SlideShare a Scribd company logo
1 of 183
Download to read offline
Tutorial 0
Basic Vector Calculations
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
Concepts
Dot product
Cross product
π‘­π’Šπ’π’… 𝑨 Γ— 𝑩
|
Ƹ𝑖 Ƹ𝑗 ΰ· π‘˜
1 2 3
βˆ’2 0 1
| = |
2 3
0 1
| Ƹ𝑖 βˆ’ |
1 3
βˆ’2 1
| Ƹ𝑗 + |
1 2
βˆ’2 0
|ΰ· π‘˜
= 2 Ƹ𝑖 βˆ’ 7 Ƹ𝑗 + 4ΰ· π‘˜
Ԧ𝐴 = 1 Ƹ𝑖 + 2 Ƹ𝑗 + 3ΰ· π‘˜
𝐡 = βˆ’2 Ƹ𝑖 + 0 Ƹ𝑗 + 1ΰ· π‘˜
π‘­π’Šπ’π’… 𝑨 β‹… 𝑩
Ԧ𝐴 β‹… 𝐡 = (1)(βˆ’2) + (2)(0) + (3)(1) = 1
Ԧ𝐴 = 1 Ƹ𝑖 + 2 Ƹ𝑗
𝐡 = βˆ’2 Ƹ𝑖 + 0 Ƹ𝑗
π‘­π’Šπ’π’… 𝑨 β‹… 𝑩
Ԧ𝐴 = 2.24∑63.4
𝐡 = 2∑180
Ԧ𝐴 β‹… 𝐡 = (2.24)(2)cos(180 βˆ’ 63.4) = βˆ’2.01
π‘­π’Šπ’π’… 𝑨 Γ— 𝑩
Ԧ𝐴 Γ— 𝐡 = (2.24)(2)sin(180 βˆ’ 63.4)ΰ· π‘˜ = 4ΰ· π‘˜
2D vectors 3D vectors
Question 1
| Ԧ𝐴| = π‘₯2 + 𝑦2 = 22 + βˆ’1 2 = 2.236
πœƒ = tanβˆ’1
𝑦
π‘₯
= tanβˆ’1
βˆ’1
2
= βˆ’26.57
3
Question 1
Ԧ𝐴 β‹… 𝐡 = (2.236) β‹… (3.606) β‹… cos(123.69 + 26.56) = βˆ’7
4
Question 1
Ԧ𝐴 Γ— 𝐡 = 2.236 β‹… 3.606 β‹… sin(123.69∘
+ 26.56∘
)π‘˜ = 4π‘˜
𝐡 Γ— Ԧ𝐴 = βˆ’4π‘˜
5
Question 1
6
Ԧ𝐢 Γ— 𝐡 = |
Ƹ𝑖 Ƹ𝑗 ΰ· π‘˜
0 0 0.3
βˆ’2 3 0
| = |
0 0.3
3 0
| Ƹ𝑖 βˆ’ |
0 0.3
βˆ’2 0
| Ƹ𝑗 + |
0 0
βˆ’2 3
|ΰ· π‘˜
= βˆ’ 0.9 Ƹ𝑖 βˆ’ 0.6 Ƹ𝑗
Λ†Λ† Λ† Λ† Λ†( 0.9 0.6 ) 0.18 0.27 0C i j i j kο‚΄ ο€­ ο€­ ο€½ ο€­ 
Question 1
Question 2
8
Question 3
)π‘₯ = π‘Ÿβ„Žπ‘œ β‹… cos(πœƒ
)𝑦 = π‘Ÿβ„Žπ‘œ β‹… sin(πœƒ
Recall:
9
Question 4
F
F
F
T
F
10
Question 5
11
Tutorial 1
Position vector, velocity and
acceleration
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
Question 1
14
Question 1
Point attached – non rotating
Reference (absolute)
Body attached – rotating
Question 1 (a)
Reference (absolute)
Inertial reference frame
Both points appear to rotate when viewed in
a reference frame that is placed outside the disk
Question 1 (b)
ra
rb
rb/aA
B
Question 1 (b)
ra
rb
rb/a
The distance between the points A and B does not change
Question 1 (b)
ra
rb
rb/a
The reference frame can translate, but not rotate (point attached)
The distance between the points A and B does not change
Question 1 (b)
ra
rb
rb/a
The reference frame can translate, but not rotate (point attached)
The distance between the points A and B does not change
𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚
Question 1 (b)
ra
rb
rb/a
The reference frame can translate, but not rotate (point attached)
The distance between the points A and B does not change
𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚
Question 1 (b)
ra
rb
rb/a
The reference frame can translate, but not rotate (point attached)
The distance between the points A and B does not change
𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚
Object is taken to be rotating about the reference system
Question 1 (b)
ra
rb
rb/a
The reference frame can translate, but not rotate
The distance between the points A and B does not change
𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚
Object is taken to be rotating about the reference system
Question 1(c)
rb
The reference frame can translate, but not rotate (point attached)
The distance between the points B and O does not change
Object is taken to be rotating about the reference system
Question 1(d)
The reference frame can translate AND rotate (body attached)
A
B
The distance to points A and B does not change
Question 1(d)
A
B
Point fixed
If your reference frame does not rotate, but just gets centred on
your point of interest, the other points appears to rotate around
it
Body fixed
If consider a rotating reference frame, then all points (that are
fixed to the disc, or to the frame) are obviously and by definition
stationary inside it, and there is no "relative motion" between
them in such a reference frame.
26
Question 1 Recall
Point attached – non rotating
Reference (absolute)
Body attached – rotating
Question 2
Question 2
Question 2
Question 2
Question 2
Question 2
Question 3
Question 3
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3
)π‘Ÿcos(πœ”π‘‘
)π‘Ÿsin(πœ”π‘‘
)𝑙2 βˆ’ π‘Ÿ2sin2(πœ”π‘‘
Question 3 – Steps for velocity derivative
Question 3 – Steps for acceleration derivative
Velocity is found to be….
Question 4
Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗
Question 4
Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗
π‘‘Τ¦π‘Ÿ
𝑑𝑑
= 16𝑑 Ƹ𝑖 + 3𝑑2 Ƹ𝑗
π‘‘Τ¦π‘Ÿ
𝑑𝑑
| 𝑑=3𝑠 = 16(3) Ƹ𝑖 + 3(3)2 Ƹ𝑗
𝑑2
Τ¦π‘Ÿ
𝑑𝑑2
= 16 Ƹ𝑖 + 6𝑑 Ƹ𝑗
𝑑2
Τ¦π‘Ÿ
𝑑𝑑2
| 𝑑=3𝑠 = 16 Ƹ𝑖 + 6(3) Ƹ𝑗
Question 4
Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗
π‘‘Τ¦π‘Ÿ
𝑑𝑑
= 16𝑑 Ƹ𝑖 + 3𝑑2 Ƹ𝑗
π‘‘Τ¦π‘Ÿ
𝑑𝑑
| 𝑑=3𝑠 = 16(3) Ƹ𝑖 + 3(3)2 Ƹ𝑗
𝑑2
Τ¦π‘Ÿ
𝑑𝑑2
= 16 Ƹ𝑖 + 6𝑑 Ƹ𝑗
𝑑2
Τ¦π‘Ÿ
𝑑𝑑2
| 𝑑=3𝑠 = 16 Ƹ𝑖 + 6(3) Ƹ𝑗
Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗
)∴ π‘₯ = 8𝑑2
𝑦 = (𝑑3
+ 5
Since π‘₯ = 8𝑑2 β‡’ 𝑑 =
π‘₯
8
∴ 𝑦 =
π‘₯
8
3
+ 5 = 0.125π‘₯ Ξ€3 2
+ 5
49
Question 4
𝑦 =
π‘₯
8
3
+ 5 = 0.125π‘₯ Ξ€3 2
+5
Tutorial 2
Simple motion of a particles
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
Question 1
15m
5m/s
9.81m/s2
𝑣2
= 𝑒2
+ 2π‘Žπ‘ 
𝑣 = )52 + 2(9.81)(15 = 17.9 Ξ€π‘š 𝑠
π‘Ž =
𝑣 βˆ’ 𝑒
𝑑
β‡’ 𝑑 =
𝑣 βˆ’ 𝑒
π‘Ž
𝑑 =
17.9 βˆ’ 5
9.81
= 1.31𝑠
CONSTANT ACCELERATION PROBLEM
+ve
Question 2
53
Question 2
Position
Velocity
Acceleration
Position
Velocity
Acceleration
Question 3
VARIABLE ACCELERATION PROBLEM
55
Question 3
Position
VelandAcc
Acceleration
Velocity
56
Question 4
Recall…
VARIABLE ACCELERATION PROBLEM
57
Question 4
N-t coordinate system
β€’ Rectangular coordinate
β€’ Polar coordinate
β€’ Normal and tangential coordinate
Normal and tangential coordinate
β€’ t-axis points tangential to the path in the direction of Velocity
β€’ n-axis points perpendicular to t-axis, towards centre of curvature
β€’ Body fixed frame, hence moves and rotates with the particle
Velocity
β€’ ALWAYS tangential to path
αˆΏΤ¦π‘£ = 𝑣 Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛[π΄πΏπ‘Šπ΄π‘Œπ‘†!
Acceleration
β€’ Has a tangential and normal component to path
Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛
πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 +
𝑣 𝑑
2
𝜌
Ƹ𝑒 𝑛
π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
Ԧ𝑣 = πœ”π‘Ÿ Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛
59
Equations of motion in N-t coordinate system
Acceleration
β€’ Has a tangential and normal component to path
Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛
πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 +
𝑣 𝑑
2
𝜌
Ƹ𝑒 𝑛
π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
Question 5
Question 5
Question 5
Cross product form is
useful when there is
rotation around
multiple axis
Question 5
Total acceleration of point A and B
N-t coordinate system
β€’ Rectangular coordinate
β€’ Polar coordinate
β€’ Normal and tangential coordinate
Normal and tangential coordinate
β€’ t-axis points tangential to the path in the direction of Velocity
β€’ n-axis points perpendicular to t-axis, towards centre of curvature
β€’ Body fixed frame, hence moves and rotates with the particle
Velocity
β€’ ALWAYS tangential to path
αˆΏΤ¦π‘£ = 𝑣 Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛[π΄πΏπ‘Šπ΄π‘Œπ‘†!
Acceleration
β€’ Has a tangential and normal component to path
Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛
πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 +
𝑣 𝑑
2
𝜌
Ƹ𝑒 𝑛
π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
Ԧ𝑣 = πœ”π‘Ÿ Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛
65
Equations of motion in N-t coordinate system
Acceleration
β€’ Has a tangential and normal component to path
Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛
πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 +
𝑣 𝑑
2
𝜌
Ƹ𝑒 𝑛
π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
Ԧ𝑣 = πœ”π‘Ÿ Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛
Question 6
αˆ·πœƒ(𝑑) = 5
Question 6
αˆ·πœƒ(𝑑) = 5
Question 6
αˆ·πœƒ(𝑑) = 5
Tutorial 3
Planar curvilinear motion
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
70
Question structure
β€’Fixed reference frame – Q1 and Q5
β€’N-t reference frame – Q2 and Q3
β€’R-ΞΈ reference frame – Q4 and Q6
71
Be careful when calculating vector direction!
Ԧ𝐴 = 5 Ƹ𝑖 + 10 Ƹ𝑗
| Ԧ𝐴| = 52 + 102 = 11.2
∠ Ԧ𝐴 = tanβˆ’1
10
5
= 63.40
𝐡 = βˆ’5 Ƹ𝑖 βˆ’ 10 Ƹ𝑗
Ԧ𝐴 = 11.2∠63.40
Ԧ𝐴 = 5 Ƹ𝑖 + 10 Ƹ𝑗
|𝐡| = 52 + 102 = 11.2
∠𝐡 = tanβˆ’1
βˆ’10
βˆ’5
= 63.40
𝑩 = 𝟏𝟏. πŸβˆ πŸ”πŸ‘. πŸ’ 𝟎
𝐡 = βˆ’5 Ƹ𝑖 βˆ’ 10 Ƹ𝑗
5
10
-10
Recall….
|π‘‰π‘’π‘π‘‘π‘œπ‘Ÿ| = π‘₯2 + 𝑦2
βˆ π‘‰π‘’π‘π‘‘π‘œπ‘Ÿ = tanβˆ’1
𝑦
π‘₯
𝑩 = 𝟏𝟏. πŸβˆ πŸπŸ–πŸŽ 𝟎 + πŸ”πŸ‘. πŸ’ 𝟎
πœƒ
πœƒ
βˆ’5
𝑩 = 𝟏𝟏. πŸβˆ πœ‹ + πœƒ
72
ΰ· π‘˜ Γ—. . .
Ƹ𝑖
Ƹ𝑗
ΰ· π‘˜ Γ— Ƹ𝑗 = βˆ’ Ƹ𝑖
73
ΰ· π‘˜ Γ—. . .
Ƹ𝑖
ΰ· π‘˜ Γ— Ƹ𝑗 = βˆ’ Ƹ𝑖
Rotates the axis CCW by 90o
74
ΰ· π‘˜ Γ—. . .
Ƹ𝑖
ΰ· π‘˜ Γ— βˆ’ Ƹ𝑖= - Ƹ𝑗
75
CONSTANT ACCELERATION PROBLEM
Projectile motion
Question 1
π‘₯ 𝑝 = 0
𝑦𝑝 = 0
Initial projectile position Initial target position
π‘₯ 𝑑 = 𝐿
)𝑦𝑑 = 𝐿tan(πœƒ
Initial projectile velocity
࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ
ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ
Initial target velocity
ሢπ‘₯ 𝑑 = 0
αˆΆπ‘¦π‘‘ = 0
Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑
ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’
1
2
𝑔𝑑2
Position of projectile at time, t
Position of target at time, t
π‘₯ 𝑑(𝑑) = 𝐿
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔𝑑2
Time taken by projectile to travel the horizontal distance, L
π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 =
𝐿
)Ԧ𝑣0cos(πœƒ
Vertical position of projectile and target at time, txp=L
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ
𝐿
)Ԧ𝑣0cos(πœƒ
βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
Question 1
π‘₯ 𝑝 = 0
𝑦𝑝 = 0
Initial projectile position Initial target position
π‘₯ 𝑑 = 𝐿
)𝑦𝑑 = 𝐿tan(πœƒ
Initial projectile velocity
࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ
ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ
Initial target velocity
ሢπ‘₯ 𝑑 = 0
αˆΆπ‘¦π‘‘ = 0
Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑
ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’
1
2
𝑔𝑑2
Position of projectile at time, t
Position of target at time, t
π‘₯ 𝑑(𝑑) = 𝐿
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔𝑑2
Time taken by projectile to travel the horizontal distance, L
π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 =
𝐿
)Ԧ𝑣0cos(πœƒ
Vertical position of projectile and target at time, txp=L
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ
𝐿
)Ԧ𝑣0cos(πœƒ
βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
Question 1
π‘₯ 𝑝 = 0
𝑦𝑝 = 0
Initial projectile position Initial target position
π‘₯ 𝑑 = 𝐿
)𝑦𝑑 = 𝐿tan(πœƒ
Initial projectile velocity
࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ
ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ
Initial target velocity
ሢπ‘₯ 𝑑 = 0
αˆΆπ‘¦π‘‘ = 0
Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑
ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’
1
2
𝑔𝑑2
Position of projectile at time, t
Position of target at time, t
π‘₯ 𝑑(𝑑) = 𝐿
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔𝑑2
Time taken by projectile to travel the horizontal distance, L
π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 =
𝐿
)Ԧ𝑣0cos(πœƒ
Vertical position of projectile and target at time, txp=L
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ
𝐿
)Ԧ𝑣0cos(πœƒ
βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
Question 1
π‘₯ 𝑝 = 0
𝑦𝑝 = 0
Initial projectile position Initial target position
π‘₯ 𝑑 = 𝐿
)𝑦𝑑 = 𝐿tan(πœƒ
Initial projectile velocity
࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ
ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ
Initial target velocity
ሢπ‘₯ 𝑑 = 0
αˆΆπ‘¦π‘‘ = 0
Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑
ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑
𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’
1
2
𝑔𝑑2
Position of projectile at time, t
Position of target at time, t
π‘₯ 𝑑(𝑑) = 𝐿
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔𝑑2
Time taken by projectile to travel the horizontal distance, L
π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 =
𝐿
)Ԧ𝑣0cos(πœƒ
Vertical position of projectile and target at time, txp=L
𝑦𝑝(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’
1
2
𝑔
𝐿
)Ԧ𝑣0cos(πœƒ
2
𝑦𝑑(𝑑) = 𝑦𝑝(𝑑)
80
[21:50]
Question 5
Rocket position components w.r.t to A-xy
)π‘¦π‘Ÿ = btan(πœƒ
Rocket velocity components w.r.t to A-xy
Rocket acceleration components w.r.t to A-xy
ሢπ‘₯ π‘Ÿ = 0 (Since 𝑏 is a constant)
αˆΆπ‘¦π‘Ÿ =
)𝑑(𝑏tanπœƒ
𝑑𝑑
=
)𝑑(𝑏tanπœƒ
π‘‘πœƒ
π‘‘πœƒ
𝑑𝑑
= 𝑏 sec2
πœƒ αˆΆπœƒ
π‘₯ π‘Ÿ = 𝑏
ሷπ‘₯ π‘Ÿ = 0
αˆ·π‘¦π‘Ÿ =
𝑑 αˆΆπ‘¦π‘Ÿ
𝑑𝑑
=
࡯𝑑(𝑏(sec2
πœƒ) αˆΆπœƒ
𝑑𝑑 = 𝑏(sec2
πœƒ) αˆ·πœƒ + 2𝑏(sec2
πœƒtanπœƒ) αˆΆπœƒ2
x
y
Fixed
reference frame
N-t coordinate system
β€’ Rectangular coordinate
β€’ Polar coordinate
β€’ Normal and tangential coordinate
Normal and tangential coordinate
β€’ t-axis points tangential to the path in the direction of Velocity
β€’ n-axis points perpendicular to t-axis, towards centre of curvature
β€’ Body fixed frame, hence moves and rotates with the particle
Velocity
β€’ ALWAYS tangential to path
αˆΏΤ¦π‘£ = 𝑣 Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛[π΄πΏπ‘Šπ΄π‘Œπ‘†!
Acceleration
β€’ Has a tangential and normal component to path
Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛
πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 +
𝑣 𝑑
2
𝜌
Ƹ𝑒 𝑛
π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘›
Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
83
Question 2
Setup n-t reference frame Express the given vectors in n-t reference frame
Ԧ𝑣𝑑 = 120 Ƹ𝑒𝑑 Ԧ𝑣 𝑛 = 0 Ƹ𝑒 𝑛
Τ¦π‘Ž 𝑑 = 21cos(60) Ƹ𝑒𝑑 Τ¦π‘Ž 𝑛 = 21sin(60) Ƹ𝑒 𝑛
Τ¦π‘Ž 𝑛 =
𝑣 𝑑
2
𝜌
β‡’ 𝜌 =
1202
)21sin(60
= 792π‘š
Since in a n-t reference frame…
84
Question 3
Setup n-t reference frame
Τ¦π‘Ž 𝑑
Τ¦π‘Ž 𝑛
Ԧ𝑣 𝑑
Ƹ𝑒 𝑛
Ƹ𝑒𝑑
Express the given vectors in n-t reference frame
𝑣 𝑑 = 72π‘˜ Ξ€π‘š β„Ž = 20 ΀Ƹ𝑒𝑑(π‘š 𝑠)
π‘Ž 𝑑 = βˆ’1.25 ΀Ƹ𝑒𝑑(π‘š 𝑠2)
Given
𝜌 = 350π‘š
Since in an n-t reference frame…
Τ¦π‘Ž 𝑛 =
𝑣 𝑑
2
𝜌
=
202
350
= 1.1429π‘š/𝑠2
Magnitude of acceleration vector at t=0
|π‘Ž| = π‘Ž 𝑛
2
+ π‘Ž 𝑑
2
= 1.14292 + 1.252 = 1.694 Ξ€π‘š 𝑠2
Magnitude of acceleration vector at t=4
𝑣 𝑑(𝑑) = 𝑣0 + π‘Ž 𝑑 𝑑
𝑣 𝑑(4𝑠) = 20 βˆ’ 1.25 β‹… 4 = 15 Ξ€π‘š 𝑠
Τ¦π‘Ž 𝑛(4𝑠) =
152
350
= 0.6429 Ξ€π‘š 𝑠2
|π‘Ž| = π‘Ž 𝑑
2
+ π‘Ž 𝑛
2
= 1.406 Ξ€π‘š 𝑠2
r-ΞΈ coordinate system
β€’ Rectangular coordinate
β€’ Polar coordinate
β€’ Normal and tangential coordinate
r-ΞΈcoordinate
β€’ r-axis points in the direction of increasing radius
β€’ ΞΈ-axis points perpendicular to r-axis, increasing angular displacement
β€’ Body fixed frame, hence moves and rotates with the particle
β€’ er is the unit vector in the radial direction
β€’ eΞΈ is the unit vector in the theta direction
Change of basis
Ƹ𝑒 π‘Ÿ = cosπœƒ Ƹ𝑖 + sinπœƒ Ƹ𝑗
Ƹ𝑒 πœƒ = βˆ’sinπœƒ Ƹ𝑖 + cosπœƒ Ƹ𝑗
Velocity
𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Acceleration
π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2
Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Relative velocity to inertial frame
Relative acceleration to inertial frame
Coriolis acceleration
Entrained velocity
Entrained acceleration
If the distance to the rotation center is not
consistent, you must include Coriolis item in
calculating the absolute particle acceleration.
