -Losses -Interaction with other devices • Evaluate Economics of Each Option’s Costs vs. Value of Power System Benefits Phase 2 type studies are typically performed by the transmission owner or its consultant. The main study tools and FACTS model requirements for Phase 2 type studies are: • Load Flow Programs • Stability Programs • Positive Sequence Modeling Only • Full Scale Model of the Power System • Device Models -Load flow models -Stability models -Control models The basic modeling and study requirements for Phase 2 type studies are similar to Phase 1 type studies, with the added requirement of more detailed device models. Electromagnetic transients analysis is typically not required at this stage.
  • 5. 5 If the analysis of Phase 1 indicates that the system has a problem with voltage, then in Phase 2 it is necessary to identify solution options for system voltage control. These include: • For Dynamic (fast) Voltage Instability, Consider: -Shunt capacitor banks -Static shunt compensators (e.g., STATCOM, SVC) -Combination • For Voltage Collapse (slow), Consider: -Shunt capacitor banks -Series capacitors -Static shunt compensators (e.g., STATCOM, SVC) -Static series compensators (e.g., SSSC) -Combination If the analysis of Phase 1 indicates that the system has a problem with rotor angle stability, then in Phase 2 it is necessary to identify solution options for this type of problem. These include: • For Transient Instability, Consider: -Series capacitors -Static shunt compensators (e.g., STATCOM, SVC) -Static series compensators (e.g., SSSC) -Combination • For Oscillatory Instability, Consider: -Power system stabilizers (PSS) -Damping controls added to static shunt or series compensators The end results (deliverables) of Phase 2 type studies are: • Identification of Viable Solution Options -Consider both conventional and FACTS and combinations thereof -Rank all viable solutions in terms of system benefits • Identification of Suitable Location to Install the Solution Options -Choice may be obvious or depend on the solution to be implemented -Site work and permitting etc. may be a key factor • Evaluation of Economics of Each Option’s Overall Costs vs. Value of Power System Benefits -Rank all viable solutions in terms of overall economics C. Phase 3: Pre- Specification Studies for Defining Equipment Requirements The key objectives for Phase 3 type studies to be discussed in the presentation that will accompany this paper is: • To be Able to Write a Technical Specification and RFP to Submit to Potential Bidders Phase 3 type studies are typically performed by the transmission owner or its consultant. There are a variety of technical items to be published in a technical specification that must be determined apriori by system studies. These include, but are not limited to, the following: • Device Type, Rating, and Location (From Phase 2 Studies) • System Descriptions -Minimum and maximum operating voltage for steady- state and transient conditions (MCOV, BSL, BIL, etc) -Minimum, maximum, emergency, and ultimate system strength and corresponding X/R ratios -Minimum and maximum frequency excursions -Maximum unbalance (negative and zero sequence) • System Dynamic Performance Requirements -To develop strategies for system steady-state and transient performance • Harmonic Limits and System Characteristics -Maximum individual harmonic distortion (Dn) -Maximum total harmonic distortion (D) -Telephone interference limit (TIF) -Impedance envelopes for normal and contingency conditions • High-frequency Interference Issues and Limits -To determine maximum acceptable limits on power line carrier (PLC) noise and radio interference (RI) noise • Other Items to Prepare -System one-line diagram and impedance map -Load flow and stability data sets -Equipment performance requirements --Control objectives (steady state and transient) --Response times --Voltage imbalance --Availability/Reliability criteria --Acceptable Failure Rate of components -Loss evaluation criteria, formula, and associated cost/penalty -List of required system studies by vendor (See Phase 4 type studies) There are numerous other items that belong in the Technical Specification, but are not directly related to system study issues. These items will be mentioned in the presentation that will accompany this paper, but not discussed in detail. The end result (deliverable) of Phase 3 type studies is: • A Technical Specification and RFP to Submit to Potential Bidders D. Phase 4: Pre-Manufacturing and Equipment Design and Verification Studies The key objectives for Phase 4 type studies to be discussed in the presentation that will accompany this paper are: • To Verify to the Owner that the Device Described by the Specification Meets all System and Equipment Performance Requirements
  • 6. 6 • To Complete the Detailed Design for Equipment Manufacturing and Procurement for: -Control and Protection (Hardware and Software) -Insulation Coordination -Inverters -Filters -High-voltage and low-voltage equipment -Etc. Phase 4 type studies are typically performed by the vendor after an award of a contract for the FACTS installation. The end results (deliverables) for Phase 4 type studies are: • Verification to the Owner that the Device Described by the Specification Meets all System Requirements and Equipment Performance Requirements • Complete Design, Ready for Manufacturing and Equipment Procurement E. Phase 5: Studies for Post-Commissioning System Operation The key objectives and deliverables for Phase 5 type studies to be discussed in the presentation that will accompany this paper are: • To Confirm the Network Load Flow Conditions are Within Benchmark Limits • To Confirm Installed Equipment is Effective to Enhance Network Steady-state and Dynamic Performance • To Setup Instrumentation and Obtain Measurements During Staged Fault Tests and Actual Faults/Dynamic Events • To Ensure There are no Adverse Interactions with Other System Equipment • To Measure Reliability/Availability of Equipment • To Establish Operational Losses Algorithm Phase 5 type studies are typically performed by the transmission owner. IV. OVERVIEW OF FACTS CONTROLLER CIRCUITS This section provides a sample of some of the FACTS controller circuits and system performance characteristics that will be discussed during the presentation that accompanies this paper. The focus of the presentation will not be on the detail circuit topologies, but rather on the limitations and controllability of ac systems using the FACTS controllers along with its basic attributes and configurations. A. Static Var Compensator Figure 5 shows the basic circuit for a Static Var Compensator (SVC). Figure 6 shows its voltage-current characteristics. These will be discussed in detail in the presentation that will accompany this paper. B. Static Synchronous Compensator Figure 7 shows the basic circuit for a Static Synchronous Compensator (STATCOM). Figure 8 shows its voltage- current characteristics. These will be discussed in detail in the presentation that will accompany this paper. TSC TCR Filter F VLow ISVC VSVS ISVS IMSR IMSC MSC Mechanically Switched Capacitor (MSC) Mechanically Switched Reactor (MSR) Static Var Compensator (SVC) Figure 5. Circuit for a Static Var Compensator (SVC) VUtility Leading Lagging ISVC Figure 6. V-I characteristics of a SVC Power System Inverter Transformer GTO/GCT Inverter Ed DC Voltage Source System Voltage ~ Vs Transformer/Reactor Reactance I,Q Inverter Voltage ~ Vi Power System Inverter Transformer GTO/GCT Inverter Ed DC Voltage Source Power System Inverter Transformer GTO/GCT Inverter Ed DC Voltage Source System Voltage ~ Vs Transformer/Reactor Reactance I,Q Inverter Voltage ~ Vi System Voltage ~ Vs Transformer/Reactor Reactance I,Q Inverter Voltage ~ Vi Figure 7. Circuit for a Static Synchronous Compensator (STATCOM) VUtility Leading Lagging ISTATCOM Figure 8. V-I characteristics of a STATCOM