86
Question 4
β€’ Draw inertial reference frame (Rectangular or Polar)
β€’ Draw body-fixed frame (N-t, r- ΞΈ)
β€’ Specify unit vector direction
Ƹ𝑒 π‘Ÿ
Ƹ𝑒 πœƒ
β€’ Specify velocity and acceleration components along unit vector directions
𝑉𝐡/𝑓
π‘‰πœƒ
𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Recall…
αˆΆπ‘Ÿ = 60(2)𝑑 βˆ’ 20(3)𝑑2
αˆΆπ‘Ÿ| 𝑑=1 = 60(2) βˆ’ 20(3) = 60
π‘Ÿ = 60𝑑2 βˆ’ 20𝑑3 πœƒ = 2𝑑2
αˆΆπœƒ = 4𝑑
αˆΆπœƒ| 𝑑=1 = 4
𝑣 = 60 Ƹ𝑒 π‘Ÿ + (40)(4) Ƹ𝑒 πœƒ= 60 Ƹ𝑒 π‘Ÿ + 160 Ƹ𝑒 πœƒ
β€’ Find velocity and acceleration components along unit vector directions
𝑗
𝑖
87
Question 4
β€’ Draw inertial reference frame (Rectangular or Polar)
β€’ Draw body-fixed frame (N-t, r- ΞΈ)
β€’ Specify unit vector direction
Ƹ𝑒 π‘Ÿ
Ƹ𝑒 πœƒ
β€’ Specify velocity and acceleration components along unit vector directions
𝑉𝐡/𝑓
π‘‰πœƒ
𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Recall…
αˆΆπ‘Ÿ = 60(2)𝑑 βˆ’ 20(3)𝑑2
αˆΆπ‘Ÿ| 𝑑=1 = 60(2) βˆ’ 20(3) = 60
π‘Ÿ = 60𝑑2 βˆ’ 20𝑑3 πœƒ = 2𝑑2
αˆΆπœƒ = 4𝑑
αˆΆπœƒ| 𝑑=1 = 4
𝑣 = 60 Ƹ𝑒 π‘Ÿ + (40)(4) Ƹ𝑒 πœƒ= 60 Ƹ𝑒 π‘Ÿ + 160 Ƹ𝑒 πœƒ
β€’ Find velocity and acceleration components along unit vector directions
|𝑣| = 602 + 1602 = 170.9π‘š Ξ€π‘š 𝑠
βˆ π‘£ = tanβˆ’1
60
160
= 20.6 π‘œ π‘€π‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘‘ π‘“π‘Ÿπ‘œπ‘šΰ·π‘’ΞΈ
Ƹ𝑒 π‘Ÿ
Ƹ𝑒 πœƒ
𝑉𝐡/𝑓
π‘‰πœƒ
𝑉
πœƒ| 𝑑=1 = 2 1 2
= 2π‘Ÿπ‘Žπ‘‘ = 114.60
[ෝ𝑒r π‘šπ‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘–αˆΏ
βˆ π‘£ = 114.60
+ (900
βˆ’20.60
) = 1840
measured from 𝑖
𝑖
𝑗
𝑗
𝑖
β€’ Find velocity and acceleration components w.r.t to inertial reference frame
170.9mm/s∠1840
88
Question 4
β€’ Draw inertial reference frame (Rectangular or Polar)
β€’ Draw body-fixed frame (N-t, r- ΞΈ)
β€’ Specify unit vector direction
Ƹ𝑒 π‘Ÿ
Ƹ𝑒 πœƒ
β€’ Specify velocity and acceleration components along unit vector directions
Recall…
αˆΆπ‘Ÿ = 60(2)𝑑 βˆ’ 20(3)𝑑2
αˆΆπ‘Ÿ| 𝑑=1 = 60(2) βˆ’ 20(3) = 60
π‘Ÿ = 60𝑑2 βˆ’ 20𝑑3 πœƒ = 2𝑑2
αˆΆπœƒ = 4𝑑
αˆΆπœƒ| 𝑑=1 = 4
β€’ Find velocity and acceleration components along unit vector directions
𝑖
𝑗
β€’ Find velocity and acceleration components w.r.t to inertial reference frame
π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2
Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
αˆ·π‘Ÿ = 120 βˆ’ 60(2)𝑑 αˆ·πœƒ = 4
αˆ·π‘Ÿ| 𝑑=1 = 0(zero relative to rod) αˆ·πœƒ| 𝑑=1 = 4
π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
π‘Ž = (0 βˆ’ 40 β‹… 42
) Ƹ𝑒 π‘Ÿ + (40 β‹… 4 + 2 β‹… 60 β‹… 4) Ƹ𝑒 πœƒ
π‘Ž = βˆ’640 Ƹ𝑒 π‘Ÿ + 640 Ƹ𝑒 πœƒ
|π‘Ž| = 6402 + 6402 = 905.1π‘š Ξ€π‘š 𝑠2
βˆ π‘Ž = tanβˆ’1 βˆ’640
640
= βˆ’450 measured from ෝ𝑒θ
πœƒ| 𝑑=1 = 2 1 2 = 2π‘Ÿπ‘Žπ‘‘ = 114.60
βˆ π‘Ž = 450 + 114.60 + 900 = 249.60
π‘Ž = 905.1π‘š Ξ€π‘š 𝑠2
∠249.60
Ƹ𝑒 π‘Ÿ
Ƹ𝑒 πœƒ
𝑗
𝑖
Τ¦π‘Ž
89
Question 6
π‘Ÿ = 2𝑏cosπœƒ 𝐺𝑖𝑣𝑒𝑛 π‘‘β„Žπ‘Žπ‘‘ αˆΆπœƒ 𝑖𝑠 π‘π‘œπ‘›π‘ tan𝑑
αˆΆπ‘Ÿ = βˆ’2𝑏 αˆΆπœƒ sinπœƒ
π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2
Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Acceleration of a point in r-theta coordinate is given by….
αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2cosπœƒ [since αˆ·πœƒ = 0]
αˆ·πœƒ = 0
Τ¦π‘Ž 𝐡 = (βˆ’2𝑏 αˆΆπœƒ2cosπœƒ βˆ’ 2𝑏cosπœƒ β‹… αˆΆπœƒ2) Ƹ𝑒 π‘Ÿ + (2𝑏cosπœƒ β‹… 0 + 2(βˆ’2𝑏sinπœƒ) αˆΆπœƒ) Ƹ𝑒 πœƒ
࡯∴ Τ¦π‘Ž 𝐡 = βˆ’4𝑏 αˆΆπœƒ2
(cosπœƒ Ƹ𝑒 π‘Ÿ + sinπœƒ Ƹ𝑒 πœƒ
Thus the magnitude of the acceleration is a constant 4𝑏 αˆΆπœƒ2
∠from er = tanβˆ’1
sinπœƒ
cosπœƒ
= tanβˆ’1
sinπœƒ
cosπœƒ
= πœƒ + 𝝅
Magnitude of the acceleration vector direction is
Τ¦π‘Ž
Angle of the acceleration vector measured from i is
𝑖
𝑗
πœƒ
πœƒ
er
e πœƒ
∠from 𝑖 = πœƒ + (πœ‹ + πœƒ) = 2πœƒ + πœ‹
࡯∴ Τ¦π‘Ž 𝐡 = 4𝑏 αˆΆπœƒ2
∠(2πœƒ + πœ‹
αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2
cosπœƒ βˆ’ 2𝑏 αˆ·πœƒsinπœƒ
π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
90
Question 6
Τ¦π‘Ž
𝑖
𝑗
πœƒ
πœƒ
er
e πœƒ
Velocity
𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Acceleration
π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
Relative velocity to inertial frame
Relative acceleration to inertial frame
Coriolis acceleration
Entrained velocity
Entrained acceleration
π‘Ÿ = 2𝑏cosπœƒ 𝐺𝑖𝑣𝑒𝑛 π‘‘β„Žπ‘Žπ‘‘ αˆΆπœƒ 𝑖𝑠 π‘π‘œπ‘›π‘ tan𝑑
αˆΆπ‘Ÿ = βˆ’2𝑏 αˆΆπœƒ sinπœƒ
αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2
cosπœƒ [since αˆ·πœƒ = 0]
αˆ·πœƒ = 0
αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2
cosπœƒ βˆ’ 2𝑏 αˆ·πœƒsinπœƒ
࡯𝑉 ΀𝐡 𝑓 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ = βˆ’2𝑏 αˆΆπœƒsin(πœƒ Ƹ𝑒 π‘Ÿ
Τ¦π‘Ž ΀𝐡 𝑓 = αˆ·π‘Ÿ Ƹ𝑒 π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2
cos(πœƒ) Ƹ𝑒 π‘Ÿ
Tutorial 5
Planar motion of rigid slab
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
92
Question 1
࡯𝑉𝐴 = 900 Ƹ𝑖(π‘š Ξ€π‘š 𝑠
Τ¦π‘Ÿπ΅π΄ = 300∠ βˆ’ 30 π‘œ
)Τ¦π‘Ÿπ΅π΄ = 300(cos(βˆ’30) Ƹ𝑖 + sin(βˆ’30) Ƹ𝑗
)Τ¦π‘Ÿπ΅π΄ = 300(0.87 Ƹ𝑖 βˆ’ 0.5 Ƹ𝑗
࡯𝑉𝐡 = 𝑉𝐡(cos(βˆ’70) Ƹ𝑖 + sin(βˆ’70) Ƹ𝑗
࡯𝑉𝐡 = 𝑉𝐡(0.34 Ƹ𝑖 βˆ’ 0.94 Ƹ𝑗
𝑉𝐡 = 𝑉𝐴 + πœ” Γ— Τ¦π‘Ÿπ΅π΄
࡯𝑉𝐡(0.34 Ƹ𝑖 βˆ’ 0.94 Ƹ𝑗) = 900 Ƹ𝑖 + πœ”ΰ· π‘˜ Γ— 300(0.87 Ƹ𝑖 βˆ’ 0.5 Ƹ𝑗
Equating i components
0.34𝑉𝐡 βˆ’ 150πœ” = 900
Equating j components
0.94𝑉𝐡 + 259.8πœ” = 0
Solving these equations simultaneously
πœ” = βˆ’3.68π‘Ÿπ‘Ž ΀𝑑 𝑠
𝑉𝐡 = 1017π‘š Ξ€π‘š 𝑠
Therefore
𝑉𝐡 = 1017∠ βˆ’ 700(mm/s)
ΰ΅―πœ” = βˆ’3.68ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠
93
Question 2
𝑉𝐡
𝑉𝐷
i
j
Τ¦π‘Ÿπ΅π΄ = βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗
ΰ΅―πœ” 𝐡𝐴 = 3ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠
𝑉𝐡 = πœ” 𝐡𝐴 Γ— Τ¦π‘Ÿπ΅π΄
𝑉𝐡 = 300 Ƹ𝑖 βˆ’ 900 Ƹ𝑗 = 948.7∠ βˆ’ 71.60
94
Question 2
𝑉𝐡𝑉𝐷
i
j
Τ¦π‘Ÿπ΅π΄ = βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗
ΰ΅―πœ” 𝐡𝐴 = 3ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠
𝑉𝐡 = πœ” 𝐡𝐴 Γ— Τ¦π‘Ÿπ΅π΄
𝑉𝐡 = 300 Ƹ𝑖 βˆ’ 900 Ƹ𝑗 = 948.7∠ βˆ’ 71.60
𝑉𝐡𝐷
𝛽
𝛽
𝛽 = tanβˆ’1
100
300
= 18.430
∴ |𝑉𝐷| = 𝑉𝐡cos(𝛽) = 900π‘š Ξ€π‘š 𝑠
∴ |𝑉𝐡𝐷| = 𝑉𝐡sin(𝛽) = 300π‘š Ξ€π‘š 𝑠
Based on vector diagram
࡯𝑉𝐷 = βˆ’900 Ƹ𝑗(π‘š Ξ€π‘š 𝑠
࡯𝑉𝐡𝐷 = 300 Ƹ𝑖(π‘š Ξ€π‘š 𝑠
Since
Τ¦π‘Ÿ 𝐷𝐸 = βˆ’225 Ƹ𝑖 π‘Žπ‘›π‘‘ Τ¦π‘Ÿπ΅π· = 200 Ƹ𝑗
𝑉𝐷 = πœ” 𝐷𝐸
ΰ· π‘˜ Γ— Τ¦π‘Ÿ 𝐷𝐸
βˆ’900 Ƹ𝑗 = πœ” 𝐷𝐸
ΰ· π‘˜ Γ— βˆ’225 Ƹ𝑖
βˆ’900 Ƹ𝑗 = πœ” 𝐷𝐸
ΰ· π‘˜ Γ— βˆ’225 Ƹ𝑖
βˆ’900 Ƹ𝑗 = βˆ’225 β‹… πœ” 𝐷𝐸 Ƹ𝑗
πœ” 𝐷𝐸 =
βˆ’900
βˆ’225
= 4
πœ” 𝐷𝐸 = 4ΰ· π‘˜
300 Ƹ𝑖 = πœ” 𝐡𝐷
ΰ· π‘˜ Γ— 200 Ƹ𝑗
𝑉𝐡𝐷 = πœ” 𝐡𝐷 Γ— Τ¦π‘Ÿπ΅π·
300 Ƹ𝑖 = βˆ’πœ” 𝐡𝐷 β‹… 200 Ƹ𝑖
πœ” 𝐡𝐷 =
βˆ’300
200
= βˆ’1.5
πœ” 𝐡𝐷 = βˆ’1.5ΰ· π‘˜
95
Question 2
i
j
𝛽
The angular accelerations are determined by simultaneously
solving the component equations the relative acceleration
equation
From part (a), we know that…
πœ” 𝐡𝐷 = βˆ’1.5ΰ· π‘˜
πœ” 𝐷𝐸 = 4ΰ· π‘˜
Since link AB has a constant angular velocity, we can apply
relative acceleration equation with 𝛼 𝐴𝐡 = 0 π‘Ÿπ‘Ž ΀𝑑 𝑠2
Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 𝐴𝐡 Γ— Τ¦π‘Ÿπ΅π΄ βˆ’ πœ” 𝐴𝐡
2
Τ¦π‘Ÿπ΅π΄
)Τ¦π‘Ž 𝐡 = βˆ’πœ”2
Τ¦π‘Ÿπ΅π΄ = βˆ’ 3 2
(βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗) = 2700 Ƹ𝑖 + 900 Ƹ𝑗(π‘š Ξ€π‘š 𝑠2
For bar BD…
Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 𝐡𝐷 Γ— Τ¦π‘Ÿ 𝐷𝐡 βˆ’ πœ” 𝐡𝐷
2
Τ¦π‘Ÿπ·π΅
ΰ΅―Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 𝛼 𝐡𝐷
ΰ· π‘˜ Γ— (βˆ’200 Ƹ𝑗) βˆ’ 1.5 2
(βˆ’200 Ƹ𝑗
Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 200 Ƹ𝑖𝛼 𝐡𝐷 + 450 Ƹ𝑗
For bar DE…
Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐸 + Ԧ𝛼 𝐷𝐸 Γ— Τ¦π‘Ÿ 𝐷𝐸 βˆ’ πœ” 𝐷𝐸
2
Τ¦π‘Ÿ 𝐷𝐸
ΰ΅―Τ¦π‘Ž 𝐷 = 𝛼 𝐷𝐸
ΰ· π‘˜ Γ— (βˆ’225 Ƹ𝑖) βˆ’ 4 2
(βˆ’225 Ƹ𝑖
96
Question 2
i
j
𝛽
Since link AB has a constant angular velocity, we can apply
relative acceleration equation with 𝛼 𝐴𝐡 = 0 π‘Ÿπ‘Ž ΀𝑑 𝑠2
Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 𝐴𝐡 Γ— Τ¦π‘Ÿπ΅π΄ βˆ’ πœ” 𝐴𝐡
2
Τ¦π‘Ÿπ΅π΄
)Τ¦π‘Ž 𝐡 = βˆ’πœ”2
Τ¦π‘Ÿπ΅π΄ = βˆ’ 3 2
(βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗) = 2700 Ƹ𝑖 + 900 Ƹ𝑗(π‘š Ξ€π‘š 𝑠2
For bar BD…
Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 𝐡𝐷 Γ— Τ¦π‘Ÿ 𝐷𝐡 βˆ’ πœ” 𝐡𝐷
2
Τ¦π‘Ÿπ·π΅
ΰ΅―Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 𝛼 𝐡𝐷
ΰ· π‘˜ Γ— (βˆ’200 Ƹ𝑗) βˆ’ 1.5 2(βˆ’200 Ƹ𝑗
Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 200 Ƹ𝑖𝛼 𝐡𝐷 + 450 Ƹ𝑗
For bar DE…
Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐸 + Ԧ𝛼 𝐷𝐸 Γ— Τ¦π‘Ÿ 𝐷𝐸 βˆ’ πœ” 𝐷𝐸
2
Τ¦π‘Ÿ 𝐷𝐸
ΰ΅―Τ¦π‘Ž 𝐷 = 𝛼 𝐷𝐸
ΰ· π‘˜ Γ— (βˆ’225 Ƹ𝑖) βˆ’ 4 2(βˆ’225 Ƹ𝑖
Τ¦π‘Ž 𝐷 = βˆ’225𝛼 𝐷𝐸 Ƹ𝑗 + 3600 Ƹ𝑖
Equating bar BD and DE…
2700 + 200𝛼 𝐡𝐷 Ƹ𝑖 + 900 + 450 Ƹ𝑗 = βˆ’225𝛼 𝐷𝐸 Ƹ𝑗 + 3600 Ƹ𝑖
2700 + 200𝛼 𝐡𝐷 = 3600 β‡’ 𝛼 𝐡𝐷 = 4.5
Equate i and j vector components…
900 + 450 = βˆ’225𝛼 𝐷𝐸 β‡’ 𝛼 𝐷𝐸 = βˆ’6
97
Question 3
Angular velocity of crank AB
i
j
𝑉𝐷
𝑉𝐡
𝐼𝐢
Using the known velocity directions of point D and B
𝑉𝐷 = πœ” 𝐡𝐸 Γ— π‘Ÿ ΀𝐷 𝐼𝐢
πœ” 𝐡𝐸 =
βˆ’120 Ƹ𝑖
βˆ’100 Ƹ𝑖
= 1.2π‘Ÿπ‘Ž ΀𝑑 𝑠
ΰ΅―πœ” 𝐡𝐸 = 1.2ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠
𝑉𝐡 = 1.2ΰ· π‘˜ Γ— βˆ’225 Ƹ𝑖 = βˆ’270 Ƹ𝑗
πœ” 𝐴𝐡 =
𝑉𝐡
π‘Ÿπ΅π΄
=
βˆ’270 Ƹ𝑗
βˆ’100 Ƹ𝑖
= 2.7ΰ·‘π‘˜ π‘Ÿπ‘Žπ‘‘/𝑠
Velocity of point E
𝛽 = tanβˆ’1
100
225
= 23.960
πœ™
=
350
225
β‹… 100 = 155.6
πœ™ = tanβˆ’1
155.6
125
= 51.20
𝛾
𝐿 𝐡𝐸 = 383.03π‘šπ‘š
)sin(23.960
π‘Ÿ ΀𝐸 𝐼𝐢
=
)sin(180 βˆ’ 51.20
383.03
|π‘Ÿ ΀𝐸 𝐼𝐢| = 199.56π‘šπ‘š
π‘Ÿ ΀𝐸 𝐼𝐢 = 199.56π‘šπ‘šβˆ 51.20
π‘Ÿ ΀𝐸 𝐼𝐢 = 125.0 Ƹ𝑖 + 155.5 Ƹ𝑗
𝑉𝐸 = πœ” 𝐡𝐸 Γ— π‘Ÿ ΀𝐸 𝐼𝐢
𝑉𝐸 = 239.5∠141.20
98
Question 4
𝑉𝐸
0.7m/s
i
j
𝑉𝐴
𝐼𝐢
Τ¦π‘ŸπΈ/𝐼𝐢
8m
5m
πœ“ = 1800
βˆ’ 36.90
βˆ’ 22.60
βˆ’ 67.40
= 53.10
)sin(53.1
13
=
)sin(59.50
Τ¦π‘Ÿ ΀𝐸 𝐼𝐢
Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = 13 β‹…
)sin(59.50
)sin(53.10
ΰ΅―Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = βˆ’14 Ƹ𝑗(π‘š
3m
4m
𝑉𝐸 = πœ” Γ— Τ¦π‘Ÿ ΀𝐸 𝐼𝐢
0.7 Ƹ𝑖 = πœ”ΰ· π‘˜ Γ— βˆ’14 Ƹ𝑗
0.7 Ƹ𝑖 = 14πœ” Ƹ𝑖
πœ” =
0.7
14
= 0.05π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑐𝑐𝑀
99
Question 4
𝑉𝐸
0.7m/s
i
j
𝑉𝐴
𝐼𝐢
Τ¦π‘ŸπΈ/𝐼𝐢
8m
5m
πœ“ = 1800
βˆ’ 36.90
βˆ’ 22.60
βˆ’ 67.40
= 53.10
)sin(53.1
13
=
)sin(59.50
Τ¦π‘Ÿ ΀𝐸 𝐼𝐢
Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = 13 β‹…
)sin(59.50
)sin(53.10
ΰ΅―Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = βˆ’14 Ƹ𝑗(π‘š
3m
4m
𝑉𝐸 = πœ” Γ— Τ¦π‘Ÿ ΀𝐸 𝐼𝐢
0.7 Ƹ𝑖 = πœ”ΰ· π‘˜ Γ— βˆ’14 Ƹ𝑗
0.7 Ƹ𝑖 = 14πœ” Ƹ𝑖
πœ” =
0.7
14
= 0.05π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑐𝑐𝑀
ΰ΅―Τ¦π‘Ÿ ΀𝐴 𝐼𝐢 = βˆ’8 Ƹ𝑖 βˆ’ 7 Ƹ𝑗(π‘š
𝑉𝐴 = πœ” Γ— Τ¦π‘Ÿ ΀𝐴 𝐼𝐢
𝑉𝐴 = 0.05ΰ· π‘˜ Γ— (βˆ’8 Ƹ𝑖 βˆ’ 6 Ƹ𝑗)
𝑉𝐴 = 0.35 Ƹ𝑖 βˆ’ 0.4 Ƹ𝑗
|𝑉𝐴| = 0.5 Ξ€π‘š 𝑠
βˆ π‘‰π΄ = tanβˆ’1
βˆ’0.4
0.3
= βˆ’53.130
𝑉𝐡 = 0.806 Ξ€π‘š 𝑠 ∠ βˆ’ 29.740
𝑉𝐷 = 0.3 Ξ€π‘š 𝑠 ∠00
100
Question 5
࡯𝑉𝐡 = 𝑉𝑐 = βˆ’1.5 Ƹ𝑗( Ξ€π‘š 𝑠
࡯𝑉𝐴 = 𝑉𝐷 = βˆ’1.8 Ƹ𝑗( Ξ€π‘š 𝑠
)Τ¦π‘Ž 𝐡
𝑑
= Τ¦π‘Ž 𝑐 = βˆ’0.45 Ƹ𝑗( Ξ€π‘š 𝑠2
)Τ¦π‘Ž 𝐴
𝑑
= Τ¦π‘Ž 𝐷 = 0.6 Ƹ𝑗( Ξ€π‘š 𝑠2
𝐴
𝐺
𝑉𝐡 = 𝑉𝐴 + 𝑉 ΀𝐡 𝐴 = 𝑉𝐴 + πœ” Γ— Τ¦π‘Ÿπ΅π΄
βˆ’1.5 Ƹ𝑗 = βˆ’1.8 Ƹ𝑗 + πœ”ΰ· π‘˜ Γ— βˆ’1.2 Ƹ𝑖
βˆ’1.5 Ƹ𝑗 = βˆ’1.8 Ƹ𝑗 βˆ’ 1.2πœ” Ƹ𝑗
Equating j components
πœ” =
βˆ’1.5 + 1.8
βˆ’1.2
= βˆ’0.25
πœ” = βˆ’0.25ΰ· π‘˜
Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΅π΄ βˆ’ πœ”2
Τ¦π‘Ÿπ΅π΄
ΰ΅―βˆ’0.45 Ƹ𝑗 + x 𝑏 Ƹ𝑖 = 0.6 Ƹ𝑗 + x π‘Ž Ƹ𝑖 + π›Όΰ· π‘˜ Γ— βˆ’1.2 Ƹ𝑖 βˆ’ βˆ’0.25 2
(βˆ’1.2 Ƹ𝑖
βˆ’0.45 Ƹ𝑗 + x 𝑏 Ƹ𝑖 = 0.6 Ƹ𝑗 + x π‘Ž Ƹ𝑖 βˆ’ 1.2𝛼 Ƹ𝑗 βˆ’ 0.075 Ƹ𝑖
Equating j components and solving for 𝜢
𝛼 =
βˆ’0.45 βˆ’ 0.6
βˆ’1.2
= 0.875π‘Ÿπ‘Ž ΀𝑑 𝑠2
࡯Ԧ𝛼 = 0.875ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠2
Τ¦π‘Ž 𝐡 = π‘Ž 𝐺 + Ԧ𝛼 𝐡𝐺 Γ— Τ¦π‘Ÿπ΅πΊ βˆ’ πœ” 𝐡𝐺
2
Τ¦π‘Ÿπ΅πΊ
ΰ΅―βˆ’0.45 Ƹ𝑗 + 𝐱 Ƹ𝑖 = π‘Ž 𝐺 Ƹ𝑗 + 0.875ΰ· π‘˜ Γ— βˆ’0.6 Ƹ𝑖 βˆ’ βˆ’0.25 2(βˆ’0.6 Ƹ𝑖
βˆ’0.45 Ƹ𝑗 + 𝐱 Ƹ𝑖 = (βˆ’0.875 β‹… 0.6 + π‘Ž 𝐺) Ƹ𝑗 + 0.0375 Ƹ𝑖
Equating i components
𝐱 = 0.0375m/s2
)∴ Τ¦π‘Ž 𝐡 = 0.0375 Ƹ𝑖 βˆ’ 0.45 Ƹ𝑗 = 0.452∠ βˆ’ 85.29( Ξ€π‘š 𝑠2
Tutorial 6
Motion relative to a body attached rotating
reference
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
102
Translating, but not rotating reference frame
Key points
Translating and rotating reference frame
𝑉𝐴 = 𝑉𝐡 + 𝑉 ΀𝐴 𝐡
Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Τ¦π‘Ž ΀𝐴 𝐡
𝑉𝐴 = 𝑉𝐡 + πœ” Γ— Τ¦π‘Ÿπ΄π΅ + π‘‰π‘Ÿπ‘’π‘™
Normal to r
Along increasing s direction, it’s the relative
velocity measured from x-y frame.