  • 7. 7 C. Unified Power Flow Controller Figure 9 shows the basic circuit for a Unified Power Flow Controller (UPFC) and Figure 10 shows a Static Synchronous Series Compensator (SSSC). Figure 11 shows the phasor diagrams depicting the UPFC operation and its impact on the power system, and Figure 12 illustrates the control modes of the series compensator (UPFC or SSSC) (the characteristics of the shunt portion of the UPFC is similar to Figure 8). These, along with the V-δ-X phasor characteristics will be discussed in details in the presentation that will accompany this paper. Series CompensatorShunt Compensator Self-Commutated Inverter Capacitor Transformer Series CompensatorShunt Compensator Self-Commutated Inverter Capacitor Transformer Figure 9. Circuit for a Unified Power Flow Controller (UPFC) Series Compensator Self-Commutated Inverter Capacitor Transformer Series Compensator Self-Commutated Inverter Capacitor Transformer Figure 10. Circuit for a Static Synchronous Series Compensator (SSSC) Without UPFC I=2(V/X)sin(δ/2) P=(V2/X)sin(δ) VS VR I jXI δ V∆ VRVS V1 V2 jX 2 jX 2 P I With UPFC VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) Without UPFC I=2(V/X)sin(δ/2) P=(V2/X)sin(δ) VS VR I jXI δ Without UPFC I=2(V/X)sin(δ/2) P=(V2/X)sin(δ) VS VR I jXI δ V∆ VRVS V1 V2 jX 2 jX 2 P I With UPFC VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) V∆ VRVS V1 V2 jX 2 jX 2 P I V∆ VRVS V1 V2 jX 2 jX 2 P I With UPFC VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) With UPFC VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) Figure 11. UPFC operation Impedance Control Mode V∆=jXCI I=2Vsin(δ/2)/(X+XC) Perpendicular Voltage Control Mode V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) Voltage Phase Angle Control Mode V∆=2V1sin(φ /2) (V1/|V1|) exp[j(π−φ)/2] I=(2V/X)(sin(δ/2)- cos(δ/2)tan(φ/2)) VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 Impedance Control Mode V∆=jXCI I=2Vsin(δ/2)/(X+XC) Impedance Control Mode V∆=jXCI I=2Vsin(δ/2)/(X+XC) Perpendicular Voltage Control Mode V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) Perpendicular Voltage Control Mode V∆=VC*jXI/|I| I=(2/X)(Vsin(δ/2)-VC/2) Voltage Phase Angle Control Mode V∆=2V1sin(φ /2) (V1/|V1|) exp[j(π−φ)/2] I=(2V/X)(sin(δ/2)- cos(δ/2)tan(φ/2)) Voltage Phase Angle Control Mode V∆=2V1sin(φ /2) (V1/|V1|) exp[j(π−φ)/2] I=(2V/X)(sin(δ/2)- cos(δ/2)tan(φ/2)) VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 VS VR I jXI 2 δ φ V∆ jXI 2 V1 V2 Figure 12. Control modes of the series compensator D. Thyristor Controlled Series Compensator Figure 13 shows the basic circuit for a Thyristor Controlled Series Compensator (TCSC). Figure 14 shows its impedance- current (X-I) characteristics for both a single-module and multi-module controllers. These will be discussed in detail in the presentation that will accompany this paper. 1 24444444444444 34444444444444 Multi-Module TCSC Conventional Series Capacitor 1 24444 34444 ILine Figure 13. Circuit for a Thyristor Controlled Series Compensator (TCSC) [19] 0 1 2 -2 0 2 3 ILine (pu on ILrated) Reactance X (pu on XC) 0 1 2 -2 0 2 3 ILine (pu on ILrated) Reactance X (pu on XC)Reactance X (pu on XC) 0 1 2 -2 0 2 3 ILine (pu on ILrated) Reactance X (pu on XC) 0 1 2 -2 0 2 3 ILine (pu on ILrated) Single Module Multi Module 0 1 2 -2 0 2 3 ILine (pu on ILrated) Reactance X (pu on XC) 0 1 2 -2 0 2 3 ILine (pu on ILrated) Reactance X (pu on XC)Reactance X (pu on XC) 0 1 2 -2 0 2 3 ILine (pu on ILrated) Reactance X (pu on XC) 0 1 2 -2 0 2 3 ILine (pu on ILrated) Single Module Multi Module Figure 14. X-I characteristics of a TCSC [19] V. SUMMARY This paper provided a summary of one of the three presentations on the topic of “FACTS Fundamentals,” for a session sponsored by the DC and FACTS Education Working Group, under the DC and FACTS Subcommittee of the T&D Committee. This paper was on Part I of the session and focused on a summary of the issues and benefits of applying FACTS controllers to AC power systems. The overall process for system studies and analysis associated with FACTS installation projects and the need for FACTS controller models was also discussed. Finally, an introduction to the basic circuits of several FACTS controllers was provided with a focus on their system performance characteristics. This paper was designed to be accompanied by the presentation material. VI. REFERENCES [1] S. Mori, K. Matsuno, T. Hasegawa, S. Ohnishi, M. Takeda, M. Seto, S. Murakami, F. Ishiguro, “Development of a Large Static Var Generator Using Self-Commutated Inverters for Improving Power System Stability,” IEEE Transactions on Power Systems, Vol. 8, No. 1, February, 1993, pp. 371-377. [2] M. Hirakawa, H. Somiya, Y. Mino, K. Baba, S. Murakami, Y. Watanabe, “Application of Self-Commutated Inverters to Substation Reactive Power Control,” CIGRE Paper 23-205, Paris Session, 1996.