Velocity of point B measured from X-Y frame
𝑽 𝒓𝒆𝒍 is always tangent to path and points
in the direction of increasing s
𝝎 Γ— 𝒓 𝑨𝑩 is normal position vector
103
Key points
Translating and rotating reference frame
Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™
acceleration of point B measured from X-Y frame
Coriolis acceleration
Acceleration of point A measured from x-y frame
Normal to r vector
Tangent to
r vector
Τ¦π‘Ž π‘Ÿπ‘’π‘™ 𝑑 = αˆ·π‘  = αˆΆπ‘‰π‘Ÿπ‘’π‘™
Τ¦π‘Ž π‘Ÿπ‘’π‘™ 𝑛 =
π‘‰π‘Ÿπ‘’π‘™
2
𝜌
(appears when particle moves in curvilinear or circular motion
with respect to point P)
Radius r is measured from the centre of rotation of the rotating reference frame
to particle A
πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) represents the normal component of acceleration of point P with
respect B. This vector is directed along r and points towards centre of rotation.
Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ represents the tangential component of acceleration of point p with
respect to b. This vector is directed perpendicular to r.
πœ” is the angular velocity of the rotating reference frame
104
Key points
Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™
acceleration of point B measured from X-Y frame
Coriolis acceleration
Acceleration of point A measured from x-y frame
Normal to r vector
Tangent to
r vector
π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑀𝑖𝑙𝑙 𝑏𝑒 π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›
even if an object travels at a constant
velocity in circular or curvilinear
motion (be it inertial or rotating
reference frame).
This acceleration vector will point
towards the centre of rotation.
105
Question 1
𝑉𝑃 = 𝑉𝐴 + πœ” 𝐴𝑃
2
Γ— Τ¦π‘Ÿπ΄π‘ƒ + π‘‰π‘Ÿπ‘’π‘™ = 𝑉𝐴 + πœ” 𝐴𝑃
2
Γ— Τ¦π‘Ÿπ΄π‘ƒ+ π‘‰π‘Ÿπ‘’π‘™
200
)sin(400
=
π‘Ÿπ‘ƒπ΅
)sin(1200
=
π‘Ÿπ‘ƒπ΄
)sin(200
Τ¦π‘Ÿπ‘ƒπ΄ = 106.42π‘šπ‘šβˆ 1200
Τ¦π‘Ÿπ‘ƒπ΅ = 269.46π‘šπ‘šβˆ 1600
࡯𝑉𝑃 = πœ” 𝐴𝑃 Γ— Τ¦π‘Ÿπ‘ƒπ΄ = βˆ’6ΰ· π‘˜ Γ— 106.42∠1200
= βˆ’6ΰ· π‘˜ Γ— (βˆ’53.21 Ƹ𝑖 + 92.16 Ƹ𝑗
࡯𝑉𝑃 = 552.96 Ƹ𝑖 + 319.26 Ƹ𝑗 = 638.5∠300
(π‘š Ξ€π‘š 𝑠
From the diagram…
𝑉𝑃
β€²
= 𝑉𝑃 sin(500)∠700 = 638.5sin(50)∠700 = 489.12∠700
(angle measured from horizontal axis)
𝑉 ΀𝑃 𝑓 = 𝑉𝑃 cos(500)∠ βˆ’ 200 = 638.5cos(50)∠ βˆ’ 200 = 410.42∠ βˆ’ 200
For frame f2…
𝑉𝑃
β€²
= πœ” 𝑃𝐡 Γ— Τ¦π‘Ÿπ‘ƒπ΅ = πœ” 𝑃𝐡
ΰ· π‘˜ Γ— 269.46∠1600
࡯𝑉𝑃
β€²
= πœ” 𝑃𝐡
ΰ· π‘˜ Γ— (βˆ’253.21 Ƹ𝑖 + 92.16 Ƹ𝑗
𝑉𝑃
β€²
= βˆ’253.21πœ” 𝑃𝐡 Ƹ𝑗 βˆ’ 92.16πœ” 𝑃𝐡 Ƹ𝑖
from f1, since
𝑉𝑃
β€²
= 489.12∠700
𝑉𝑃
β€²
= 167.29 Ƹ𝑖 + 459.62 Ƹ𝑗
πœ” 𝑃𝐡 =
169.29
βˆ’92.16
= βˆ’1.82ΰ· π‘˜
Alternatively, equating j component…
πœ” 𝑃𝐡 =
459.62
βˆ’253.21
= βˆ’1.82ΰ· π‘˜
For frame f1…
𝑉𝑃 = 𝑉𝐡 + πœ” 𝐡𝑃
2
Γ— Τ¦π‘Ÿπ΅π‘ƒ+ π‘‰π‘Ÿπ‘’π‘™
π‘‰π‘Ÿπ‘’π‘™= 410.42∠ βˆ’ 200
Equating i component…
106
Question 2
𝐿𝑒𝑑 π‘‰π‘Ÿπ‘’π‘™ = 𝑉 ΀𝐡 𝑓
𝑉 ΀𝐡 𝑓 = βˆ’2 Ƹ𝑖
Τ¦π‘Ÿπ΅π‘‚ = 2 Ƹ𝑗
πœ” = 5ΰ· π‘˜
𝑉𝐡 = 𝑉𝑂 + πœ” Γ— Τ¦π‘Ÿπ΅π‘‚ + 𝑉 ΀𝐡 𝑓
𝑉𝐡 = 5ΰ· π‘˜ Γ— 2 Ƹ𝑗 βˆ’ 2 Ƹ𝑖 = βˆ’12 Ƹ𝑖
𝐿𝑒𝑑 π‘‰π‘Ÿπ‘’π‘™ = 𝑉 ΀𝐡 𝑓
𝑉 ΀𝐡 𝑓 = βˆ’2 Ƹ𝑖
Τ¦π‘Ÿπ΅π‘‚ = (1.1547 Ƹ𝑖 + 2 Ƹ𝑗)
πœ” = 5ΰ· π‘˜
𝑉𝐡 = 𝑉𝑂 + πœ” Γ— Τ¦π‘Ÿπ΅π‘‚ + 𝑉 ΀𝐡 𝑓
𝑉𝐡 = 5ΰ· π‘˜ Γ—= 1.1547 Ƹ𝑖 + 2 Ƹ𝑗 βˆ’ 2 Ƹ𝑖 = βˆ’12 Ƹ𝑖 + 5.77 Ƹ𝑗
107
Question 3
Τ¦π‘Ÿπ΅π΄ = 6∠300
= 5.2 Ƹ𝑖 + 3 Ƹ𝑗
π‘‰π‘Ÿπ‘’π‘™ = 0.15∠ βˆ’ 1500
πœ” = βˆ’0.075ΰ· π‘˜
𝑉𝐡 = 𝑉𝐴 + πœ” Γ— Τ¦π‘Ÿπ΅π΄ + π‘‰π‘Ÿπ‘’π‘™
𝑉𝐡 = βˆ’0.075ΰ· π‘˜ Γ— 6∠300
+ 0.15∠ βˆ’ 1500
= 0.475∠ βˆ’ 78.430
Point B has:
β€’ Constant rate of retraction
β€’ Constant angular velocity
β€’ Linear motion with respect to frame-f
Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΅π΄ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™
ΰ΅―πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) = βˆ’0.075ΰ· π‘˜ Γ— (βˆ’0.075ΰ· π‘˜ Γ— (5.2 Ƹ𝑖 + 3 Ƹ𝑗)
πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) = βˆ’0.0292 Ƹ𝑖 βˆ’ 0.0169 Ƹ𝑗
π‘‰π‘Ÿπ‘’π‘™ = 0.15∠ βˆ’ 1500
= βˆ’0.121 Ƹ𝑖 βˆ’ 0.070 Ƹ𝑗
2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™ = βˆ’0.0112 Ƹ𝑖 + 0.0195 Ƹ𝑗
∴ Τ¦π‘Ž 𝐡 = (βˆ’0.0292 Ƹ𝑖 βˆ’ 0.0169ෑ𝑗) + (βˆ’0.0112 Ƹ𝑖 + 0.0195 Ƹ𝑗)
∴ Τ¦π‘Ž 𝐡 = βˆ’0.0404 Ƹ𝑖 + 0.0026 Ƹ𝑗
108
Question 4
Point B has
β€’ Constant rate of retraction
β€’ Constant angular velocity
β€’ Linear motion with respect to frame-f
𝑉𝐡 = 𝑉𝑂 + πœ” Γ— Τ¦π‘Ÿπ΅π‘‚ + π‘‰π‘Ÿπ‘’π‘™
𝑉𝐡 = βˆ’2.4ΰ· π‘˜ Γ— (βˆ’250 Ƹ𝑖 βˆ’ 188 Ƹ𝑗) + 375 Ƹ𝑖
࡯𝑉𝐡 = βˆ’76.2 Ƹ𝑖 + 600 Ƹ𝑗(π‘š Ξ€π‘š 𝑠
X
Y
x
yf
Radius r is measured from the centre of
rotation of the rotating reference frame
to particle A
109
Question 4
)Τ¦π‘Ž 𝐡 = πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π‘‚) + (2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™
)Τ¦π‘Ž 𝐡 = πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π‘‚) + (2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™
ΰ΅―Τ¦π‘Ž 𝐡 = βˆ’2.4ΰ· π‘˜ Γ— (βˆ’2.4ΰ· π‘˜ Γ— (βˆ’250 Ƹ𝑖 βˆ’ 188 Ƹ𝑗)) + (2 β‹… βˆ’2.4ΰ· π‘˜ Γ— 375 Ƹ𝑖
Τ¦π‘Ž 𝐡 = 1440.06 Ƹ𝑖 βˆ’ 717.2 Ƹ𝑗
β€’ Constant rate of retraction
β€’ Constant angular velocity
β€’ Linear motion with respect to frame-f
x
y f
110
Question 5
17.32
10.00
10.00
𝑉𝑃 = πœ” Γ— Τ¦π‘Ÿπ‘ƒπ‘‚ + π‘‰π‘Ÿπ‘’π‘™
𝑉𝑃 = 0.3ΰ· π‘˜ Γ— (17.32 Ƹ𝑖 βˆ’ 30 Ƹ𝑗) + 10∠ βˆ’ 600
࡯𝑉𝑃 = 0.3ΰ· π‘˜ Γ— (17.32 Ƹ𝑖 βˆ’ 30 Ƹ𝑗) + (5.00 Ƹ𝑖 βˆ’ 8.66 Ƹ𝑗
࡯𝑉𝑃 = (9𝑖 + 5.2 Ƹ𝑗) + (5.00 Ƹ𝑖 βˆ’ 8.66 Ƹ𝑗
𝑉𝑃 = 14𝑖 βˆ’ 3.46 Ƹ𝑗
β€’ Constant angular velocity
β€’ Circular motion with respect to rotating reference frame x”-y”
Y
X
Radius r is measured from the centre of rotation of the rotating reference frame
to particle A
111
Question 5
17.32
10.00
10.00
ΰ΅―2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™ = 2 β‹… 0.3ΰ· π‘˜ Γ— (5.00 Ƹ𝑖 βˆ’ 8.66 Ƹ𝑗) = (5.20 Ƹ𝑖 + 3.00 Ƹ𝑗
πœ” Γ— πœ” Γ— Τ¦π‘Ÿπ‘ƒπ‘‚ = 0.3ΰ· π‘˜ Γ— (0.3ΰ· π‘˜ Γ— (17.32 Ƹ𝑖 βˆ’ 30 Ƹ𝑗)) = βˆ’1.56 Ƹ𝑖 + 2.70 Ƹ𝑗
Τ¦π‘Ž π‘Ÿπ‘’π‘™ =
π‘‰π‘Ÿπ‘’π‘™
2
π‘Ÿ
∠2100 =
102
20
∠2100 = 5∠2100 = βˆ’4.33 Ƹ𝑖 βˆ’ 2.50 Ƹ𝑗
Τ¦π‘Ž 𝑝 = 3.28∠102.20
π‘š Ξ€π‘š 𝑠
Y
X
Summing these three acceleration components gives…
Tutorial 7
Kinetics of particles (Newton’s Second Law)
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
113
Key point
෍ πΉπ‘œπ‘Ÿπ‘π‘’ = π‘š β‹… Τ¦π‘Ž
114
Key point
෍ πΉπ‘œπ‘Ÿπ‘π‘’ = π‘š β‹… Τ¦π‘Ž
In a given direction Absolute acceleration along that direction
Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Τ¦π‘Ž ΀𝐴 𝐡
Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™
Translating reference frame:
Translating and rotating reference frame:
115
Question 1
𝑉 = 3π‘š/𝑠x
y
෍ 𝐹𝑦 = π‘š β‹… π‘Ž 𝑦
𝑁 βˆ’ π‘šπ‘” = βˆ’π‘š
𝑉2
𝜌
𝑁 = βˆ’π‘š
𝑉2
𝜌
+ π‘šπ‘”
𝑁 = βˆ’(2)
3 2
1.8
+ (2)(9.81) = 9.62𝑁
N will be zero at point of losing contact
0= βˆ’π‘š
𝑉2
𝜌
+ π‘šπ‘”
Solving for V
𝑉max = π‘”πœŒ = 9.81 β‹… 1.8 = 4.2 Ξ€π‘š 𝑠
116
Question 2
For block A
For block B
Belt direction
Slip direction
Equations of Motion along i-axis
0.2π‘š 𝐴 𝑔 βˆ’ 𝐹 = π‘š 𝐴 π‘Ž π‘₯
0.1π‘š 𝐡 𝑔 + 𝐹 = π‘š 𝐡 π‘Ž π‘₯
0.1(30)𝑔 + 𝐹 = (30)π‘Ž π‘₯
0.2(24)𝑔 βˆ’ 𝐹 = (24)π‘Ž π‘₯
Solve for F and ax
𝐹 = 13.07𝑁
π‘Ž = 1.417 Ξ€π‘š 𝑠2
117
Question 3
Τ¦π‘Ž 𝐴
Τ¦π‘Ž 𝐡/𝐴
The acceleration of B is composed of the acceleration
of A plus the acceleration of B relative to A.
Apply equation of motion along i direction for block A
𝑇sin(250) = π‘š 𝐴 π‘Ž 𝐴
Apply equation of motion along i and j direction for block B
ࡧ𝑇(sin(250
) Ƹ𝑖 + cos(250
) Ƹ𝑗) βˆ’ π‘š 𝐡 𝑔 Ƹ𝑗 = π‘š 𝐡[π‘Ž 𝐴(βˆ’π‘–) + π‘Ž ΀𝐡 𝐴(cos(250
) Ƹ𝑖 βˆ’ sin(250
) Ƹ𝑗)
Equating i and j components for block B
࡯𝑇sin(250
) = βˆ’π‘š 𝐡 π‘Ž 𝐴 + π‘Ž ΀𝐡 𝐴 π‘š 𝐡cos(250
࡯𝑇cos(250
) βˆ’ π‘š 𝐡 𝑔 = βˆ’π‘Ž ΀𝐡 𝐴 π‘š 𝐡sin(250
250
250
118
Question 3
𝑇sin(250) = π‘š 𝐴 π‘Ž 𝐴
Three unknows and three equations
࡯𝑇sin(250
) = βˆ’π‘š 𝐡 π‘Ž 𝐴 + π‘Ž ΀𝐡 𝐴 π‘š 𝐡cos(250
࡯𝑇cos(250
) βˆ’ π‘š 𝐡 𝑔 = βˆ’π‘Ž ΀𝐡 𝐴 π‘š 𝐡sin(250
𝑇 = 117.6𝑁
π‘Ž 𝐴 = 2.49 Ξ€π‘š 𝑠2
ΰ΅―π‘š 𝐴 π‘Ž 𝐴 = βˆ’π‘š 𝐡 π‘Ž 𝐴 + π‘Ž ΀𝐡 𝐴 π‘š 𝐡cos(250
Therefore….
π‘š 𝐴 π‘Ž 𝐴
)sin(250 cos(250) βˆ’ π‘š 𝐡 𝑔 = βˆ’π‘Ž ΀𝐡 𝐴 π‘š 𝐡sin(250)
Rearranging and substituting…
20π‘Ž 𝐴 + 15π‘Ž 𝐴 = 13.6π‘Ž ΀𝐡 𝐴
2.14(20)π‘Ž 𝐴 βˆ’ 15𝑔 = βˆ’6.3π‘Ž ΀𝐡 𝐴
Simplifying…
35π‘Ž 𝐴 = 13.6π‘Ž ΀𝐡 𝐴
42.8π‘Ž 𝐴 βˆ’ 147.15 = βˆ’6.3π‘Ž ΀𝐡 𝐴
Substituting…
42.8
13.6
35
π‘Ž ΀𝐡 𝐴 βˆ’ 147.15 = βˆ’6.3π‘Ž ΀𝐡 𝐴
16.63π‘Ž ΀𝐡 𝐴 βˆ’ 147.15 = βˆ’6.3π‘Ž ΀𝐡 𝐴
Solve for π‘Ž ΀𝐡 𝐴
π‘Ž ΀𝐡 𝐴 = 6.4 Ξ€π‘š 𝑠2
Therefore…
119
Question 4
120
Question 4
121
Question 4
Only sum the non-constant lengths in next time instant!
122
Question 4
123
Question 4
124
Question 5
mg N
Ƹ𝑒𝑑
The acceleration of C is
composed of the
acceleration of A plus the
acceleration of C relative
to A.
aA
Writing equation of motion along shaft AB
෍
Ƹ𝑒 𝑑
Ԧ𝐹 = π‘š β‹… π‘Ž 𝐢 Ƹ𝑒 𝑑
βˆ’π‘š 𝐢 𝑔cos(450
) = π‘š 𝐢 π‘Ž ΀𝐢 𝐴 + π‘š 𝐢 π‘Ž 𝐴cos(450
)
ΰ΅―βˆ’π‘”cos(450
) = π‘Ž ΀𝐢 𝐴 + π‘Ž 𝐴cos(450
∴ π‘Ž ΀𝐢 𝐴 = βˆ’9.81cos(450
) βˆ’ 4cos(450
) = βˆ’9.765
∴ Τ¦π‘Ž ΀𝐢 𝐴 = βˆ’9.765 Ƹ𝑒𝑑
∴ Τ¦π‘Ž ΀𝐢 𝐴 = 9.765∠ βˆ’ 1350
Τ¦π‘Ž 𝐢 = Τ¦π‘Ž 𝐴 + Τ¦π‘Ž ΀𝐢 𝐴
∴ Τ¦π‘Ž 𝐢 = 4∠900
+ 9.765∠ βˆ’ 1350
Τ¦π‘Ž 𝐢 = βˆ’6.91 Ƹ𝑖 βˆ’ 2.90 Ƹ𝑗 = 7.49∠ βˆ’ 157.20
Negative sign indicates assumed direction of aC/A
was wrong
125
Question 5
mg N
Ƹ𝑒 𝑛
The acceleration of C is
composed of the
acceleration of A plus the
acceleration of C relative
to A.
aA
Writing equation of motion perpendicular to shaft AB
෍
Ƹ𝑒 𝑛
Ԧ𝐹 = π‘š β‹… π‘Ž 𝐢 Ƹ𝑒 𝑛
)𝑁 βˆ’ π‘š 𝐢 𝑔cos(450) = π‘š 𝐢 Τ¦π‘Ž π‘Žcos(450
)𝑁 = π‘š 𝐢( Τ¦π‘Ž π‘Žcos(450) + 𝑔cos(450)
𝑁 = (2)(4cos(450) + 9.81cos(450)) = 19.530
࡯𝑁 = 19.53∠1350
(𝑁
Tutorial 8
Kinetics of particles (Auxiliary Principles)
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
127
Conservation of energy in conservative field
(applies only to conservative system, i.e no external force)
Key points
𝑇1 + 𝑉1 = 𝑇2 + 𝑉2
where
T : Kinetic energy of a particle at a given position
V: Potential energy of a particle at a given position
𝑉 = π‘šπ‘”β„Ž
𝑉 =
1
2
π‘˜ π‘₯ π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘ βˆ’ π‘₯ π‘’π‘›π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘
2
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠
where
π›₯𝐾. 𝐸 = 𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1
π›₯𝑃. 𝐸 = 𝑃. 𝐸2 βˆ’ 𝑃. 𝐸1
Principle of linear Impulse and Momentum
Impulse in a given direction
Momentum in that direction
Principle of angular Impulse and Momentum
Impulse in a given direction
Momentum in that direction
Datum can be placed at any convenient location, but points above datum has
to be taken positive gravitation potential energy (vice versa for points below
datum)
Conservation of energy (General form)
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍
𝑖
𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖
Work done is zero if the
particle or the system is not
subjected to any external
force or moment
Impulse is zero if the
particle or the system is not
subjected to any external
force or moment
𝑇 =
1
2
π‘šπ‘‰π‘Žπ‘π‘ 
2
128
Key points
Ask yourself:
Am I applying conservation of energy /momentum to a particle or a system?
Particle
(ignore external forces/moment)
System
(ignore internal forces/moment)
129
Question 1
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Datum
Based on defined datum, K.E and P.E of block A is zero
1
2
Block A, position 1
Block A, position 2
𝑃. 𝐸: π‘š 𝐴 π‘”β„Ž = 12(𝑔)(1.5π‘š) = 176.58𝐽
𝐾. 𝐸:
1
2
π‘š 𝐴 𝑉𝐴
2
=
1
2
(12) 1.4 2
= 11.76𝐽
∴ π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 11.76 + 176.58 = 188.34𝐽
∴ π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = 188.34𝐽
Since
π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠
𝑇𝐴 =
π‘Šπ΄
Ԧ𝑠 𝐴
=
188.34
1.5
= 125.56𝑁
+s12kg
15kg
Work done is non-zero since particle β€œA” is subjected to
tension force which acts along displacement direction
130
Question 1
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Datum
K.E is zero as Block B is at rest
2
1
Block B, position 1
Block B, position 2
𝑃. 𝐸: π‘š 𝐡 π‘”β„Ž = 15(𝑔)(1.5π‘š) = 220.73𝐽
𝐾. 𝐸:
1
2
π‘š 𝐡 𝑉𝐡
2
=
1
2
(15) 1.4 2
= 14.7𝐽
∴ π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 14.7 + βˆ’220.73 = βˆ’206.03𝐽
Since
π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠
𝑇𝐡 =
π‘Šπ΅
Ԧ𝑠 𝐡
=
βˆ’206.03
βˆ’1.5
= 137.35𝑁
Based on defined datum: P.E is zero
+s12kg
15kg
Work done is non-zero since particle β€œB” is subjected to
tension force which acts along displacement direction
131
Question 1
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Datum
K.E is zero as Block B is at rest
2
1
Block B, position 1
Block B, position 2
P. E is zero based on defined datum
𝐾. 𝐸:
1
2
π‘š 𝐡 𝑉𝐡
2
=
1
2
(15) 1.4 2
= 14.7𝐽
∴ π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 14.7 + βˆ’220.73 = βˆ’206.03𝐽
Since
π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠
𝑇𝐡 =
π‘Šπ΅
Ԧ𝑠 𝐡
=
βˆ’206.03
βˆ’1.5
= 137.35𝑁
Based on defined datum: P.E is zero
+s
𝑃. 𝐸 = π‘š 𝐡 π‘”β„Ž = (15)𝑔(βˆ’1.5π‘š) = βˆ’220.73
12kg
15kg
132
Question 1
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Datum
System at state 1
+s
𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘™π‘œπ‘π‘˜π‘  π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘)
)𝑃. 𝐸1 = 220.73𝐽 (𝑑𝑒𝑒 π‘‘π‘œ π‘π‘™π‘œπ‘π‘˜ 𝐡
System at state 2
𝐾. 𝐸2 = 11.76+ 14.7=26.46J
𝑃. 𝐸2 = 176.58𝐽(due to block A)
∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (26.46 βˆ’ 0) + (176.58 βˆ’ 220.73) = βˆ’17.69𝐽
Based on the conservation equation, work done between states
State 1 State 2
∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1) + (𝑃. 𝐸2 - 𝑃. 𝐸1)
12kg
15kg
133
Question 1
πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ = 𝑁𝑒𝑑 π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ 𝑖𝑛 π‘†π‘‘π‘Žπ‘‘π‘’ 2 βˆ’ 𝑁𝑒𝑑 π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ 𝑖𝑛 π‘†π‘‘π‘Žπ‘‘π‘’ 1
Datum
System at state 1
+s
𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘™π‘œπ‘π‘˜π‘  π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘)
)𝑃. 𝐸1 = 220.73𝐽 (𝑑𝑒𝑒 π‘‘π‘œ π‘π‘™π‘œπ‘π‘˜ 𝐡
System at state 2
𝐾. 𝐸2 = 11.76+ 14.7=26.46J
𝑃. 𝐸2 = 176.58𝐽(due to block A)
∴ πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ = 26.46 + 176.58 βˆ’ (0 + 220.73) = βˆ’17.69𝐽
Based on the conservation equation, energy difference between states
State 1 State 2
∴ πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ = (𝐾. 𝐸2 + P. 𝐸2) - (𝐾. 𝐸1 + 𝑃. 𝐸1)
12kg
15kg
Key points
134
Conservation applied to particle A Conservation applied to particle B
Datum and positions 1 and 2 can be defined separately for each particle
Conservation applied to a system
Datum has to be common between states
135
Question 2
Knowing that the trailer and the load A are moving together:
ΰ΅―π‘‰π‘‘π‘Ÿπ‘Žπ‘–π‘™π‘’π‘Ÿ = 25 Ƹ𝑖( Ξ€π‘š 𝑠
ΰ΅―π‘‰π‘™π‘œπ‘Žπ‘‘ = 25 Ƹ𝑖( Ξ€π‘š 𝑠
Static frictional force between the load and the trailer is
Ԧ𝐹𝑓 = βˆ’πœ‡ 𝑠 β‹… 𝑁 Ƹ𝑖 = βˆ’πœ‡ 𝑠 π‘š 𝐴 𝑔 Ƹ𝑖
Using Principle of Impulse and Linear Momentum
ΰ΅―βˆ’πœ‡ 𝑠 π‘š 𝐴 𝑔π›₯𝑑 Ƹ𝑖 = π‘š 𝐴(π‘‰π‘™π‘œπ‘Žπ‘‘,2 βˆ’ π‘‰π‘™π‘œπ‘Žπ‘‘,1 Ƹ𝑖
βˆ’πœ‡ 𝑠 π‘š 𝐴 𝑔π›₯𝑑 = βˆ’π‘š 𝐴 π‘‰π‘™π‘œπ‘Žπ‘‘,1 Ƹ𝑖
ΰ΅―π‘‰π‘™π‘œπ‘Žπ‘‘/π‘‘π‘Ÿπ‘Žπ‘–π‘™π‘’π‘Ÿ = 0 Ƹ𝑖( Ξ€π‘š 𝑠
π›₯𝑑 =
π‘š 𝐴 π‘‰π‘™π‘œπ‘Žπ‘‘,1
πœ‡ 𝑠 π‘š 𝐴 𝑔
=
π‘‰π‘™π‘œπ‘Žπ‘‘,1
πœ‡ 𝑠 𝑔
=
25
0.4)(9.81
= 6.371𝑠
Integral sign can be dropped off since we are dealing with a constant force w.r.t time
Summation sign in L.H.S can be dropped off since we are dealing with single force
i
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
Summation sign in R.H.S can be dropped off since the principal is applied to a single particle
Ԧ𝐹π›₯𝑑 = π›₯π‘šπ‘‰
136
Question 3
Principle of angular Impulse and Momentum
Impulse Momentum
35cos(300
) β‹… 1.2)π›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1
π›₯𝑑 =
𝐼 β‹… πœ”2
35cos(300) β‹… 1.2
30ο‚°
10 N
35 N150
N 2
1
O
Considering all the forces acting on B at the moment when the cord is broken
(at position 2), and using Newton’s second law in normal direction, we have
෍ 𝐹 𝑛 = π‘šπ‘Ž 𝑛 = π‘šπœ”2
2
π‘Ÿ
ቇ150 βˆ’ 10 βˆ’ 35 β‹… sin(300
) =
50
𝑔
πœ”2
2
(1.2)
πœ”2 = 4.4753π‘Ÿπ‘Ž ΀𝑑 𝑠
𝑉2 = 1.2 β‹… 4.4753 = 5.37 Ξ€π‘š 𝑠
𝑛
)𝑇 β‹… π‘Ÿπ›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1
ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍
𝑖
𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖
137
Question 3
Principle of angular Impulse and Momentum
Impulse Momentum
35cos(300) β‹… 1.2)π›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1
π›₯𝑑 =
𝐼 β‹… πœ”2
35cos(300) β‹… 1.2
π›₯𝑑 =
𝐼 β‹… πœ”2
35cos(300) β‹… 1.2
π›₯𝑑 =
π‘šπ‘Ÿ2 πœ”2
35 β‹… cos(300) β‹… 1.2
=
50
𝑔
β‹… 1.22 β‹… 4.4753
35 β‹… cos(300) β‹… 1.2
= 0.903𝑠
ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍
𝑖
𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖
)𝑇 β‹… π‘Ÿπ›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1
Tutorial 9
Kinetics of particles (Conservation of Energy and
Momentum)
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
139
Conservation of energy in conservative field
(applies only to conservative system, i.e no external force)
Key points
𝑇1 + 𝑉1 = 𝑇2 + 𝑉2
where
T : Kinetic energy of a particle at a given position
V: Potential energy of a particle at a given position
𝑉 = π‘šπ‘”β„Ž
𝑉 =
1
2
π‘˜ π‘₯ π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘ βˆ’ π‘₯ π‘’π‘›π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘
2
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠
where
π›₯𝐾. 𝐸 = 𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1
π›₯𝑃. 𝐸 = 𝑃. 𝐸2 βˆ’ 𝑃. 𝐸1
Principle of linear Impulse and Momentum
Impulse in a given direction
Momentum in that direction
Principle of angular Impulse and Momentum
Impulse in a given direction
Momentum in that direction
Datum can be placed at any convenient location, but points above datum has
to be taken positive gravitation potential energy (vice versa for points below
datum)
Conservation of energy (General form)
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍
𝑖
𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖
Work done is zero if the
particle or the system is not
subjected to any external
force or moment
Impulse is zero if the
particle or the system is not
subjected to any external
force or moment
𝑇 =
1
2
π‘šπ‘‰π‘Žπ‘π‘ 
2
140
Key points
Ask yourself:
Am I applying conservation of energy /momentum to a particle or a system?
Particle
(ignore external forces/moment)
System
(ignore internal forces/moment)
141
Question 1
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
1
2
Datum
+s
At position 1
)𝐾. 𝐸1 = 0 (π‘ π‘‘π‘Žπ‘Ÿπ‘‘ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘’π‘ π‘‘
𝑃. 𝐸 1,π‘ π‘π‘Ÿπ‘–π‘›π‘” =
1
2
π‘˜ 𝑅2 + 𝑅2 βˆ’ 𝑅 2 =
1
2
π‘˜( 2𝑅 βˆ’ 𝑅)2
At position 2
𝐾. 𝐸2 =
1
2
π‘šπ‘‰2
2
𝑃. 𝐸 2,π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ = 0
𝑃. 𝐸 2,π‘ π‘π‘Ÿπ‘–π‘›π‘” =
1
2
π‘˜ 𝑅 βˆ’ 𝑅 2 = 0
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’1 β†’ 2 =
1
2
π‘šπ‘‰2
2
βˆ’ π‘šπ‘”π‘… βˆ’
1
2
π‘˜ 2𝑅 βˆ’ 𝑅 2 = 0
At position 3
𝐾. 𝐸3 =
1
2
π‘šπ‘‰3
2
𝑃. 𝐸 3,π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ = βˆ’π‘šπ‘”R
𝑃. 𝐸 3,π‘ π‘π‘Ÿπ‘–π‘›π‘” =
1
2
π‘˜ 𝑅 βˆ’ 𝑅 2 = 0
𝑃. 𝐸 1,π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ = π‘šπ‘”π‘…
𝑉2 =
π‘˜
π‘š
2𝑅 βˆ’ 𝑅
2
+ 2𝑔𝑅 𝑉2 = 0.1716
π‘˜π‘…2
π‘š
+ 2𝑔𝑅
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’1 β†’ 3 =
1
2
π‘šπ‘‰3
2
βˆ’
1
2
π‘˜( 2𝑅 βˆ’ 𝑅)+( βˆ’ π‘šπ‘”R βˆ’ mgR) = 0
𝑉3 = 0.1716
π‘˜π‘…2
π‘š
+ 4𝑔𝑅
142
Question 1
1
2
Datum
+s
𝑉C = 0.1716
π‘˜π‘…2
π‘š
+ 4𝑔𝑅
+↑ ෍ 𝐹 = π‘š β‹… π‘Žβ†‘
𝑁 βˆ’ π‘šπ‘” = π‘š β‹… π‘Žβ†‘
𝑁 βˆ’ π‘šπ‘” = π‘š β‹…
𝑉3
2
𝑅
𝑁 = π‘š
𝑉3
2
𝑅
+ 𝑔
𝑁 = π‘š
0.1716
π‘˜π‘…2
π‘š
+ 4𝑔𝑅
𝑅
+ 𝑔
)𝑁 = π‘š(0.1716π‘˜π‘… + 5𝑔
143
The cord must be in tension in order for the bob to make
a circular path about peg B.
T
mg
Τ¦π‘Ž 𝑇 + π‘šπ‘” = π‘š β‹… Τ¦π‘Žβ†“
+↓ ෍ 𝐹 = π‘š β‹… Τ¦π‘Žβ†“
𝑇 + π‘šπ‘” = π‘š
𝑉2
𝑅
𝑉
Therefore, the minimum velocity to describe a circle
about the peg:
R
From the diagram above, the radius of the described
circle as function of L and a is:
)𝐿 = 2𝑅 + (π‘Ž βˆ’ 𝑅
𝐿 = 𝑅 + π‘Ž β‡’ 𝑅 = 𝐿 βˆ’ π‘Ž
𝑉min = 𝑔𝑅
Therefore, the minimum velocity to describe a circle
about the peg as a function of L and a is:
𝑉min = )𝑔(𝐿 βˆ’ π‘Ž
Question 2
144
R
Datum
1
+s
2
Apply conservation of energy equation for points 1 and 2
𝑇1 + 𝑉1 = 𝑇2 + 𝑉2
0 + 0 =
1
2
π‘šπ‘‰min
2
βˆ’ π‘šπ‘”(2π‘Ž βˆ’ 𝐿)
𝑉min = )2𝑔(2a βˆ’ 𝐿
)𝑔(𝐿 βˆ’ π‘Ž = )2𝑔(2a βˆ’ 𝐿
)𝑔(𝐿 βˆ’ π‘Ž) = 2𝑔(2a βˆ’ 𝐿
𝐿 βˆ’ π‘Ž) = 2(2a βˆ’ 𝐿
π‘Ž = 0.6𝐿
Question 2
145
෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Datum
System at state 1
+s
𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘™π‘œπ‘π‘˜π‘  π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘)
)𝑃. 𝐸1 = 220.73𝐽 (𝑑𝑒𝑒 π‘‘π‘œ π‘π‘™π‘œπ‘π‘˜ 𝐡
System at state 2
𝐾. 𝐸2 = 11.76+ 14.7=26.46J
𝑃. 𝐸2 = 176.58𝐽(due to block A)
∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (26.46 βˆ’ 0) + (176.58 βˆ’ 220.73) = βˆ’17.69𝐽
Based on the conservation equation, work done between states
State 1 State 2
∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1) + (𝑃. 𝐸2 - 𝑃. 𝐸1)
12kg
15kg
Recall…tutorial 8: question 1
146
Question 3
𝑉𝐢
𝑉𝐡
State 1 State 2
System at state 1
𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘Žπ‘Ÿπ‘‘ π‘Žπ‘›π‘‘ π‘π‘™π‘œπ‘π‘˜ π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘)
𝑃. 𝐸1 =
1
2
π‘˜π‘₯ π‘‘π‘’π‘“π‘œπ‘Ÿπ‘šπ‘’π‘‘
2
=
1
2
(300) 0.2 π‘‘π‘’π‘“π‘œπ‘Ÿπ‘šπ‘’π‘‘
2
= 6𝐽
System at state 2
𝐾. 𝐸2 =
1
2
π‘š 𝐢 𝑉𝐢
2
+
1
2
π‘š 𝐡 𝑉𝐡
2
= 37.5𝑉𝐢
2
+ 25𝑉𝐡
2
)𝑃. 𝐸2 = 0 (𝑠𝑖𝑛𝑐𝑒 π‘ π‘π‘Ÿπ‘–π‘›π‘” π‘π‘’π‘π‘œπ‘šπ‘’π‘  π‘’π‘›π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘’π‘‘
π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (37.5𝑉𝐢
2
+ 25𝑉𝐡
2
) + (βˆ’6) = 0
147
Question 3
𝑉𝐢
𝑉𝐡
State 1 State 2
Treating the cart, block and the spring as system, the force exerted by the spring to the block is internal, thus can be ignored.
Applying conservation of linear momentum between state 1 and 2
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
0 = π›₯π‘š 𝐢 𝑉𝐢 + π›₯π‘š 𝐡 𝑉𝐡
Since mass of Cart and Block B does not change between state 1 and 2
0 = βˆ’75𝑉𝐢,2 + 50𝑉𝐡,2
βˆ’75𝑉𝐢,2 + 50𝑉𝐡,2=0
37.5𝑉𝐢
2
+ 25𝑉𝐡
2
= 6
Solving these equations yields
𝑉𝐡 = 0.375𝑖( Ξ€π‘š 𝑠) 𝑉𝐢 = βˆ’0.253𝑖( Ξ€π‘š 𝑠)
Ƹ𝑖
ΰ΅―0 = π‘š 𝐢(𝑉𝐢,2 βˆ’ 𝑉𝐢,1) + π‘š 𝐡(𝑉𝐡,2 βˆ’ 𝑉𝐡,1
࡯𝑉 ΀𝐡 𝐢 = 𝑉𝐡 βˆ’ 𝑉𝐢 = 0.632 Ƹ𝑖( Ξ€π‘š 𝑠
148
Question 4
Treating the particle P and triangular block B as a system
Apply conservation of Liner momentum along i direction
Impulse Momentum
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
Impulse term can dropped off since there is no external force that acts on the system
along the i direction
π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 = 0
Since mass of particle P and Block B are constant
π‘š 𝐡(𝑉𝐡,2 βˆ’ 𝑉𝐡,1) + π‘š 𝑃(𝑉𝑃,2 βˆ’ 𝑉𝑃,1) = 0
Since these masses start from rest, momentum equation simplifies to
π‘š 𝐡 𝑉𝐡,2 + π‘š 𝑃 𝑉𝑃,2 = 0
Absolute velocity of Particle, P is
𝑉𝑃,2 = 𝑉𝐡,2 + 𝑉 ΀𝑃 𝐡,2
Substituting the absolute velocity into momentum equation along i direction
βˆ’20𝑉𝐡,2 + 4(βˆ’π‘‰π΅,2 + 𝑉 ΀𝑃 𝐡,2cos(300)) = 0
ΰ΅―24𝑉𝐡,2 = 4𝑉 ΀𝑃 𝐡,2cos(300
𝑉 ΀𝑃 𝐡,2 =
6𝑉𝐡,2
)cos(300
Ƹ𝑖
Ƹ𝑗
π‘š 𝐡 𝑉𝐡,2 + π‘š 𝑃 𝑉𝑃,2 = 0
β†’
+
149
Question 4
Treating the particle P and triangular block B as a system
Conservation of Energy principal
π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 0 (Work done is zero since there is
no external force or moment acts
on the system)
π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 =
1
2
π‘š 𝑃 𝑉𝐡
2
+
1
2
π‘š 𝑃 𝑉𝑃
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
βˆ’ 0 + π‘š 𝑃 π‘”β„Ž π‘ π‘‘π‘Žπ‘‘π‘’ 1= 0
8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 =
1
2
π‘š 𝐡 𝑉𝐡
2
+
1
2
π‘š 𝑃 𝑉𝑃
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 =
1
2
π‘š 𝐡 𝑉𝐡
2
+
1
2
π‘š 𝑃 𝑉𝐡 + 𝑉 ΀𝑃 𝐡
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
Since 𝑉𝑃 = 𝑉𝐡 + 𝑉 ΀𝑃 𝐡
𝑉𝐡 = βˆ’π‘‰π΅ Ƹ𝑖
𝑉𝑃/𝐡 = 𝑉 ΀𝑃 𝐡∠ βˆ’ 300
𝑉𝐡 + 𝑉 ΀𝑃 𝐡
2
= 𝑉𝐡
2
+ 2𝑉𝐡 𝑉 ΀𝑃 𝐡 )cos(300 + 𝑉 ΀𝑃 𝐡
2
Ƹ𝑖
Ƹ𝑗
𝑉𝐡 + 𝑉 ΀𝑃 𝐡
2
= 𝑉𝐡,2
2
βˆ’ 2𝑉𝐡,26𝑉𝐡,2 +
6𝑉𝐡,2
)cos(300
2
= 𝑉𝐡,2
2
βˆ’ 12𝑉𝐡,2
2
+ 48𝑉𝐡,2
2
= 37𝑉𝐡,2
2
࡯𝑉 ΀𝑃 𝐡
2
= 𝑉 ΀𝑃 𝐡
2
cos2
(300
) + 𝑉 ΀𝑃 𝐡
2
sin2
(300
𝑉 ΀𝑃 𝐡
2
= 𝑉 ΀𝑃 𝐡
2
(cos2
(300
) + sin2
(300
)) = 𝑉 ΀𝑃 𝐡
2
150
Question 4
Treating the particle P and triangular block B as a system
Conservation of Energy principal
π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 0 (Work done is zero since there is
no external force or moment acts
on the system)
8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 =
1
2
π‘š 𝐡 𝑉𝐡
2
+
1
2
π‘š 𝑃 𝑉𝑃
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 =
1
2
π‘š 𝐡 𝑉𝐡
2
+
1
2
π‘š 𝑃 𝑉𝐡 + 𝑉 ΀𝑃 𝐡
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
Since 𝑉𝑃 = 𝑉𝐡 + 𝑉 ΀𝑃 𝐡
Ƹ𝑖
Ƹ𝑗
𝑉𝐡 + 𝑉 ΀𝑃 𝐡
2
= 𝑉𝐡,2
2
βˆ’ 2𝑉𝐡,26𝑉𝐡,2 +
6𝑉𝐡,2
)cos(300
2
= 𝑉𝐡,2
2
βˆ’ 12𝑉𝐡,2
2
+ 48𝑉𝐡,2
2
= 37𝑉𝐡,2
2
8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 =
1
2
(20)𝑉𝐡
2
+
1
2
(4)37𝑉𝐡,2
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 10𝑉𝐡
2
+ 74𝑉𝐡,2
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
𝑉𝐡 = βˆ’0.967 Ƹ𝑖( Ξ€π‘š 𝑠) 𝑉 ΀𝑃 𝐡 = 6.697( Ξ€π‘š 𝑠)∠ βˆ’ 300
࡯𝑉𝑃 = βˆ’0.967 Ƹ𝑖 + 6.697∠ βˆ’ 300
( Ξ€π‘š 𝑠
π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 =
1
2
π‘š 𝑃 𝑉𝐡
2
+
1
2
π‘š 𝑃 𝑉𝑃
2
π‘ π‘‘π‘Žπ‘‘π‘’ 2
βˆ’ 0 + π‘š 𝑃 π‘”β„Ž π‘ π‘‘π‘Žπ‘‘π‘’ 1= 0
Tutorial 10
Kinetics of particles (Conservation of Energy and
Momentum)
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
152
Key points
Principle of linear Impulse and Momentum
Impulse in a given direction
Momentum in that direction
Principle of angular Impulse and Momentum
Impulse in a given direction
Momentum in that direction
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍
𝑖
𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖
Impulse is zero if the
particle or the system is not
subjected to any external
force or moment
Collision
β€’ Elastic: Objects collide and move away from each other
β€’ Inelastic: Objects collide and stick together
β€’ Momentum is conserved in both elastic and inelastic collision, but
K.E is conserved only in perfectly elastic collision
β€’ Coefficient of restitution is a ratio of relative velocity of the particles
after collision to before collision
Elastic
(e=1)
Inelastic
(e = 0)
Max K.E is lost K.E conserved
Momentum conserved
153
Key points
Ask yourself:
Am I applying conservation of energy /momentum to a particle or a system?
Particle
(ignore external forces/moment)
System
(ignore internal forces/moment)
154
Bonus question
Q: Assuming that all of the kinetic energy of the surging train was imparted to the stationary train, calculate
the average retarding force experienced by the stationary train given that it moved 10.7 meters forward before
stopping. Assume the weight of the surging train to be 140 tonne and it was moving at 20m/s before collision.