  • 8. 8 [3] C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T.W. Cease, A. Edris, M. Wilhelm, “TVA STATCOM Project: Design, Installation, and Commissioning,” CIGRE Paper 14-106, Paris General Session, 1996. [4] C. Schauder, “STATCOM for Compensation of Large Electric Arc Furnace Installations,” Proceedings of the IEEE PES Summer Power Meeting, Edmonton, Alberta, July 1999, pp. 1109-1112. [5] D.J. Hanson, C. Horwill, B.D. Gemmell, D.R. Monkhouse, “A STATCOM-Based Relocatable SVC Project in the UK for National Grid,” Proceedings of the IEEE PES Winter Power Meeting, New York, January 2002. [6] C. Schauder, E. Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A. Mehraban, A. Edris, "AEP UPFC Project: Installation, Commissioning and Operation of The ±160 MVA STATCOM (Phase I)," IEEE Transactions on Power Delivery Vol. 13, No. 4, October 1998, pp. 1530-1535. [7] B.A. Renz, A.J.F. Keri, A.S. Mehraban, J.P. Kessinger, C.D. Schauder, L. Gyugyi, L.J. Kovalsky, A.A. Edris, “World’s First Unified Power Flow Controller on the AEP System,” CIGRE Paper 14-107, Paris Session, 1998. [8] B. Fardanesh, M. Henderson, B. Shperling, S. Zelingher, L. Gyugyi, C. Schauder, B. Lam, J. Mountford, R. Adapa, A. Edris, “Convertible Static Compensator Application to the New York Transmission System,” CIGRE Paper 14-103, Paris Session, 1998. [9] H. Suzuki, M. Takeda, G. Reed, “Application of Voltage Source Converter Technology to a Back-to-Back DC Link,” Presented at the Panel Session on FACTS Controllers: Applications and Operational Experience, Proceedings of the IEEE PES Summer Power Meeting, Edmonton, Alberta, July 1999. [10] T. Larsson A. Edris, D. Kidd, F. Aboytes, “Eagle Pass Back-to-Back Tie: a Dual Purpose Application of Voltage Source Converter Technology,” Proceedings of the 2001 IEEE PES Summer Power Meeting, Vancouver, BC, July 2001. [11] G. Aspland, K. Eriksson, O. Tollerz, “HVDC Light, A Tool for Electric Power Transmission to Distant Loads,” VI SEPOPE Conference, Salvador, Brazil, May, 1998. [12] G. Reed, J. Paserba, T. Croasdaile, M. Takeda, Y. Hamasaki, T. Aritsuka, N. Morishima, S. Jochi, I. Iyoda, M. Nambu, N. Toki, L. Thomas, G. Smith, D. LaForest, W. Allard, D. Haas, “The VELCO STATCOM-Based Transmission System Project,” Proceedings of the 2001 IEEE PES Winter Power Meeting, Columbus, OH, January/February 2001. [13] G. Reed, J. Paserba, T. Croasdaile, M. Takeda, N. Morishima, Y. Hamasaki, L. Thomas, W. Allard, “STATCOM Application at VELCO Essex Substation,” Panel Session on FACTS Applications to Improve Power System Dynamic Performance, Proceedings of the IEEE PES T&D Conference and Exposition, Atlanta, Georgia, October/November 2001. [14] G. Reed, J. Paserba, T. Croasdaile, R. Westover, S. Jochi, N. Morishima, M. Takeda, T. Sugiyama, Y. Hamazaki, T. Snow, A. Abed, “SDG&E Talega STATCOM Project - System Analysis, Design, and Configuration,” Panel Session on FACTS Technologies: Experiences of the Past Decade and Developments for the 21st Century in Asia and the World, Proceedings of the IEEE PES T&D-Asia Conference