Joo Koon train collision
Treating stationary train as a particle, assuming an elastic collision
𝐾. 𝐸 π‘šπ‘œπ‘£π‘–π‘›π‘” π‘‘π‘Ÿπ‘Žπ‘–π‘› = 𝐾. πΈπ‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘‘π‘Ÿπ‘Žπ‘–π‘›
∴ 𝐾. πΈπ‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘‘π‘Ÿπ‘Žπ‘–π‘› =
1
2
π‘šπ‘‰2
=
1
2
(140 β‹… 103
) 20 2
= 28𝑀𝐽
Since π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠
Ԧ𝐹 =
π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’
Ԧ𝑠
Ԧ𝐹 =
28𝑀𝐽
10.7
= 2.62𝑀𝑁
155
Question 1
Consider the mass A and B as a system
State 1
(Before contact)
State 2
(Mass B stops sliding)
Ƹ𝑖
ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖
Apply principal of impulse and linear momentum to system
Since system is not subjected to any external forces
π›₯ ෍
𝑖
π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 = 0
π›₯π‘š 𝐴 𝑉𝐴 + π›₯π‘š 𝐡 𝑉𝐡 = 0
ΰ΅«π‘š 𝐴 + π‘š 𝐡)π‘‰π‘“π‘–π‘›π‘Žπ‘™ βˆ’ (π‘š 𝐴 𝑉𝐴 + π‘š 𝐡 𝑉𝐡) = 0
Perfectly inelastic collision (Final velocity is common)
π‘‰π‘“π‘–π‘›π‘Žπ‘™ =
π‘š 𝐴 𝑉𝐴 + π‘š 𝐡 𝑉𝐡
π‘š 𝐴 + π‘š 𝐡
=
30 β‹… 0 Ƹ𝑖 + 12 β‹… 2.5 Ƹ𝑖
30 + 12
= 0.71 Ƹ𝑖
156
Question 1
Consider the mass A and B as a system
State 1
(Before contact)
State 2
(Mass B stops sliding)
Ƹ𝑖
Ratio of final to the initial K.E of the system
Kinetic energy of the system at state 1 and 2
𝐾. 𝐸1 =
1
2
π‘š 𝐡 𝑉𝐡
2
= 37.5𝐽
𝐾. 𝐸2 =
1
2
(π‘š 𝐴 + π‘š 𝐡)𝑉𝑓
2
= 10.7𝐽
𝐾. 𝐸2
𝐾. 𝐸1
=
10.7
37.5
= 0.29
This shows that kinetic energy of the system is not conserved
in an inelastic collision
157
Question 1
Consider the mass A and B as a system
State 1
(Before contact)
State 2
(Mass B stops sliding)
Ƹ𝑖
Ratio of final to the initial K.E of the system
Kinetic energy of the system at state 1 and 2
𝐾. 𝐸1 =
1
2
π‘š 𝐡 𝑉𝐡
2
= 37.5𝐽
𝐾. 𝐸2 =
1
2
(π‘š 𝐴 + π‘š 𝐡)𝑉𝑓
2
= 10.7𝐽
𝐾. 𝐸2
𝐾. 𝐸1
=
10.7
37.5
= 0.29
This shows that kinetic energy of the system is not considered
in an inelastic collision
158
Question 2
Apply conservation of energy principal between position 1 and 2
1
2
Datum
𝑇1 + 𝑉1 = 𝑇2 + 𝑉2
0 + 0 =
1
2
π‘šπ‘‰2
βˆ’ π‘š(9.81)(1.2)
𝑉 = )2(9.81)(1.2 = 4.85 Ξ€π‘š 𝑠
3
4
5
βˆ’
4
5
Ƹ𝑖 +
3
5
Ƹ𝑗
3
5
Ƹ𝑖 +
4
5
Ƹ𝑗
4
5
Ƹ𝑖 βˆ’
3
5
Ƹ𝑗
Unit vectors
X’
Y’
𝑉2,π‘₯β€² =
3
5
(4.85) = 2.91m/s
𝑉2,𝑦′ =
4
5
𝑒(4.85) = 3.1m/s
+β†’ 𝑠 = 𝑠0 + 𝑉0 𝑑
+↓ 𝑠 = 𝑠0 + 𝑉0 𝑑 +
1
2
𝑔𝑑2
𝑑 = 0 + 𝑉2,π‘₯β€²t
4/5𝑑 = 0 + 𝑉2,𝑦′ 𝑑 +
1
2
9.81𝑑2
𝑑 = 𝑉2,π‘₯β€² 𝑑
(4/5)𝑉2,π‘₯β€² 𝑑 = 𝑉2,𝑦′ 𝑑 +
1
2
(9.81)(
4
5
)𝑑2
βˆ’1.35𝑑 + 3.96𝑑2
= 0
π‘ˆπ‘›π‘–π‘‘ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ π‘“π‘œπ‘Ÿ 𝑑 =
4
5
Ƹ𝑖 βˆ’
3
5
Ƹ𝑗
159
Question 2
Apply conservation of energy principal between position 1 and 2
1
2
Datum
𝑇1 + 𝑉1 = 𝑇2 + 𝑉2
0 + 0 =
1
2
π‘šπ‘‰2
βˆ’ π‘š(9.81)(1.2)
𝑉 = )2(9.81)(1.2 = 4.85 Ξ€π‘š 𝑠
3
4
5
βˆ’
4
5
Ƹ𝑖 +
3
5
Ƹ𝑗
3
5
Ƹ𝑖 +
4
5
Ƹ𝑗
4
5
Ƹ𝑖 βˆ’
3
5
Ƹ𝑗
Unit vectors
X’
Y’
𝑉2,π‘₯β€² =
3
5
(4.85) = 2.91m/s
𝑉2,𝑦′ =
4
5
𝑒(4.85) = 3.1m/s
+β†’ 𝑠 = 𝑠0 + 𝑉0 𝑑
+↓ 𝑠 = 𝑠0 + 𝑉0 𝑑 +
1
2
𝑔𝑑2
𝑑 = 0 + 𝑉2,π‘₯β€²t
3
5
𝑑 = 0 + 𝑉2,𝑦′ 𝑑 +
1
2
9.81𝑑2
𝑑 = 𝑉2,π‘₯β€² 𝑑
3
5
β‹…
5
4
𝑉2,π‘₯β€² 𝑑 = 𝑉2,𝑦′ 𝑑 +
1
2
(9.81)𝑑2
0.918𝑑 + 4.91𝑑2
= 0
160
Question 3
Plane of contact
(line drawn tangent to circles)
Line of impact-Momentum is conserved in both directions
-Coefficient of restitution applies only along line
of impact
t
n
Conservation of momentum of balls in t direction
Ball A: t-dir π‘šπ‘£ π‘œsinπœƒ = π‘šπ‘£ 𝐴𝑑
β€²
β‡’ 𝑣 𝐴𝑑
β€²
= 𝑣 π‘œsinπœƒ
Ball B: t-dir 0 = π‘šπ‘£ 𝐡𝑑
β€²
β‡’ 𝑣 𝐡𝑑
β€²
= 0
Conservation of momentum of balls in n direction
Ball A+B: n-dir π‘šπ‘£ π‘œcosπœƒ + 0 = π‘šπ‘£ 𝐴𝑛
β€²
+ π‘šπ‘£ 𝐡𝑛
β€²
∴ 𝑣 π‘œcosπœƒ = 𝑣 𝐴𝑛
β€²
+ 𝑣 𝐡𝑛
β€²
Apply coefficient of restitution along line of impact
࡯𝑣 𝐡𝑛
β€²
βˆ’ 𝑣 𝐴𝑛
β€²
= 𝑒(𝑣 𝐴𝑛 βˆ’ 𝑣 𝐡𝑛
)𝑣 𝐡𝑛
β€²
βˆ’ 𝑣 𝐴𝑛
β€²
= 𝑒(𝑣0cosπœƒ βˆ’ 0
Solving highlighted equations along n direction
𝑣 𝐴𝑛
β€²
= 𝑣0
1 βˆ’ 𝑒
2
cosπœƒ 𝑣 𝐡𝑛
β€²
= 𝑣0
1 + 𝑒
2
cosπœƒ
161
Conservation of momentum of balls in t direction
Ball A: t-dir π‘šπ‘£ π‘œsinπœƒ = π‘šπ‘£ 𝐴𝑑
β€²
β‡’ 𝑣 𝐴𝑑
β€²
= 𝑣 π‘œsinπœƒ
Ball B: t-dir 0 = π‘šπ‘£ 𝐡𝑑
β€²
β‡’ 𝑣 𝐡𝑑
β€²
= 0
Conservation of momentum of balls in n direction
Ball A+B: n-dir π‘šπ‘£ π‘œcosπœƒ + 0 = π‘šπ‘£ 𝐴𝑛
β€²
+ π‘šπ‘£ 𝐡𝑛
β€²
∴ 𝑣 π‘œcosπœƒ = 𝑣 𝐴𝑛
β€²
+ 𝑣 𝐡𝑛
β€²
Apply coefficient of restitution along line of impact
࡯𝑣 𝐡𝑛
β€²
βˆ’ 𝑣 𝐴𝑛
β€²
= 𝑒(𝑣 𝐴𝑛 βˆ’ 𝑣 𝐡𝑛
)𝑣 𝐡𝑛
β€²
βˆ’ 𝑣 𝐴𝑛
β€²
= 𝑒(𝑣0cosπœƒ βˆ’ 0
Solving highlighted equations along n direction
𝑣 𝐴𝑛
β€²
= 𝑣0
1 βˆ’ 𝑒
2
cosπœƒ 𝑣 𝐡𝑛
β€²
= 𝑣0
1 + 𝑒
2
cosπœƒ
Question 3
Substitute the given parameters
𝑣 𝐴𝑛
β€²
= 𝑣0
1 βˆ’ 0.8
2
cos45 = 0.070𝑣0
𝑣 𝐡𝑛
β€²
= 𝑣0
1 + 0.8
2
cos45 = 0.6364𝑣0
𝑣 𝐴𝑑
β€²
= 𝑣0sin45 = 0.707𝑣0
𝑣 𝐡𝑑
β€²
= 0
Velocity magnitude and direction of each ball after impact is…
|𝑣 𝐴
β€²
| = 0.707𝑣0
2 + 0.070𝑣0
2 Ξ€1 2 = 0.711𝑣0
𝛽 = tanβˆ’1
0.0707
0.707
= 5.70
πœƒ = 450
βˆ’ 5.70
= 39.30
Ԧ𝑣 𝐴
β€²
= 0.711𝑣0∠39.30
Ԧ𝑣 𝐡
β€²
= 0.636𝑣0∠ βˆ’450
162
Question 5
t
n
-Momentum is conserved in both directions (n and t dir.)
-Coefficient of restitution applies only along line
of impact (n-dir.)
1
2
π‘š 𝐴 𝑣 𝐴0
2
= π‘š 𝐴 𝑔(𝑙 βˆ’ 𝑙cos450
) β†’ 𝑣 𝐴0 = 0.7654 𝑔𝑙
Conservation of energy equation to find impact velocity of A
Conservation of linear momentum along n-direction
π‘š 𝐴 𝑣 𝐴0 + 0 = βˆ’π‘š 𝐴 𝑣 𝐴1 + π‘š 𝐡 𝑣 𝐡1
Apply restitution along n-direction
)βˆ’π‘£ 𝐴1 βˆ’ 𝑣 𝐡1 = 𝑒(βˆ’π‘£ 𝐴0 βˆ’ 0
࡯𝑣 𝐴1 + 𝑣 𝐡1 = 0.75(0.7654 𝑔𝑙
1.5(0.7654 𝑔𝑙) = βˆ’1.5𝑣 𝐴1 + 3𝑣 𝐡1
Solving highlighted equations simultaneously
𝑣 𝐴1 = 0.1276 𝑔𝑙 𝑣 𝐡1 = 0.4465 𝑔𝑙
Apply conservation of energy after impact to find the max height
π‘š 𝐴 π‘”β„Ž 𝐴 =
1
2
π‘š 𝐴 𝑣 𝐴1
2
β†’ β„Ž 𝐴 = 0.00814𝑙
π‘š 𝐴 π‘”β„Ž 𝐴 =
1
2
π‘š 𝐴 𝑣 𝐡1
2
β†’ β„Ž 𝐡 = 0.09968𝑙
πœƒ = cosβˆ’1
𝑙 βˆ’ β„Ž
𝑙
πœƒ 𝐴 = 7.30
πœƒ 𝐡 = 25.80
163
Question 6
-Momentum is conserved in both directions
-Coefficient of restitution applies only along line
of impact ( Ƹ𝑒 𝑛-dir.)
Ƹ𝑖
Ƹ𝑗
Ƹ𝑒 𝑛 = 1∠300
Ƹ𝑒𝑑 = 1∠1200
)𝑣 𝐴0 = βˆ’15 Ƹ𝑖( Ξ€π‘š 𝑠
Express initial velocity of sphere in terms of n-t direction
𝑣 𝐴0 = βˆ’15 Ƹ𝑖( Ξ€π‘š 𝑠) = 7.5 Ƹ𝑒𝑑 βˆ’ 12.99 Ƹ𝑒 𝑛
Express final velocity of block and sphere in terms of n-t direction
𝑣 𝐡1 = βˆ’π‘£ 𝐡1 Ƹ𝑖 = 0.5𝑣 𝐡1 Ƹ𝑒𝑑 βˆ’ 0.866𝑣 𝐡1 Ƹ𝑒 𝑛
𝑣 𝐴1 = 7.5 Ƹ𝑒𝑑 + 𝑣 𝐴1 Ƹ𝑒 𝑛
Note that momentum is conserved an t-dir. That’s why velocity of
the sphere is remains unchanged after impact
Conservation of linear momentum of the system along i direction is
π‘š 𝐴 Ԧ𝑣 𝐴0 = π‘š 𝐴 Ԧ𝑣 𝐴1 + π‘š 𝐡 Ԧ𝑣 𝐡1
1.5(βˆ’15) = 1.5(7.5 Ƹ𝑒𝑑 + 𝑣 𝐴1 Ƹ𝑒 𝑛) βˆ’ 4𝑣 𝐡1
βˆ’22.5 = 11.25cos1200
+ 1.5𝑣 𝐴1cos300
βˆ’ 4𝑣 𝐡1
164
Question 6
-Momentum is conserved in both directions
-Coefficient of restitution applies only along line
of impact ( Ƹ𝑒 𝑛-dir.)
Ƹ𝑖
Ƹ𝑗
Apply restitution along line of impact
𝑣𝐴1
Ƹ𝑒 𝑛
βˆ’ 𝑣 𝐡1
Ƹ𝑒 𝑛
) = βˆ’π‘’(𝑣𝐴0
Ƹ𝑒 𝑛
βˆ’ 𝑣 𝐡0
Ƹ𝑒 𝑛
ቀ𝑣𝐴1
Ƹ𝑒 𝑛
+ 0.866𝑣 𝐡1) = 9.7425
Solving highlighted equations…
𝑣 𝐡1 = 5.762 Ξ€π‘š 𝑠
1
2
π‘˜π‘₯2
=
1
2
π‘š 𝐡 𝑣 𝐡1
2
β†’ π‘₯ = 0.163π‘š
Use conservation of energy equations to find spring deflection
π‘€π‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Since system isn’t subjected to any external force, such a friction,
workdone is zero.
π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 0
P.E before impact from sphere is zero and K.E is zero at max spring deflection
βˆ’πΎ. 𝐸1 + 𝑃. 𝐸2 = 0
βˆ’πΎ. 𝐸1 = βˆ’π‘ƒ. 𝐸2
Tutorial 11
Kinetics of rigid body(Newton’s Second Law)
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
166
Question 1
Find the absolute acceleration of point B, by fixing
a rotating reference frame at A. Since…
Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΅π΄ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™
)∴ Τ¦π‘Ž 𝐡 = πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄
- Point A does not translate
- Disk rotates with constant angular velocity
- Point me does not translated w.r.t rotating reference frame
ΰ΅―πœ” = 18.85ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠
Τ¦π‘Ÿπ΅π΄ = 0.2π‘šβˆ 600
Τ¦π‘Ž 𝐡 = βˆ’35.53 Ƹ𝑖 βˆ’ 61.54 Ƹ𝑗
Since rod BC is in translational (pin-pin end boundary condition)
Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐺
G
Ԧ𝐹 = π‘š Τ¦π‘Ž 𝐺
Ԧ𝐹 = 7(βˆ’35.53 Ƹ𝑖 βˆ’ 61.54 Ƹ𝑗) 𝑁
Since pin-pin end boundary condition does not resists moment
𝑀 𝐺 = 0
167
Question 1
G
Free body diagram of the
road with constrains at both
ends
෍ Ԧ𝐹 = π‘š Τ¦π‘Ž
࡯𝐹𝐡
π‘₯
Ƹ𝑖 + 𝐹𝐡
𝑦
Ƹ𝑗 βˆ’ π‘šπ‘” Ƹ𝑗 + 𝐹𝐢
π‘₯
Ƹ𝑖 + 𝐹𝐢
𝑦
Ƹ𝑗 = 7(βˆ’35.53 Ƹ𝑖 βˆ’ 61.54 Ƹ𝑗
Equating Ƹ𝑖 and Ƹ𝑗 components
𝐹𝐡
π‘₯
+ 𝐹𝐢
π‘₯
= βˆ’248.71
𝐹𝐡
𝑦
+ 𝐹𝐢
𝑦
= βˆ’362.11
Since moment about C.G is zero… 𝐹𝐡
𝑦
= 𝐹𝐢
𝑦
𝑀 𝐺 = 0
𝐹𝐡
𝑦
= 𝐹𝐢
𝑦
= βˆ’181.1𝑁
168
Question 2
𝐼𝐴 = 𝐼 𝐺 + π‘š π‘Ÿπ‘œπ‘‘
𝐿
2
2
𝐼𝐴 =
1
12
π‘š π‘Ÿπ‘œπ‘‘ 𝐿2 + π‘š π‘Ÿπ‘œπ‘‘
𝐿
2
2
= 0.375π‘˜π‘” β‹… π‘š2
+𝑐𝑐𝑀 ෍ 𝑀 = 𝐼𝐴 Ԧ𝛼
𝑇 β‹… π‘Ÿ = 𝐼 𝐺 Ԧ𝛼
12 β‹… 𝐿 = (0.375) Ԧ𝛼
Ԧ𝛼 = 24π‘Ÿπ‘Ž ΀𝑑 𝑠2
π‘Ž 𝐺 = Ԧ𝛼 β‹…
𝐿
2
= βˆ’9 Ƹ𝑖
Apply Equation of motion at point G
ΰ΅―βˆ’2𝑔 Ƹ𝑗 βˆ’ 12 Ƹ𝑖 + 𝐹𝐴
π‘₯
Ƹ𝑖 + 𝐹𝐴
𝑦
Ƹ𝑗 = 2(βˆ’9 Ƹ𝑖
Ƹ𝑖
Ƹ𝑗
Equation i and j components
𝐹𝐴
π‘₯
= βˆ’6𝑁
𝐹𝐴
𝑦
= 19.63𝑁
169
Question 3
Ƹ𝑖
Ƹ𝑗
𝐼 𝐺 =
1
2
π‘šπ‘Ÿ2
= 0.5(7) 0.125 2
π‘˜π‘” β‹… π‘š2
+𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼
4(0.125) = 0.5(0.7) 0.125 2
Ԧ𝛼
Ԧ𝛼 = 9.143π’Œ(π‘Ÿπ‘Ž ΀𝑑 𝑠2)
Ԧ𝐹 = π‘š Τ¦π‘Ž 𝐺
4 = 7 Τ¦π‘Ž 𝐺
Τ¦π‘Ž 𝐺 = 0.57𝐒 Ξ€(π‘š 𝑠2)
Τ¦π‘Ž ΀𝐴 𝐺 = Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄πΊ
ΰ΅―Τ¦π‘Ž ΀𝐴 𝐺 = 9.143ΰ· π‘˜ Γ— βˆ’0.125 Ƹ𝑗 = 1.14 Ƹ𝑖( Ξ€π‘š 𝑠
𝑠 =
1
2
π‘Ž ΀𝐴 𝐺 𝑑2 = 2.28π‘š
170
Question 5
Τ¦π‘Ž 𝑃 = Τ¦π‘Ž 𝐴 + Τ¦π‘Ž ΀𝑃 𝐴
Τ¦π‘Ž 𝐴 = π‘Ž 𝐴 Ƹ𝑖
Τ¦π‘Ž ΀𝑃 𝐴 = βˆ’π‘Ž ΀𝑃 𝐴 Ƹ𝑒𝑑
Ƹ𝑒𝑑 = 1∠300
Ƹ𝑒 𝑛 = 1∠1200
𝛼 =
π‘Ž ΀𝑃 𝐡
π‘Ÿ
Angular acceleration of the pipe is
Linear equation of motion of the ring
࡯𝑁 Ƹ𝑒 𝑛 + 𝐹 Ƹ𝑒𝑑 βˆ’ 500𝑔 Ƹ𝑗 = 500(π‘Ž 𝐴 Ƹ𝑖 βˆ’ π‘Ž ΀𝑃 𝐴 Ƹ𝑒𝑑
π‘π‘œπ‘‘π‘’:
Ƹ𝑖 β‹… Ƹ𝑖 = 1
Ƹ𝑖 β‹… Ƹ𝑗 = 0
Ƹ𝑗 β‹… Ƹ𝑖 = 0
Ƹ𝑗 β‹… Ƹ𝑗 = 1
)Ƹ𝑖 β‹… Ƹ𝑒𝑑 = cos(πœƒ
Dot Equation of motion of pipe by Ƹ𝑒 𝑛
)𝑁 βˆ’ 500𝑔(0.866) = 500π‘Ž 𝐴(βˆ’0.5
Dot Equation of motion of pipe by Ƹ𝑒𝑑
𝐹 βˆ’ 500𝑔(0.5) = 500π‘Ž 𝐴(0.866) βˆ’ 500π‘Ž ΀𝑃 𝐴
+𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝑝 𝛼
πΉπ‘Ÿ = 𝐼 𝑝 𝛼 = 𝐼 𝑝
π‘Ž ΀𝑃 𝐡
π‘Ÿ
𝐹 = 500π‘Ž ΀𝑃 𝐴
Rotational equation of motion of pipe
Where theta is the angle
between the unit vectors.
171
Question 5
Τ¦π‘Ž 𝐴 = π‘Ž 𝐴 Ƹ𝑖
Equation of motion of the ramp
βˆ’π‘ Ƹ𝑒 𝑛 βˆ’ 𝐹 Ƹ𝑒𝑑 βˆ’ 300𝑔 Ƹ𝑗 + 𝑅 Ƹ𝑗 = 300π‘Ž 𝐴 Ƹ𝑖
Dot Ƹ𝑖
𝑁(0.5) βˆ’ 𝐹(0.866) = 300π‘Ž π‘Ž
Since…
𝐹 = 500π‘Ž ΀𝑃 𝐴
∴ 𝑁 = 866π‘Ž ΀𝑃 𝐴 + 600π‘Ž 𝐴
)𝑁 βˆ’ 500𝑔(0.866) = 500π‘Ž 𝐴(βˆ’0.5
𝐹 βˆ’ 500𝑔(0.5) = 500π‘Ž 𝐴(0.866) βˆ’ 500π‘Ž ΀𝑃 𝐴
Linear equation of motion of ring is…
Where…
𝐹 = 500π‘Ž ΀𝑃 𝐴
𝑁 = 866π‘Ž ΀𝑃 𝐴 + 600π‘Ž 𝐴
866π‘Ž ΀𝑃 𝐴 + 850π‘Ž 𝐴 = 433𝑔
Therefore…
1000π‘Ž ΀𝑃 𝐴 βˆ’ 433π‘Ž 𝐴 = 250𝑔
Solving…
π‘Ž ΀𝑃 𝐴 = 3.203 Ξ€π‘š 𝑠2 π‘Ž 𝐴 = 1.73 Ξ€π‘š 𝑠2
172
Question 6
Length of the rope has to be constant
2π‘₯ 𝐡 + π‘₯ 𝐷 = constant
2 ሢπ‘₯ 𝐡 + ሢπ‘₯ 𝐷 = 0
Velocity relationship
Acceleration relationship
2 ሷπ‘₯ 𝐡 + ሷπ‘₯ 𝐷 = 0
Acceleration relationship
ሷπ‘₯ 𝐺 = π›Όπ‘Ÿ = 0.15𝛼
ሷπ‘₯ 𝐷 = 𝛼(2π‘Ÿ) = 0.3𝛼
ሷπ‘₯ 𝐡 = βˆ’0.5 ሷπ‘₯ 𝐷 = βˆ’0.15𝛼
+↓ ෍ 𝐹 = π‘šπ‘Ž
20 βˆ’ 2𝑇 =
20
𝑔
ሷπ‘₯ 𝐡 =
20
𝑔
(βˆ’0.15𝛼)
Linear equation of motion for weight
Linear equation and rotational EOM for disc
+β†’ ෍ 𝐹 = π‘šπ‘Ž
𝑇 + 𝐹 =
βˆ’50
𝑔
(0.15𝛼)
173
Question 6
Linear EOM for disc
+β†’ ෍ 𝐹 = π‘šπ‘Ž
𝑇 + 𝐹 =
βˆ’50
𝑔
(0.15𝛼)
Rotational EOM for disc
+𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼
( 𝐹 βˆ’ 𝑇)π‘Ÿ = 𝐼 𝐺 𝛼
(𝐹 βˆ’ 𝑇)(0.15) =
1
2
50
𝑔
0.15 2 𝛼
Simultaneously solving highlighted EOM gives
𝛼 = βˆ’13.77π‘Ÿπ‘Ž ΀𝑑 𝑠2
𝐹 = 2.6315𝑁
𝑇 = 7.89𝑁
Tutorial 12
Kinetics of rigid body (Auxiliary Principles)
Dr N SATHEESH Kumar
Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory
50 Nanyang Avenue, S2.1-B3-01, Singapore 639798
T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg
http://tiny.cc/smlssy
175
Question 1
π‘Ÿπ΄ πœƒ = 𝑠 𝐴 = 900π‘šπ‘š
π‘Ÿπ΅ πœƒ = 𝑠 𝐡
πœƒ =
𝑠 𝐴
π‘Ÿ 𝐴
=7.5 rad
π‘Ÿπ΅ β‹…
𝑠 𝐴
π‘Ÿπ΄
= 𝑠 𝐡
180 β‹…
900
120
= 𝑠 𝐡
𝑠 𝐡 = 1.35π‘š
Apply Conservation of Energy Principal to System
Placing datum at state 1 position, P.E and K.E is…
𝐾. 𝐸1 = 0
𝑃. 𝐸1 = 0
State 2
𝐾. 𝐸2 =
1
2
𝐼 𝐺 πœ”2 +
1
2
π‘š 𝐴 𝑉𝐴
2
+
1
2
π‘š 𝐡 𝑉𝐡
2
𝐾. 𝐸2 = 0.5(0.1176)πœ”2 + 0.5(3) 0.12 2 πœ”2 + 0.5(3)(0.18)2 πœ”2
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
𝐼 𝐺 = π‘šπ‘˜2
= 6 β‹… 0.142
= 0.1176
πœ” = 8.5π‘Ÿπ‘Ž ΀𝑑 𝑠
𝑣 = πœ” β‹… π‘Ÿ = 8.5(0.12) = 1.03 Ξ€π‘š 𝑠
𝐾. 𝐸1 = 𝑃. 𝐸1 = 0
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ π‘“π‘Ÿπ‘–π‘π‘‘π‘–π‘œπ‘› = βˆ’0.5 β‹… 7.5 = βˆ’3.75𝐽
𝑃. 𝐸2 = βˆ’π‘šπ‘”π‘  𝐡 + π‘šπ‘”π‘  𝐴
)𝑃. 𝐸2 = βˆ’3𝑔(1.35) + 3𝑔(0.9 = -13.24J
∴ βˆ’3.75 = βˆ’13.24 + 0.13πœ”2
176
Question 2
πœ” 𝐴 π‘Ÿπ΄ = πœ” 𝐡 π‘Ÿπ΅
)πœ” 𝐴(150) = πœ” 𝐡(100
πœ” 𝐴 =
𝑣 𝐴
π‘Ÿπ΄
= 10𝑣 𝐴
∴ πœ” 𝐡 = 10𝑣 𝐴
150
100
= 15𝑣 𝐴
Likewise…
𝛼 𝐴 π‘Ÿπ΄ = π‘Ž
𝛼 𝐴 =
π‘Ž
π‘Ÿπ΄
= 10π‘Ž
𝛼 𝐴 π‘Ÿπ΄ = 𝛼 𝐡 π‘Ÿπ΅
𝛼 𝐡 = 15π‘Ž
Apply Conservation of Energy Principal to System
Placing datum at state 1 position, P.E and K.E is…
𝑃. 𝐸1 = 0
𝐾. 𝐸1 = 0
State 2
𝑃. 𝐸2 = βˆ’π‘š 𝐢 𝑔𝑠
𝐾. 𝐸2 =
1
2
π‘š 𝐢 𝑉𝐢
2
+
1
2
𝐼 𝐺 πœ” 𝐴
2
+
1
2
𝐼 𝐺 πœ” 𝐡
2
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸=0 (no external force)
∴ 𝑃. 𝐸2 = 𝐾. 𝐸2
10𝑔𝑠 = 45.625𝑣 π‘Ž
2
)10𝑔𝑠 = 45.625(2π‘Žπ‘ 
∴ π‘Ž =
10𝑔
2 β‹… 45.625
= 1.075 Ξ€π‘š 𝑠2
Velocity after 3s is…
𝑣 = π‘Žπ‘‘ = 1.075(3) = 3.23 Ξ€π‘š 𝑠
177
Question 2
+𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼 𝐡
𝑇𝐡(0.1) = 𝐼 𝐺 𝛼 𝐡 β†’ 𝑇𝐡 = 40.32𝑁
𝑇𝐴(0.1) βˆ’ 𝑇𝐡(0.15) = 𝐼 𝐺 𝛼 𝐴 β†’ 𝑇𝐴 = 87.35𝑁
Apply equation of motion to pulley A and pulley B
178
Question 3
𝑣 𝐺 =
𝐿
2
αˆΆπœƒ =
𝐿
2
πœ”
Making use of IC
𝑇 =
1
2
π‘šπ‘£ 𝐺
2
+
1
2
𝐼 𝐺 πœ”2 =
1
6
π‘šπΏ2 πœ”2
K.E of the rod AB can be expressed as…
P.E of the rod AB can be expressed as…
𝑉 = π‘šπ‘”π‘¦ +
1
2
π‘˜π›Ώ2
𝑉 = π‘šπ‘”(βˆ’0.5𝐿sinπœƒ) +
1
2
π‘˜ 𝐿sinπœƒ 2
Since the rod is not subjected to any external force
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = 0
0 = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Since, the K.E and P.E of the rod is zero when theta
is equal to zero
𝐾. 𝐸2 = βˆ’π‘ƒ. 𝐸2
1
6
π‘šπΏ2
πœ”2
= π‘šπ‘”(0.5𝐿sinπœƒ) βˆ’
1
2
π‘˜ 𝐿sinπœƒ 2
πœ” = Β± ቇ3(
𝑔
𝐿
sinπœƒ βˆ’
π‘˜
π‘š
sin2 πœƒ
𝑣 𝐴 = 𝐿cos(πœƒ)πœ”
𝑣 𝐴 = ±𝐿cosπœƒ ቇ3(
𝑔
𝐿
sinπœƒ βˆ’
π‘˜
π‘š
sin2 πœƒ
Velocity of point A can be found using IC
C.G of the rod
179
Question 4
Using the instant center for the rolling without
slipping, we have…
𝑣 𝐴 = πœ” β‹… π‘Ÿπ΄
𝑣 𝐢 = πœ” β‹… 2π‘ŸπΆ
𝑣 𝐡 = πœ” β‹… π‘Ÿπ΅
𝐡𝑒𝑑 π‘ŸπΆ = 2π‘Ÿπ΄ = 2π‘Ÿπ΅
𝑣 𝐴 = 𝑣 𝐡 = 0.5𝑣 𝐢
Therefore…
πœ” 𝐴 = πœ” 𝐡 = πœ” =
0.5𝑣
π‘Ÿ
The wheel rotates without slipping, work is
force times distance. If there is no slip, the
force of friction acts over a distance of 0.
Therefore frictional force does no work.
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Since the cart starts from rest…
𝐹 β‹… 𝑠 = 𝐾. 𝐸2 + 𝑃. 𝐸2
The cart has translational K.E while the
wheels have both translational and
rotational K.E
10 β‹… 𝑠 =
1
2
(6)𝑣2
+ 2[
1
2
(4) 0.5𝑣 2
+
1
2
𝐼 𝐺 πœ”2
]
𝐼 𝐺 =
1
2
(4)π‘Ÿ2
10𝑠 = 4.5𝑣2
180
Question 4
The wheel rotates without slipping, work is
force times distance. If there is no slip, the
force of friction acts over a distance of 0.
Therefore frictional force does no work.
π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸
Since the cart starts from rest…
𝐹 β‹… 𝑠 = 𝐾. 𝐸2 + 𝑃. 𝐸2
The cart has translational K.E while the
wheels have both translational and
rotational K.E
10 β‹… 𝑠 =
1
2
(6)𝑣2
+ 2[
1
2
(4) 0.5𝑣 2
+
1
2
𝐼 𝐺 πœ”2
]
𝐼 𝐺 =
1
(4)π‘Ÿ2
Recall constant acceleration formulas…
10𝑠 = 4.5𝑣2
)∴ 10𝑠 = 4.5(2π‘Žπ‘ 
π‘Ž = 1.11 Ξ€π‘š 𝑠2
𝑣 = π‘Žπ‘‘
𝑣 = 1.11(2.5) = 2.78 Ξ€π‘š 𝑠
181
Question 5
2𝑠 𝐴 βˆ’ 𝑠 𝐷 = constant
Author Setup
Recommended
D
SD
SA
C1
𝑆𝐴 βˆ’ 𝐢1
𝑆𝐴 βˆ’ 𝑆 𝐷
( 𝑆𝐴 βˆ’ 𝑆 𝐷) + (𝑆𝐴 βˆ’ 𝐢1) = constant
2𝑆𝐴 βˆ’ 𝑆 𝐷 = constant
182
Question 5
2𝑠 𝐴 βˆ’ 𝑠 𝐷 = constant
2𝑣 𝐴 = 𝑣 𝐷 π‘Žπ‘›π‘‘ 2π‘Ž 𝐴 = π‘Ž 𝐷
πœ” 𝐡 =
𝑣 𝐷
π‘Ÿ
=
2𝑣 𝐴
π‘Ÿ
πœ” 𝐴 =
𝑣 𝐴
π‘Ÿ
𝛼 𝐴 =
π‘Ž 𝐴
π‘Ÿ
𝛼 𝐡 =
2π‘Ž 𝐴
π‘Ÿ
Apply Conservation of Energy Principal to System
𝐾. 𝐸1 = 0
𝑃. 𝐸1 = βˆ’π‘šπ‘”π‘  𝐴
Placing datum at s = 0 position, P.E and K.E is…
State 1
State 2
𝐾. 𝐸2 =
1
2
𝐼 𝐺 πœ” 𝐴
2
+
1
2
𝐼 𝐺 πœ” 𝐡
2
+
1
2
π‘šπ‘£ 𝐴
2
𝑃. 𝐸2 = βˆ’π‘šπ‘”π‘ π‘“π‘–π‘›π‘Žπ‘™
Work done by or on the system is zero
as there is no external force
𝑙𝑒𝑑 𝑠 = π‘ π‘“π‘–π‘›π‘Žπ‘™ βˆ’ 𝑠 π‘Ž
π‘šπ‘”π‘  =
1
2
π‘šπ‘£ 𝐴
2
+
1
2
𝐼 𝐺 πœ” 𝐴
2
+
1
2
𝐼 𝐺 πœ” 𝐡
2
𝑔𝑠 =
7
4
𝑣2
Recall constant acceleration formulas…
183
Question 5
𝑙𝑒𝑑 𝑠 = π‘ π‘“π‘–π‘›π‘Žπ‘™ βˆ’ 𝑠 π‘Ž
π‘šπ‘”π‘  =
1
2
π‘šπ‘£ 𝐴
2
+
1
2
𝐼 𝐺 πœ” 𝐴
2
+
1
2
𝐼 𝐺 πœ” 𝐡
2
𝑔𝑠 =
7
4
𝑣2
Recall constant acceleration formulas…
2π‘Žπ‘  = 𝑣2
Since 𝑣2 =
4
7
𝑔𝑠
π‘Ž =
1
2𝑠
4
7
𝑔𝑠 =
2
7
𝑔 = 2.803 Ξ€π‘š 𝑠2
Speed after 2.5 seconds is…
𝑣 = π‘Žπ‘‘ = 2.803(2.5) = 7.01 Ξ€π‘š 𝑠
+𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼 𝐡
π‘‡π‘Ÿ = 𝐼 𝐺 𝛼 𝐡
π‘‡π‘Ÿ =
1
2
π‘šπ‘Ÿ2
2π‘Ž
π‘Ÿ
𝑇 = 28.03𝑁

More Related Content

What's hot

Manual de ingenieria civil
Manual de ingenieria civilManual de ingenieria civil
Manual de ingenieria civilJorge Eduardo RJ
Β 
Shear Force and Bending Moment Diagrams for Uniformly Varying Loads
Shear Force and Bending Moment Diagrams for Uniformly Varying LoadsShear Force and Bending Moment Diagrams for Uniformly Varying Loads
Shear Force and Bending Moment Diagrams for Uniformly Varying LoadsKrishna Chaitanya Mummareddy
Β 
Lect8 Internal Forces
Lect8 Internal ForcesLect8 Internal Forces
Lect8 Internal ForcesJahara CaΓ±as
Β 
Geotechnical Engineering-I [Lec #13: Soil Compaction]
Geotechnical Engineering-I [Lec #13: Soil Compaction]Geotechnical Engineering-I [Lec #13: Soil Compaction]
Geotechnical Engineering-I [Lec #13: Soil Compaction]Muhammad Irfan
Β 
CE244 LAB RAPORU
CE244 LAB RAPORUCE244 LAB RAPORU
CE244 LAB RAPORU2001211020
Β 
Purdue University | Fluid Power Vehicle Challenge
Purdue University | Fluid Power Vehicle ChallengePurdue University | Fluid Power Vehicle Challenge
Purdue University | Fluid Power Vehicle ChallengeChandler Fairfield
Β 
impact of jets on the moving plate
impact of jets on the moving plateimpact of jets on the moving plate
impact of jets on the moving platerujan timsina
Β 
13 r1-transient analysis methodology
13 r1-transient analysis methodology13 r1-transient analysis methodology
13 r1-transient analysis methodologychowdavaramsaiprasad
Β 

What's hot (10)

influence line
 influence line influence line
influence line
Β 
Statics of particle
Statics of particle Statics of particle
Statics of particle
Β 
Manual de ingenieria civil
Manual de ingenieria civilManual de ingenieria civil
Manual de ingenieria civil
Β 
Shear Force and Bending Moment Diagrams for Uniformly Varying Loads
Shear Force and Bending Moment Diagrams for Uniformly Varying LoadsShear Force and Bending Moment Diagrams for Uniformly Varying Loads
Shear Force and Bending Moment Diagrams for Uniformly Varying Loads
Β 
Lect8 Internal Forces
Lect8 Internal ForcesLect8 Internal Forces
Lect8 Internal Forces
Β 
Geotechnical Engineering-I [Lec #13: Soil Compaction]
Geotechnical Engineering-I [Lec #13: Soil Compaction]Geotechnical Engineering-I [Lec #13: Soil Compaction]
Geotechnical Engineering-I [Lec #13: Soil Compaction]
Β 
CE244 LAB RAPORU
CE244 LAB RAPORUCE244 LAB RAPORU
CE244 LAB RAPORU
Β 
Purdue University | Fluid Power Vehicle Challenge
Purdue University | Fluid Power Vehicle ChallengePurdue University | Fluid Power Vehicle Challenge
Purdue University | Fluid Power Vehicle Challenge
Β 
impact of jets on the moving plate
impact of jets on the moving plateimpact of jets on the moving plate
impact of jets on the moving plate
Β 
13 r1-transient analysis methodology
13 r1-transient analysis methodology13 r1-transient analysis methodology
13 r1-transient analysis methodology
Β 

Similar to MA1001 NTU Tutorial Solutions

6.1 synthsis of the mechanism
6.1 synthsis of the mechanism6.1 synthsis of the mechanism
6.1 synthsis of the mechanismKiran Wakchaure
Β 
Sbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedSbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedcairo university
Β 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxdatamboli
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
Β 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionNikolai Priezjev
Β 
4.2 follower motion
4.2 follower motion4.2 follower motion
4.2 follower motionKiran Wakchaure
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
Β 
iv10_linear_pose.pptx
iv10_linear_pose.pptxiv10_linear_pose.pptx
iv10_linear_pose.pptxdarmadi ir,mm
Β 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Asafak Husain
Β 
Orbital_Simulation (2).pptx
Orbital_Simulation (2).pptxOrbital_Simulation (2).pptx
Orbital_Simulation (2).pptxMSPrasad7
Β 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptxAndreaDaraug2
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 
2d transformations
2d transformations2d transformations
2d transformationskmrvivek2
Β 
2d transformations
2d transformations2d transformations
2d transformationsRajat Kaliraman
Β 
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)iosrjce
Β 
2.3 worm and worm wheel
2.3 worm and worm wheel2.3 worm and worm wheel
2.3 worm and worm wheelKiran Wakchaure
Β 

Similar to MA1001 NTU Tutorial Solutions (20)

Aula i introdução
Aula i  introduçãoAula i  introdução
Aula i introdução
Β 
6.1 synthsis of the mechanism
6.1 synthsis of the mechanism6.1 synthsis of the mechanism
6.1 synthsis of the mechanism
Β 
Circular motion
Circular motionCircular motion
Circular motion
Β 
Sbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedSbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-converted
Β 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptx
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Β 
lec29.ppt
lec29.pptlec29.ppt
lec29.ppt
Β 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear Motion
Β 
4.2 follower motion
4.2 follower motion4.2 follower motion
4.2 follower motion
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Β 
iv10_linear_pose.pptx
iv10_linear_pose.pptxiv10_linear_pose.pptx
iv10_linear_pose.pptx
Β 
Ch2 2011 s
Ch2 2011 sCh2 2011 s
Ch2 2011 s
Β 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
Β 
Orbital_Simulation (2).pptx
Orbital_Simulation (2).pptxOrbital_Simulation (2).pptx
Orbital_Simulation (2).pptx
Β 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 
2d transformations
2d transformations2d transformations
2d transformations
Β 
2d transformations
2d transformations2d transformations
2d transformations
Β 
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Β 
2.3 worm and worm wheel
2.3 worm and worm wheel2.3 worm and worm wheel
2.3 worm and worm wheel
Β 

Recently uploaded

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
Β 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
Β 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
Β 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
Β 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdfssuser54595a
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Β 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
Β 

Recently uploaded (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Β 
CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1
Β 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
Β 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
Β 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
Β 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
Β 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
Β 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
Β 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Β 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Β 

MA1001 NTU Tutorial Solutions

  • 1. Tutorial 0 Basic Vector Calculations Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 2. Concepts Dot product Cross product π‘­π’Šπ’π’… 𝑨 Γ— 𝑩 | Ƹ𝑖 Ƹ𝑗 ΰ· π‘˜ 1 2 3 βˆ’2 0 1 | = | 2 3 0 1 | Ƹ𝑖 βˆ’ | 1 3 βˆ’2 1 | Ƹ𝑗 + | 1 2 βˆ’2 0 |ΰ· π‘˜ = 2 Ƹ𝑖 βˆ’ 7 Ƹ𝑗 + 4ΰ· π‘˜ Ԧ𝐴 = 1 Ƹ𝑖 + 2 Ƹ𝑗 + 3ΰ· π‘˜ 𝐡 = βˆ’2 Ƹ𝑖 + 0 Ƹ𝑗 + 1ΰ· π‘˜ π‘­π’Šπ’π’… 𝑨 β‹… 𝑩 Ԧ𝐴 β‹… 𝐡 = (1)(βˆ’2) + (2)(0) + (3)(1) = 1 Ԧ𝐴 = 1 Ƹ𝑖 + 2 Ƹ𝑗 𝐡 = βˆ’2 Ƹ𝑖 + 0 Ƹ𝑗 π‘­π’Šπ’π’… 𝑨 β‹… 𝑩 Ԧ𝐴 = 2.24∑63.4 𝐡 = 2∑180 Ԧ𝐴 β‹… 𝐡 = (2.24)(2)cos(180 βˆ’ 63.4) = βˆ’2.01 π‘­π’Šπ’π’… 𝑨 Γ— 𝑩 Ԧ𝐴 Γ— 𝐡 = (2.24)(2)sin(180 βˆ’ 63.4)ΰ· π‘˜ = 4ΰ· π‘˜ 2D vectors 3D vectors
  • 3. Question 1 | Ԧ𝐴| = π‘₯2 + 𝑦2 = 22 + βˆ’1 2 = 2.236 πœƒ = tanβˆ’1 𝑦 π‘₯ = tanβˆ’1 βˆ’1 2 = βˆ’26.57 3
  • 4. Question 1 Ԧ𝐴 β‹… 𝐡 = (2.236) β‹… (3.606) β‹… cos(123.69 + 26.56) = βˆ’7 4
  • 5. Question 1 Ԧ𝐴 Γ— 𝐡 = 2.236 β‹… 3.606 β‹… sin(123.69∘ + 26.56∘ )π‘˜ = 4π‘˜ 𝐡 Γ— Ԧ𝐴 = βˆ’4π‘˜ 5
  • 6. Question 1 6 Ԧ𝐢 Γ— 𝐡 = | Ƹ𝑖 Ƹ𝑗 ΰ· π‘˜ 0 0 0.3 βˆ’2 3 0 | = | 0 0.3 3 0 | Ƹ𝑖 βˆ’ | 0 0.3 βˆ’2 0 | Ƹ𝑗 + | 0 0 βˆ’2 3 |ΰ· π‘˜ = βˆ’ 0.9 Ƹ𝑖 βˆ’ 0.6 Ƹ𝑗 Λ†Λ† Λ† Λ† Λ†( 0.9 0.6 ) 0.18 0.27 0C i j i j kο‚΄ ο€­ ο€­ ο€½ ο€­ 
  • 9. Question 3 )π‘₯ = π‘Ÿβ„Žπ‘œ β‹… cos(πœƒ )𝑦 = π‘Ÿβ„Žπ‘œ β‹… sin(πœƒ Recall: 9
  • 12. Tutorial 1 Position vector, velocity and acceleration Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 14. 14 Question 1 Point attached – non rotating Reference (absolute) Body attached – rotating
  • 15. Question 1 (a) Reference (absolute) Inertial reference frame Both points appear to rotate when viewed in a reference frame that is placed outside the disk
  • 17. Question 1 (b) ra rb rb/a The distance between the points A and B does not change
  • 18. Question 1 (b) ra rb rb/a The reference frame can translate, but not rotate (point attached) The distance between the points A and B does not change
  • 19. Question 1 (b) ra rb rb/a The reference frame can translate, but not rotate (point attached) The distance between the points A and B does not change 𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚
  • 20. Question 1 (b) ra rb rb/a The reference frame can translate, but not rotate (point attached) The distance between the points A and B does not change 𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚
  • 21. Question 1 (b) ra rb rb/a The reference frame can translate, but not rotate (point attached) The distance between the points A and B does not change 𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚 Object is taken to be rotating about the reference system
  • 22. Question 1 (b) ra rb rb/a The reference frame can translate, but not rotate The distance between the points A and B does not change 𝐫𝐛 = 𝐫𝐚 + 𝐫𝐛/𝐚 Object is taken to be rotating about the reference system
  • 23. Question 1(c) rb The reference frame can translate, but not rotate (point attached) The distance between the points B and O does not change Object is taken to be rotating about the reference system
  • 24. Question 1(d) The reference frame can translate AND rotate (body attached) A B The distance to points A and B does not change
  • 25. Question 1(d) A B Point fixed If your reference frame does not rotate, but just gets centred on your point of interest, the other points appears to rotate around it Body fixed If consider a rotating reference frame, then all points (that are fixed to the disc, or to the frame) are obviously and by definition stationary inside it, and there is no "relative motion" between them in such a reference frame.