and Exposition, Yokahama, Japan, October 2002. [15] A. Scarfone, B. Oberlin, J. Di Luca Jr., D. Hanson, C. Horwill, M. Allen, “Dynamic Performance Studies for a ±150 Mvar STATCOM for Northeast Utilities,” Panel Session on FACTS Applications to Improve Power System Dynamic Performance, Proceedings of the IEEE PES T&D Conference and Exposition, Dallas, Texas, September 2003. [16] N. Reddy, H. Iosfin, “BC Hydro Experience Using a Small STATCOM to Address Utility Voltage Problems,” Panel Session on FACTS Applications to Improve Power System Dynamic Performance, Proceedings of the IEEE PES T&D Conference and Exposition, Dallas, Texas, September 2003. [17] S. Kolluri, “Application of Distributed Superconducting Magnetic Energy Storage Systems (D-SMES) in the Entergy System to Improve Voltage Stability,” Proceedings of the IEEE PES Winter Power Meeting, New York, January 2002. [18] IEEE Special Publication No. 87TH1087-5-PWR on Application of Static Var Systems for System Dynamic Performance, 1987. [19] R.J. Piwko, C.A. Wegner, B.L. Damsky, B.C. Furumasu, J.D. Eden, “The Slatt Thyristor Controlled Series Capacitor Project-Design, Installation, Commissioning, and System Testing,” CIGRE Paper 14-104, Paris General Session, 1994. [20] N. Chistl, R. Hedin, K. Sadek, P. Lutzelberger, P.E. Krause, S.M. McKenna, A.H. Montoya, D. Torgerson, “Advanced Series Compensation (ASC) with Thyristor Controlled Impedance,” CIGRE Paper 14/37/38-05, Paris General Session, 1992. [21] A.J.F. Keri, B.J. Ware R.A. Byron, M. Chamia, P. Halvarsson, L. Angquist, “Improving Transmission System Performance Using Controlled Series Capacitors,” CIGRE Paper 14/37/38-07, Paris General Session, 1992. [22] C. Gama, “Brazilian North-South Interconnection - Control Application and Operative Experience with Thyristor Controlled Series Compensation (TCSC),“ Proceedings of the IEEE PES Summer Power Meeting, Edmonton, Alberta, July 1999, pp. 1103-1108. [23] N.G. Hingorani, “Introducing Custom Power,” IEEE Spectrum, June 1995. VII. BIOGRAPHY John J. Paserba (Fellow), earned his B.E.E. (‘87) from Gannon University, Erie, PA., and his M.E. (‘88) from RPI, Troy, NY. Mr. Paserba worked in GE’s Power Systems Energy Consulting Department for over 10 years before joining Mitsubishi Electric Power Products Inc. (MEPPI) in 1998. He is the Secretary for the IEEE PES Power System Dynamic Performance Committee and was the Chairman for the IEEE PES Power System Stability Subcommittee and the Convenor of CIGRE Task Force 38.01.07 on Control of Power System Oscillations. He is also a members of the Editorial Board of the PES Power & Energy Magazine and was a member of the Editorial Board for the IEEE PES Transactions on Power Systems. John is also active in the IEEE-USA Student Professional Awareness area and serves as Vice-Chair of the Student Professional Awareness Committee (S-PAC), and is the Region 2 S-PAC Coordinator. He is also an Industrial Representative on the IEEE Regional Activities Board (RAB) Student Activities Committee (SAC). He is a Fellow (‘03) member of IEEE.