  • 26. 26 Question 1 Recall Point attached – non rotating Reference (absolute) Body attached – rotating
  • 44. Question 3 – Steps for velocity derivative
  • 45. Question 3 – Steps for acceleration derivative Velocity is found to be….
  • 46. Question 4 Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗
  • 47. Question 4 Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗 π‘‘Τ¦π‘Ÿ 𝑑𝑑 = 16𝑑 Ƹ𝑖 + 3𝑑2 Ƹ𝑗 π‘‘Τ¦π‘Ÿ 𝑑𝑑 | 𝑑=3𝑠 = 16(3) Ƹ𝑖 + 3(3)2 Ƹ𝑗 𝑑2 Τ¦π‘Ÿ 𝑑𝑑2 = 16 Ƹ𝑖 + 6𝑑 Ƹ𝑗 𝑑2 Τ¦π‘Ÿ 𝑑𝑑2 | 𝑑=3𝑠 = 16 Ƹ𝑖 + 6(3) Ƹ𝑗
  • 48. Question 4 Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗 π‘‘Τ¦π‘Ÿ 𝑑𝑑 = 16𝑑 Ƹ𝑖 + 3𝑑2 Ƹ𝑗 π‘‘Τ¦π‘Ÿ 𝑑𝑑 | 𝑑=3𝑠 = 16(3) Ƹ𝑖 + 3(3)2 Ƹ𝑗 𝑑2 Τ¦π‘Ÿ 𝑑𝑑2 = 16 Ƹ𝑖 + 6𝑑 Ƹ𝑗 𝑑2 Τ¦π‘Ÿ 𝑑𝑑2 | 𝑑=3𝑠 = 16 Ƹ𝑖 + 6(3) Ƹ𝑗 Τ¦π‘Ÿ = 8𝑑2 Ƹ𝑖 + (𝑑3 + 5) Ƹ𝑗 )∴ π‘₯ = 8𝑑2 𝑦 = (𝑑3 + 5 Since π‘₯ = 8𝑑2 β‡’ 𝑑 = π‘₯ 8 ∴ 𝑦 = π‘₯ 8 3 + 5 = 0.125π‘₯ Ξ€3 2 + 5
  • 49. 49 Question 4 𝑦 = π‘₯ 8 3 + 5 = 0.125π‘₯ Ξ€3 2 +5
  • 50. Tutorial 2 Simple motion of a particles Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 51. Question 1 15m 5m/s 9.81m/s2 𝑣2 = 𝑒2 + 2π‘Žπ‘  𝑣 = )52 + 2(9.81)(15 = 17.9 Ξ€π‘š 𝑠 π‘Ž = 𝑣 βˆ’ 𝑒 𝑑 β‡’ 𝑑 = 𝑣 βˆ’ 𝑒 π‘Ž 𝑑 = 17.9 βˆ’ 5 9.81 = 1.31𝑠 CONSTANT ACCELERATION PROBLEM +ve
  • 58. N-t coordinate system β€’ Rectangular coordinate β€’ Polar coordinate β€’ Normal and tangential coordinate Normal and tangential coordinate β€’ t-axis points tangential to the path in the direction of Velocity β€’ n-axis points perpendicular to t-axis, towards centre of curvature β€’ Body fixed frame, hence moves and rotates with the particle Velocity β€’ ALWAYS tangential to path αˆΏΤ¦π‘£ = 𝑣 Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛[π΄πΏπ‘Šπ΄π‘Œπ‘†! Acceleration β€’ Has a tangential and normal component to path Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛 πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 + 𝑣 𝑑 2 𝜌 Ƹ𝑒 𝑛 π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛 Ԧ𝑣 = πœ”π‘Ÿ Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛
  • 59. 59 Equations of motion in N-t coordinate system Acceleration β€’ Has a tangential and normal component to path Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛 πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 + 𝑣 𝑑 2 𝜌 Ƹ𝑒 𝑛 π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
  • 62. Question 5 Cross product form is useful when there is rotation around multiple axis
  • 63. Question 5 Total acceleration of point A and B
  • 64. N-t coordinate system β€’ Rectangular coordinate β€’ Polar coordinate β€’ Normal and tangential coordinate Normal and tangential coordinate β€’ t-axis points tangential to the path in the direction of Velocity β€’ n-axis points perpendicular to t-axis, towards centre of curvature β€’ Body fixed frame, hence moves and rotates with the particle Velocity β€’ ALWAYS tangential to path αˆΏΤ¦π‘£ = 𝑣 Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛[π΄πΏπ‘Šπ΄π‘Œπ‘†! Acceleration β€’ Has a tangential and normal component to path Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛 πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 + 𝑣 𝑑 2 𝜌 Ƹ𝑒 𝑛 π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛 Ԧ𝑣 = πœ”π‘Ÿ Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛
  • 65. 65 Equations of motion in N-t coordinate system Acceleration β€’ Has a tangential and normal component to path Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛 πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 + 𝑣 𝑑 2 𝜌 Ƹ𝑒 𝑛 π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛 Ԧ𝑣 = πœ”π‘Ÿ Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛
  • 69. Tutorial 3 Planar curvilinear motion Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 70. 70 Question structure β€’Fixed reference frame – Q1 and Q5 β€’N-t reference frame – Q2 and Q3 β€’R-ΞΈ reference frame – Q4 and Q6
  • 71. 71 Be careful when calculating vector direction! Ԧ𝐴 = 5 Ƹ𝑖 + 10 Ƹ𝑗 | Ԧ𝐴| = 52 + 102 = 11.2 ∠ Ԧ𝐴 = tanβˆ’1 10 5 = 63.40 𝐡 = βˆ’5 Ƹ𝑖 βˆ’ 10 Ƹ𝑗 Ԧ𝐴 = 11.2∠63.40 Ԧ𝐴 = 5 Ƹ𝑖 + 10 Ƹ𝑗 |𝐡| = 52 + 102 = 11.2 ∠𝐡 = tanβˆ’1 βˆ’10 βˆ’5 = 63.40 𝑩 = 𝟏𝟏. πŸβˆ πŸ”πŸ‘. πŸ’ 𝟎 𝐡 = βˆ’5 Ƹ𝑖 βˆ’ 10 Ƹ𝑗 5 10 -10 Recall…. |π‘‰π‘’π‘π‘‘π‘œπ‘Ÿ| = π‘₯2 + 𝑦2 βˆ π‘‰π‘’π‘π‘‘π‘œπ‘Ÿ = tanβˆ’1 𝑦 π‘₯ 𝑩 = 𝟏𝟏. πŸβˆ πŸπŸ–πŸŽ 𝟎 + πŸ”πŸ‘. πŸ’ 𝟎 πœƒ πœƒ βˆ’5 𝑩 = 𝟏𝟏. πŸβˆ πœ‹ + πœƒ
  • 72. 72 ΰ· π‘˜ Γ—. . . Ƹ𝑖 Ƹ𝑗 ΰ· π‘˜ Γ— Ƹ𝑗 = βˆ’ Ƹ𝑖
  • 73. 73 ΰ· π‘˜ Γ—. . . Ƹ𝑖 ΰ· π‘˜ Γ— Ƹ𝑗 = βˆ’ Ƹ𝑖 Rotates the axis CCW by 90o
  • 74. 74 ΰ· π‘˜ Γ—. . . Ƹ𝑖 ΰ· π‘˜ Γ— βˆ’ Ƹ𝑖= - Ƹ𝑗
  • 76. Question 1 π‘₯ 𝑝 = 0 𝑦𝑝 = 0 Initial projectile position Initial target position π‘₯ 𝑑 = 𝐿 )𝑦𝑑 = 𝐿tan(πœƒ Initial projectile velocity ࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ Initial target velocity ሢπ‘₯ 𝑑 = 0 αˆΆπ‘¦π‘‘ = 0 Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑 ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’ 1 2 𝑔𝑑2 Position of projectile at time, t Position of target at time, t π‘₯ 𝑑(𝑑) = 𝐿 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔𝑑2 Time taken by projectile to travel the horizontal distance, L π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 = 𝐿 )Ԧ𝑣0cos(πœƒ Vertical position of projectile and target at time, txp=L 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ 𝐿 )Ԧ𝑣0cos(πœƒ βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2
  • 77. Question 1 π‘₯ 𝑝 = 0 𝑦𝑝 = 0 Initial projectile position Initial target position π‘₯ 𝑑 = 𝐿 )𝑦𝑑 = 𝐿tan(πœƒ Initial projectile velocity ࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ Initial target velocity ሢπ‘₯ 𝑑 = 0 αˆΆπ‘¦π‘‘ = 0 Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑 ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’ 1 2 𝑔𝑑2 Position of projectile at time, t Position of target at time, t π‘₯ 𝑑(𝑑) = 𝐿 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔𝑑2 Time taken by projectile to travel the horizontal distance, L π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 = 𝐿 )Ԧ𝑣0cos(πœƒ Vertical position of projectile and target at time, txp=L 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ 𝐿 )Ԧ𝑣0cos(πœƒ βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2
  • 78. Question 1 π‘₯ 𝑝 = 0 𝑦𝑝 = 0 Initial projectile position Initial target position π‘₯ 𝑑 = 𝐿 )𝑦𝑑 = 𝐿tan(πœƒ Initial projectile velocity ࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ Initial target velocity ሢπ‘₯ 𝑑 = 0 αˆΆπ‘¦π‘‘ = 0 Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑 ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’ 1 2 𝑔𝑑2 Position of projectile at time, t Position of target at time, t π‘₯ 𝑑(𝑑) = 𝐿 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔𝑑2 Time taken by projectile to travel the horizontal distance, L π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 = 𝐿 )Ԧ𝑣0cos(πœƒ Vertical position of projectile and target at time, txp=L 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ 𝐿 )Ԧ𝑣0cos(πœƒ βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2
  • 79. Question 1 π‘₯ 𝑝 = 0 𝑦𝑝 = 0 Initial projectile position Initial target position π‘₯ 𝑑 = 𝐿 )𝑦𝑑 = 𝐿tan(πœƒ Initial projectile velocity ࡯ሢπ‘₯ 𝑝 = Ԧ𝑣0cos(πœƒ ΰ΅―αˆΆπ‘¦π‘ = Ԧ𝑣0sin(πœƒ Initial target velocity ሢπ‘₯ 𝑑 = 0 αˆΆπ‘¦π‘‘ = 0 Show that when π‘₯ 𝑝 = 𝐿, 𝑦𝑝 = 𝑦𝑑 ΰ΅―π‘₯ 𝑝(𝑑) = Ԧ𝑣0cos(πœƒ 𝑑 𝑦𝑝(𝑑) = Ԧ𝑣0sin πœƒ t βˆ’ 1 2 𝑔𝑑2 Position of projectile at time, t Position of target at time, t π‘₯ 𝑑(𝑑) = 𝐿 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔𝑑2 Time taken by projectile to travel the horizontal distance, L π‘₯ 𝑝(𝑑) = 𝐿 = Ԧ𝑣0cos(πœƒ)𝑑 β‡’ 𝑑| π‘₯ 𝑝=𝐿 = 𝐿 )Ԧ𝑣0cos(πœƒ Vertical position of projectile and target at time, txp=L 𝑦𝑝(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2 𝑦𝑑(𝑑) = 𝐿tan(πœƒ) βˆ’ 1 2 𝑔 𝐿 )Ԧ𝑣0cos(πœƒ 2 𝑦𝑑(𝑑) = 𝑦𝑝(𝑑)
  • 81. Question 5 Rocket position components w.r.t to A-xy )π‘¦π‘Ÿ = btan(πœƒ Rocket velocity components w.r.t to A-xy Rocket acceleration components w.r.t to A-xy ሢπ‘₯ π‘Ÿ = 0 (Since 𝑏 is a constant) αˆΆπ‘¦π‘Ÿ = )𝑑(𝑏tanπœƒ 𝑑𝑑 = )𝑑(𝑏tanπœƒ π‘‘πœƒ π‘‘πœƒ 𝑑𝑑 = 𝑏 sec2 πœƒ αˆΆπœƒ π‘₯ π‘Ÿ = 𝑏 ሷπ‘₯ π‘Ÿ = 0 αˆ·π‘¦π‘Ÿ = 𝑑 αˆΆπ‘¦π‘Ÿ 𝑑𝑑 = ࡯𝑑(𝑏(sec2 πœƒ) αˆΆπœƒ 𝑑𝑑 = 𝑏(sec2 πœƒ) αˆ·πœƒ + 2𝑏(sec2 πœƒtanπœƒ) αˆΆπœƒ2 x y Fixed reference frame
  • 82. N-t coordinate system β€’ Rectangular coordinate β€’ Polar coordinate β€’ Normal and tangential coordinate Normal and tangential coordinate β€’ t-axis points tangential to the path in the direction of Velocity β€’ n-axis points perpendicular to t-axis, towards centre of curvature β€’ Body fixed frame, hence moves and rotates with the particle Velocity β€’ ALWAYS tangential to path αˆΏΤ¦π‘£ = 𝑣 Ƹ𝑒𝑑 + 0 Ƹ𝑒 𝑛[π΄πΏπ‘Šπ΄π‘Œπ‘†! Acceleration β€’ Has a tangential and normal component to path Τ¦π‘Ž = π‘Ž 𝑑 Ƹ𝑒𝑑 + π‘Ž 𝑛 Ƹ𝑒 𝑛 πΆπ‘’π‘Ÿπ‘£π‘–π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = αˆΆπ‘£ 𝑑 Ƹ𝑒𝑑 + 𝑣 𝑑 2 𝜌 Ƹ𝑒 𝑛 π‘ƒπ‘’π‘Ÿπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘‘π‘–π‘œπ‘› Τ¦π‘Ž = π‘Ÿ αˆ·πœƒ Ƹ𝑒𝑑 + π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 𝑛
  • 83. 83 Question 2 Setup n-t reference frame Express the given vectors in n-t reference frame Ԧ𝑣𝑑 = 120 Ƹ𝑒𝑑 Ԧ𝑣 𝑛 = 0 Ƹ𝑒 𝑛 Τ¦π‘Ž 𝑑 = 21cos(60) Ƹ𝑒𝑑 Τ¦π‘Ž 𝑛 = 21sin(60) Ƹ𝑒 𝑛 Τ¦π‘Ž 𝑛 = 𝑣 𝑑 2 𝜌 β‡’ 𝜌 = 1202 )21sin(60 = 792π‘š Since in a n-t reference frame…
  • 84. 84 Question 3 Setup n-t reference frame Τ¦π‘Ž 𝑑 Τ¦π‘Ž 𝑛 Ԧ𝑣 𝑑 Ƹ𝑒 𝑛 Ƹ𝑒𝑑 Express the given vectors in n-t reference frame 𝑣 𝑑 = 72π‘˜ Ξ€π‘š β„Ž = 20 ΀Ƹ𝑒𝑑(π‘š 𝑠) π‘Ž 𝑑 = βˆ’1.25 ΀Ƹ𝑒𝑑(π‘š 𝑠2) Given 𝜌 = 350π‘š Since in an n-t reference frame… Τ¦π‘Ž 𝑛 = 𝑣 𝑑 2 𝜌 = 202 350 = 1.1429π‘š/𝑠2 Magnitude of acceleration vector at t=0 |π‘Ž| = π‘Ž 𝑛 2 + π‘Ž 𝑑 2 = 1.14292 + 1.252 = 1.694 Ξ€π‘š 𝑠2 Magnitude of acceleration vector at t=4 𝑣 𝑑(𝑑) = 𝑣0 + π‘Ž 𝑑 𝑑 𝑣 𝑑(4𝑠) = 20 βˆ’ 1.25 β‹… 4 = 15 Ξ€π‘š 𝑠 Τ¦π‘Ž 𝑛(4𝑠) = 152 350 = 0.6429 Ξ€π‘š 𝑠2 |π‘Ž| = π‘Ž 𝑑 2 + π‘Ž 𝑛 2 = 1.406 Ξ€π‘š 𝑠2
  • 85. r-ΞΈ coordinate system β€’ Rectangular coordinate β€’ Polar coordinate β€’ Normal and tangential coordinate r-ΞΈcoordinate β€’ r-axis points in the direction of increasing radius β€’ ΞΈ-axis points perpendicular to r-axis, increasing angular displacement β€’ Body fixed frame, hence moves and rotates with the particle β€’ er is the unit vector in the radial direction β€’ eΞΈ is the unit vector in the theta direction Change of basis Ƹ𝑒 π‘Ÿ = cosπœƒ Ƹ𝑖 + sinπœƒ Ƹ𝑗 Ƹ𝑒 πœƒ = βˆ’sinπœƒ Ƹ𝑖 + cosπœƒ Ƹ𝑗 Velocity 𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Acceleration π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Relative velocity to inertial frame Relative acceleration to inertial frame Coriolis acceleration Entrained velocity Entrained acceleration If the distance to the rotation center is not consistent, you must include Coriolis item in calculating the absolute particle acceleration.
  • 86. 86 Question 4 β€’ Draw inertial reference frame (Rectangular or Polar) β€’ Draw body-fixed frame (N-t, r- ΞΈ) β€’ Specify unit vector direction Ƹ𝑒 π‘Ÿ Ƹ𝑒 πœƒ β€’ Specify velocity and acceleration components along unit vector directions 𝑉𝐡/𝑓 π‘‰πœƒ 𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Recall… αˆΆπ‘Ÿ = 60(2)𝑑 βˆ’ 20(3)𝑑2 αˆΆπ‘Ÿ| 𝑑=1 = 60(2) βˆ’ 20(3) = 60 π‘Ÿ = 60𝑑2 βˆ’ 20𝑑3 πœƒ = 2𝑑2 αˆΆπœƒ = 4𝑑 αˆΆπœƒ| 𝑑=1 = 4 𝑣 = 60 Ƹ𝑒 π‘Ÿ + (40)(4) Ƹ𝑒 πœƒ= 60 Ƹ𝑒 π‘Ÿ + 160 Ƹ𝑒 πœƒ β€’ Find velocity and acceleration components along unit vector directions 𝑗 𝑖
  • 87. 87 Question 4 β€’ Draw inertial reference frame (Rectangular or Polar) β€’ Draw body-fixed frame (N-t, r- ΞΈ) β€’ Specify unit vector direction Ƹ𝑒 π‘Ÿ Ƹ𝑒 πœƒ β€’ Specify velocity and acceleration components along unit vector directions 𝑉𝐡/𝑓 π‘‰πœƒ 𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Recall… αˆΆπ‘Ÿ = 60(2)𝑑 βˆ’ 20(3)𝑑2 αˆΆπ‘Ÿ| 𝑑=1 = 60(2) βˆ’ 20(3) = 60 π‘Ÿ = 60𝑑2 βˆ’ 20𝑑3 πœƒ = 2𝑑2 αˆΆπœƒ = 4𝑑 αˆΆπœƒ| 𝑑=1 = 4 𝑣 = 60 Ƹ𝑒 π‘Ÿ + (40)(4) Ƹ𝑒 πœƒ= 60 Ƹ𝑒 π‘Ÿ + 160 Ƹ𝑒 πœƒ β€’ Find velocity and acceleration components along unit vector directions |𝑣| = 602 + 1602 = 170.9π‘š Ξ€π‘š 𝑠 βˆ π‘£ = tanβˆ’1 60 160 = 20.6 π‘œ π‘€π‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘‘ π‘“π‘Ÿπ‘œπ‘šΰ·π‘’ΞΈ Ƹ𝑒 π‘Ÿ Ƹ𝑒 πœƒ 𝑉𝐡/𝑓 π‘‰πœƒ 𝑉 πœƒ| 𝑑=1 = 2 1 2 = 2π‘Ÿπ‘Žπ‘‘ = 114.60 [ෝ𝑒r π‘šπ‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘–αˆΏ βˆ π‘£ = 114.60 + (900 βˆ’20.60 ) = 1840 measured from 𝑖 𝑖 𝑗 𝑗 𝑖 β€’ Find velocity and acceleration components w.r.t to inertial reference frame 170.9mm/s∠1840
  • 88. 88 Question 4 β€’ Draw inertial reference frame (Rectangular or Polar) β€’ Draw body-fixed frame (N-t, r- ΞΈ) β€’ Specify unit vector direction Ƹ𝑒 π‘Ÿ Ƹ𝑒 πœƒ β€’ Specify velocity and acceleration components along unit vector directions Recall… αˆΆπ‘Ÿ = 60(2)𝑑 βˆ’ 20(3)𝑑2 αˆΆπ‘Ÿ| 𝑑=1 = 60(2) βˆ’ 20(3) = 60 π‘Ÿ = 60𝑑2 βˆ’ 20𝑑3 πœƒ = 2𝑑2 αˆΆπœƒ = 4𝑑 αˆΆπœƒ| 𝑑=1 = 4 β€’ Find velocity and acceleration components along unit vector directions 𝑖 𝑗 β€’ Find velocity and acceleration components w.r.t to inertial reference frame π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ αˆ·π‘Ÿ = 120 βˆ’ 60(2)𝑑 αˆ·πœƒ = 4 αˆ·π‘Ÿ| 𝑑=1 = 0(zero relative to rod) αˆ·πœƒ| 𝑑=1 = 4 π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ π‘Ž = (0 βˆ’ 40 β‹… 42 ) Ƹ𝑒 π‘Ÿ + (40 β‹… 4 + 2 β‹… 60 β‹… 4) Ƹ𝑒 πœƒ π‘Ž = βˆ’640 Ƹ𝑒 π‘Ÿ + 640 Ƹ𝑒 πœƒ |π‘Ž| = 6402 + 6402 = 905.1π‘š Ξ€π‘š 𝑠2 βˆ π‘Ž = tanβˆ’1 βˆ’640 640 = βˆ’450 measured from ෝ𝑒θ πœƒ| 𝑑=1 = 2 1 2 = 2π‘Ÿπ‘Žπ‘‘ = 114.60 βˆ π‘Ž = 450 + 114.60 + 900 = 249.60 π‘Ž = 905.1π‘š Ξ€π‘š 𝑠2 ∠249.60 Ƹ𝑒 π‘Ÿ Ƹ𝑒 πœƒ 𝑗 𝑖 Τ¦π‘Ž
  • 89. 89 Question 6 π‘Ÿ = 2𝑏cosπœƒ 𝐺𝑖𝑣𝑒𝑛 π‘‘β„Žπ‘Žπ‘‘ αˆΆπœƒ 𝑖𝑠 π‘π‘œπ‘›π‘ tan𝑑 αˆΆπ‘Ÿ = βˆ’2𝑏 αˆΆπœƒ sinπœƒ π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Acceleration of a point in r-theta coordinate is given by…. αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2cosπœƒ [since αˆ·πœƒ = 0] αˆ·πœƒ = 0 Τ¦π‘Ž 𝐡 = (βˆ’2𝑏 αˆΆπœƒ2cosπœƒ βˆ’ 2𝑏cosπœƒ β‹… αˆΆπœƒ2) Ƹ𝑒 π‘Ÿ + (2𝑏cosπœƒ β‹… 0 + 2(βˆ’2𝑏sinπœƒ) αˆΆπœƒ) Ƹ𝑒 πœƒ ࡯∴ Τ¦π‘Ž 𝐡 = βˆ’4𝑏 αˆΆπœƒ2 (cosπœƒ Ƹ𝑒 π‘Ÿ + sinπœƒ Ƹ𝑒 πœƒ Thus the magnitude of the acceleration is a constant 4𝑏 αˆΆπœƒ2 ∠from er = tanβˆ’1 sinπœƒ cosπœƒ = tanβˆ’1 sinπœƒ cosπœƒ = πœƒ + 𝝅 Magnitude of the acceleration vector direction is Τ¦π‘Ž Angle of the acceleration vector measured from i is 𝑖 𝑗 πœƒ πœƒ er e πœƒ ∠from 𝑖 = πœƒ + (πœ‹ + πœƒ) = 2πœƒ + πœ‹ ࡯∴ Τ¦π‘Ž 𝐡 = 4𝑏 αˆΆπœƒ2 ∠(2πœƒ + πœ‹ αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2 cosπœƒ βˆ’ 2𝑏 αˆ·πœƒsinπœƒ π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ
  • 90. 90 Question 6 Τ¦π‘Ž 𝑖 𝑗 πœƒ πœƒ er e πœƒ Velocity 𝑣 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Acceleration π‘Ž = αˆ·π‘Ÿ βˆ’ π‘Ÿ αˆΆπœƒ2 Ƹ𝑒 π‘Ÿ + π‘Ÿ αˆ·πœƒ + 2 αˆΆπ‘Ÿ αˆΆπœƒ Ƹ𝑒 πœƒ Relative velocity to inertial frame Relative acceleration to inertial frame Coriolis acceleration Entrained velocity Entrained acceleration π‘Ÿ = 2𝑏cosπœƒ 𝐺𝑖𝑣𝑒𝑛 π‘‘β„Žπ‘Žπ‘‘ αˆΆπœƒ 𝑖𝑠 π‘π‘œπ‘›π‘ tan𝑑 αˆΆπ‘Ÿ = βˆ’2𝑏 αˆΆπœƒ sinπœƒ αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2 cosπœƒ [since αˆ·πœƒ = 0] αˆ·πœƒ = 0 αˆ·π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2 cosπœƒ βˆ’ 2𝑏 αˆ·πœƒsinπœƒ ࡯𝑉 ΀𝐡 𝑓 = αˆΆπ‘Ÿ Ƹ𝑒 π‘Ÿ = βˆ’2𝑏 αˆΆπœƒsin(πœƒ Ƹ𝑒 π‘Ÿ Τ¦π‘Ž ΀𝐡 𝑓 = αˆ·π‘Ÿ Ƹ𝑒 π‘Ÿ = βˆ’2𝑏 αˆΆπœƒ2 cos(πœƒ) Ƹ𝑒 π‘Ÿ
  • 91. Tutorial 5 Planar motion of rigid slab Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 92. 92 Question 1 ࡯𝑉𝐴 = 900 Ƹ𝑖(π‘š Ξ€π‘š 𝑠 Τ¦π‘Ÿπ΅π΄ = 300∠ βˆ’ 30 π‘œ )Τ¦π‘Ÿπ΅π΄ = 300(cos(βˆ’30) Ƹ𝑖 + sin(βˆ’30) Ƹ𝑗 )Τ¦π‘Ÿπ΅π΄ = 300(0.87 Ƹ𝑖 βˆ’ 0.5 Ƹ𝑗 ࡯𝑉𝐡 = 𝑉𝐡(cos(βˆ’70) Ƹ𝑖 + sin(βˆ’70) Ƹ𝑗 ࡯𝑉𝐡 = 𝑉𝐡(0.34 Ƹ𝑖 βˆ’ 0.94 Ƹ𝑗 𝑉𝐡 = 𝑉𝐴 + πœ” Γ— Τ¦π‘Ÿπ΅π΄ ࡯𝑉𝐡(0.34 Ƹ𝑖 βˆ’ 0.94 Ƹ𝑗) = 900 Ƹ𝑖 + πœ”ΰ· π‘˜ Γ— 300(0.87 Ƹ𝑖 βˆ’ 0.5 Ƹ𝑗 Equating i components 0.34𝑉𝐡 βˆ’ 150πœ” = 900 Equating j components 0.94𝑉𝐡 + 259.8πœ” = 0 Solving these equations simultaneously πœ” = βˆ’3.68π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑉𝐡 = 1017π‘š Ξ€π‘š 𝑠 Therefore 𝑉𝐡 = 1017∠ βˆ’ 700(mm/s) ΰ΅―πœ” = βˆ’3.68ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠
  • 93. 93 Question 2 𝑉𝐡 𝑉𝐷 i j Τ¦π‘Ÿπ΅π΄ = βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗 ΰ΅―πœ” 𝐡𝐴 = 3ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑉𝐡 = πœ” 𝐡𝐴 Γ— Τ¦π‘Ÿπ΅π΄ 𝑉𝐡 = 300 Ƹ𝑖 βˆ’ 900 Ƹ𝑗 = 948.7∠ βˆ’ 71.60
  • 94. 94 Question 2 𝑉𝐡𝑉𝐷 i j Τ¦π‘Ÿπ΅π΄ = βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗 ΰ΅―πœ” 𝐡𝐴 = 3ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑉𝐡 = πœ” 𝐡𝐴 Γ— Τ¦π‘Ÿπ΅π΄ 𝑉𝐡 = 300 Ƹ𝑖 βˆ’ 900 Ƹ𝑗 = 948.7∠ βˆ’ 71.60 𝑉𝐡𝐷 𝛽 𝛽 𝛽 = tanβˆ’1 100 300 = 18.430 ∴ |𝑉𝐷| = 𝑉𝐡cos(𝛽) = 900π‘š Ξ€π‘š 𝑠 ∴ |𝑉𝐡𝐷| = 𝑉𝐡sin(𝛽) = 300π‘š Ξ€π‘š 𝑠 Based on vector diagram ࡯𝑉𝐷 = βˆ’900 Ƹ𝑗(π‘š Ξ€π‘š 𝑠 ࡯𝑉𝐡𝐷 = 300 Ƹ𝑖(π‘š Ξ€π‘š 𝑠 Since Τ¦π‘Ÿ 𝐷𝐸 = βˆ’225 Ƹ𝑖 π‘Žπ‘›π‘‘ Τ¦π‘Ÿπ΅π· = 200 Ƹ𝑗 𝑉𝐷 = πœ” 𝐷𝐸 ΰ· π‘˜ Γ— Τ¦π‘Ÿ 𝐷𝐸 βˆ’900 Ƹ𝑗 = πœ” 𝐷𝐸 ΰ· π‘˜ Γ— βˆ’225 Ƹ𝑖 βˆ’900 Ƹ𝑗 = πœ” 𝐷𝐸 ΰ· π‘˜ Γ— βˆ’225 Ƹ𝑖 βˆ’900 Ƹ𝑗 = βˆ’225 β‹… πœ” 𝐷𝐸 Ƹ𝑗 πœ” 𝐷𝐸 = βˆ’900 βˆ’225 = 4 πœ” 𝐷𝐸 = 4ΰ· π‘˜ 300 Ƹ𝑖 = πœ” 𝐡𝐷 ΰ· π‘˜ Γ— 200 Ƹ𝑗 𝑉𝐡𝐷 = πœ” 𝐡𝐷 Γ— Τ¦π‘Ÿπ΅π· 300 Ƹ𝑖 = βˆ’πœ” 𝐡𝐷 β‹… 200 Ƹ𝑖 πœ” 𝐡𝐷 = βˆ’300 200 = βˆ’1.5 πœ” 𝐡𝐷 = βˆ’1.5ΰ· π‘˜
  • 95. 95 Question 2 i j 𝛽 The angular accelerations are determined by simultaneously solving the component equations the relative acceleration equation From part (a), we know that… πœ” 𝐡𝐷 = βˆ’1.5ΰ· π‘˜ πœ” 𝐷𝐸 = 4ΰ· π‘˜ Since link AB has a constant angular velocity, we can apply relative acceleration equation with 𝛼 𝐴𝐡 = 0 π‘Ÿπ‘Ž ΀𝑑 𝑠2 Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 𝐴𝐡 Γ— Τ¦π‘Ÿπ΅π΄ βˆ’ πœ” 𝐴𝐡 2 Τ¦π‘Ÿπ΅π΄ )Τ¦π‘Ž 𝐡 = βˆ’πœ”2 Τ¦π‘Ÿπ΅π΄ = βˆ’ 3 2 (βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗) = 2700 Ƹ𝑖 + 900 Ƹ𝑗(π‘š Ξ€π‘š 𝑠2 For bar BD… Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 𝐡𝐷 Γ— Τ¦π‘Ÿ 𝐷𝐡 βˆ’ πœ” 𝐡𝐷 2 Τ¦π‘Ÿπ·π΅ ΰ΅―Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 𝛼 𝐡𝐷 ΰ· π‘˜ Γ— (βˆ’200 Ƹ𝑗) βˆ’ 1.5 2 (βˆ’200 Ƹ𝑗 Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 200 Ƹ𝑖𝛼 𝐡𝐷 + 450 Ƹ𝑗 For bar DE… Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐸 + Ԧ𝛼 𝐷𝐸 Γ— Τ¦π‘Ÿ 𝐷𝐸 βˆ’ πœ” 𝐷𝐸 2 Τ¦π‘Ÿ 𝐷𝐸 ΰ΅―Τ¦π‘Ž 𝐷 = 𝛼 𝐷𝐸 ΰ· π‘˜ Γ— (βˆ’225 Ƹ𝑖) βˆ’ 4 2 (βˆ’225 Ƹ𝑖
  • 96. 96 Question 2 i j 𝛽 Since link AB has a constant angular velocity, we can apply relative acceleration equation with 𝛼 𝐴𝐡 = 0 π‘Ÿπ‘Ž ΀𝑑 𝑠2 Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 𝐴𝐡 Γ— Τ¦π‘Ÿπ΅π΄ βˆ’ πœ” 𝐴𝐡 2 Τ¦π‘Ÿπ΅π΄ )Τ¦π‘Ž 𝐡 = βˆ’πœ”2 Τ¦π‘Ÿπ΅π΄ = βˆ’ 3 2 (βˆ’300 Ƹ𝑖 βˆ’ 100 Ƹ𝑗) = 2700 Ƹ𝑖 + 900 Ƹ𝑗(π‘š Ξ€π‘š 𝑠2 For bar BD… Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 𝐡𝐷 Γ— Τ¦π‘Ÿ 𝐷𝐡 βˆ’ πœ” 𝐡𝐷 2 Τ¦π‘Ÿπ·π΅ ΰ΅―Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 𝛼 𝐡𝐷 ΰ· π‘˜ Γ— (βˆ’200 Ƹ𝑗) βˆ’ 1.5 2(βˆ’200 Ƹ𝑗 Τ¦π‘Ž 𝐷 = (2700 Ƹ𝑖 + 900 Ƹ𝑗) + 200 Ƹ𝑖𝛼 𝐡𝐷 + 450 Ƹ𝑗 For bar DE… Τ¦π‘Ž 𝐷 = Τ¦π‘Ž 𝐸 + Ԧ𝛼 𝐷𝐸 Γ— Τ¦π‘Ÿ 𝐷𝐸 βˆ’ πœ” 𝐷𝐸 2 Τ¦π‘Ÿ 𝐷𝐸 ΰ΅―Τ¦π‘Ž 𝐷 = 𝛼 𝐷𝐸 ΰ· π‘˜ Γ— (βˆ’225 Ƹ𝑖) βˆ’ 4 2(βˆ’225 Ƹ𝑖 Τ¦π‘Ž 𝐷 = βˆ’225𝛼 𝐷𝐸 Ƹ𝑗 + 3600 Ƹ𝑖 Equating bar BD and DE… 2700 + 200𝛼 𝐡𝐷 Ƹ𝑖 + 900 + 450 Ƹ𝑗 = βˆ’225𝛼 𝐷𝐸 Ƹ𝑗 + 3600 Ƹ𝑖 2700 + 200𝛼 𝐡𝐷 = 3600 β‡’ 𝛼 𝐡𝐷 = 4.5 Equate i and j vector components… 900 + 450 = βˆ’225𝛼 𝐷𝐸 β‡’ 𝛼 𝐷𝐸 = βˆ’6
  • 97. 97 Question 3 Angular velocity of crank AB i j 𝑉𝐷 𝑉𝐡 𝐼𝐢 Using the known velocity directions of point D and B 𝑉𝐷 = πœ” 𝐡𝐸 Γ— π‘Ÿ ΀𝐷 𝐼𝐢 πœ” 𝐡𝐸 = βˆ’120 Ƹ𝑖 βˆ’100 Ƹ𝑖 = 1.2π‘Ÿπ‘Ž ΀𝑑 𝑠 ΰ΅―πœ” 𝐡𝐸 = 1.2ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑉𝐡 = 1.2ΰ· π‘˜ Γ— βˆ’225 Ƹ𝑖 = βˆ’270 Ƹ𝑗 πœ” 𝐴𝐡 = 𝑉𝐡 π‘Ÿπ΅π΄ = βˆ’270 Ƹ𝑗 βˆ’100 Ƹ𝑖 = 2.7ΰ·‘π‘˜ π‘Ÿπ‘Žπ‘‘/𝑠 Velocity of point E 𝛽 = tanβˆ’1 100 225 = 23.960 πœ™ = 350 225 β‹… 100 = 155.6 πœ™ = tanβˆ’1 155.6 125 = 51.20 𝛾 𝐿 𝐡𝐸 = 383.03π‘šπ‘š )sin(23.960 π‘Ÿ ΀𝐸 𝐼𝐢 = )sin(180 βˆ’ 51.20 383.03 |π‘Ÿ ΀𝐸 𝐼𝐢| = 199.56π‘šπ‘š π‘Ÿ ΀𝐸 𝐼𝐢 = 199.56π‘šπ‘šβˆ 51.20 π‘Ÿ ΀𝐸 𝐼𝐢 = 125.0 Ƹ𝑖 + 155.5 Ƹ𝑗 𝑉𝐸 = πœ” 𝐡𝐸 Γ— π‘Ÿ ΀𝐸 𝐼𝐢 𝑉𝐸 = 239.5∠141.20
  • 98. 98 Question 4 𝑉𝐸 0.7m/s i j 𝑉𝐴 𝐼𝐢 Τ¦π‘ŸπΈ/𝐼𝐢 8m 5m πœ“ = 1800 βˆ’ 36.90 βˆ’ 22.60 βˆ’ 67.40 = 53.10 )sin(53.1 13 = )sin(59.50 Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = 13 β‹… )sin(59.50 )sin(53.10 ΰ΅―Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = βˆ’14 Ƹ𝑗(π‘š 3m 4m 𝑉𝐸 = πœ” Γ— Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 0.7 Ƹ𝑖 = πœ”ΰ· π‘˜ Γ— βˆ’14 Ƹ𝑗 0.7 Ƹ𝑖 = 14πœ” Ƹ𝑖 πœ” = 0.7 14 = 0.05π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑐𝑐𝑀
  • 99. 99 Question 4 𝑉𝐸 0.7m/s i j 𝑉𝐴 𝐼𝐢 Τ¦π‘ŸπΈ/𝐼𝐢 8m 5m πœ“ = 1800 βˆ’ 36.90 βˆ’ 22.60 βˆ’ 67.40 = 53.10 )sin(53.1 13 = )sin(59.50 Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = 13 β‹… )sin(59.50 )sin(53.10 ΰ΅―Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 = βˆ’14 Ƹ𝑗(π‘š 3m 4m 𝑉𝐸 = πœ” Γ— Τ¦π‘Ÿ ΀𝐸 𝐼𝐢 0.7 Ƹ𝑖 = πœ”ΰ· π‘˜ Γ— βˆ’14 Ƹ𝑗 0.7 Ƹ𝑖 = 14πœ” Ƹ𝑖 πœ” = 0.7 14 = 0.05π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑐𝑐𝑀 ΰ΅―Τ¦π‘Ÿ ΀𝐴 𝐼𝐢 = βˆ’8 Ƹ𝑖 βˆ’ 7 Ƹ𝑗(π‘š 𝑉𝐴 = πœ” Γ— Τ¦π‘Ÿ ΀𝐴 𝐼𝐢 𝑉𝐴 = 0.05ΰ· π‘˜ Γ— (βˆ’8 Ƹ𝑖 βˆ’ 6 Ƹ𝑗) 𝑉𝐴 = 0.35 Ƹ𝑖 βˆ’ 0.4 Ƹ𝑗 |𝑉𝐴| = 0.5 Ξ€π‘š 𝑠 βˆ π‘‰π΄ = tanβˆ’1 βˆ’0.4 0.3 = βˆ’53.130 𝑉𝐡 = 0.806 Ξ€π‘š 𝑠 ∠ βˆ’ 29.740 𝑉𝐷 = 0.3 Ξ€π‘š 𝑠 ∠00
  • 100. 100 Question 5 ࡯𝑉𝐡 = 𝑉𝑐 = βˆ’1.5 Ƹ𝑗( Ξ€π‘š 𝑠 ࡯𝑉𝐴 = 𝑉𝐷 = βˆ’1.8 Ƹ𝑗( Ξ€π‘š 𝑠 )Τ¦π‘Ž 𝐡 𝑑 = Τ¦π‘Ž 𝑐 = βˆ’0.45 Ƹ𝑗( Ξ€π‘š 𝑠2 )Τ¦π‘Ž 𝐴 𝑑 = Τ¦π‘Ž 𝐷 = 0.6 Ƹ𝑗( Ξ€π‘š 𝑠2 𝐴 𝐺 𝑉𝐡 = 𝑉𝐴 + 𝑉 ΀𝐡 𝐴 = 𝑉𝐴 + πœ” Γ— Τ¦π‘Ÿπ΅π΄ βˆ’1.5 Ƹ𝑗 = βˆ’1.8 Ƹ𝑗 + πœ”ΰ· π‘˜ Γ— βˆ’1.2 Ƹ𝑖 βˆ’1.5 Ƹ𝑗 = βˆ’1.8 Ƹ𝑗 βˆ’ 1.2πœ” Ƹ𝑗 Equating j components πœ” = βˆ’1.5 + 1.8 βˆ’1.2 = βˆ’0.25 πœ” = βˆ’0.25ΰ· π‘˜ Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΅π΄ βˆ’ πœ”2 Τ¦π‘Ÿπ΅π΄ ΰ΅―βˆ’0.45 Ƹ𝑗 + x 𝑏 Ƹ𝑖 = 0.6 Ƹ𝑗 + x π‘Ž Ƹ𝑖 + π›Όΰ· π‘˜ Γ— βˆ’1.2 Ƹ𝑖 βˆ’ βˆ’0.25 2 (βˆ’1.2 Ƹ𝑖 βˆ’0.45 Ƹ𝑗 + x 𝑏 Ƹ𝑖 = 0.6 Ƹ𝑗 + x π‘Ž Ƹ𝑖 βˆ’ 1.2𝛼 Ƹ𝑗 βˆ’ 0.075 Ƹ𝑖 Equating j components and solving for 𝜢 𝛼 = βˆ’0.45 βˆ’ 0.6 βˆ’1.2 = 0.875π‘Ÿπ‘Ž ΀𝑑 𝑠2 ࡯Ԧ𝛼 = 0.875ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠2 Τ¦π‘Ž 𝐡 = π‘Ž 𝐺 + Ԧ𝛼 𝐡𝐺 Γ— Τ¦π‘Ÿπ΅πΊ βˆ’ πœ” 𝐡𝐺 2 Τ¦π‘Ÿπ΅πΊ ΰ΅―βˆ’0.45 Ƹ𝑗 + 𝐱 Ƹ𝑖 = π‘Ž 𝐺 Ƹ𝑗 + 0.875ΰ· π‘˜ Γ— βˆ’0.6 Ƹ𝑖 βˆ’ βˆ’0.25 2(βˆ’0.6 Ƹ𝑖 βˆ’0.45 Ƹ𝑗 + 𝐱 Ƹ𝑖 = (βˆ’0.875 β‹… 0.6 + π‘Ž 𝐺) Ƹ𝑗 + 0.0375 Ƹ𝑖 Equating i components 𝐱 = 0.0375m/s2 )∴ Τ¦π‘Ž 𝐡 = 0.0375 Ƹ𝑖 βˆ’ 0.45 Ƹ𝑗 = 0.452∠ βˆ’ 85.29( Ξ€π‘š 𝑠2
  • 101. Tutorial 6 Motion relative to a body attached rotating reference Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 102. 102 Translating, but not rotating reference frame Key points Translating and rotating reference frame 𝑉𝐴 = 𝑉𝐡 + 𝑉 ΀𝐴 𝐡 Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Τ¦π‘Ž ΀𝐴 𝐡 𝑉𝐴 = 𝑉𝐡 + πœ” Γ— Τ¦π‘Ÿπ΄π΅ + π‘‰π‘Ÿπ‘’π‘™ Normal to r Along increasing s direction, it’s the relative velocity measured from x-y frame. Velocity of point B measured from X-Y frame 𝑽 𝒓𝒆𝒍 is always tangent to path and points in the direction of increasing s 𝝎 Γ— 𝒓 𝑨𝑩 is normal position vector
  • 103. 103 Key points Translating and rotating reference frame Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™ acceleration of point B measured from X-Y frame Coriolis acceleration Acceleration of point A measured from x-y frame Normal to r vector Tangent to r vector Τ¦π‘Ž π‘Ÿπ‘’π‘™ 𝑑 = αˆ·π‘  = αˆΆπ‘‰π‘Ÿπ‘’π‘™ Τ¦π‘Ž π‘Ÿπ‘’π‘™ 𝑛 = π‘‰π‘Ÿπ‘’π‘™ 2 𝜌 (appears when particle moves in curvilinear or circular motion with respect to point P) Radius r is measured from the centre of rotation of the rotating reference frame to particle A πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) represents the normal component of acceleration of point P with respect B. This vector is directed along r and points towards centre of rotation. Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ represents the tangential component of acceleration of point p with respect to b. This vector is directed perpendicular to r. πœ” is the angular velocity of the rotating reference frame
  • 104. 104 Key points Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™ acceleration of point B measured from X-Y frame Coriolis acceleration Acceleration of point A measured from x-y frame Normal to r vector Tangent to r vector π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑀𝑖𝑙𝑙 𝑏𝑒 π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› even if an object travels at a constant velocity in circular or curvilinear motion (be it inertial or rotating reference frame). This acceleration vector will point towards the centre of rotation.
  • 105. 105 Question 1 𝑉𝑃 = 𝑉𝐴 + πœ” 𝐴𝑃 2 Γ— Τ¦π‘Ÿπ΄π‘ƒ + π‘‰π‘Ÿπ‘’π‘™ = 𝑉𝐴 + πœ” 𝐴𝑃 2 Γ— Τ¦π‘Ÿπ΄π‘ƒ+ π‘‰π‘Ÿπ‘’π‘™ 200 )sin(400 = π‘Ÿπ‘ƒπ΅ )sin(1200 = π‘Ÿπ‘ƒπ΄ )sin(200 Τ¦π‘Ÿπ‘ƒπ΄ = 106.42π‘šπ‘šβˆ 1200 Τ¦π‘Ÿπ‘ƒπ΅ = 269.46π‘šπ‘šβˆ 1600 ࡯𝑉𝑃 = πœ” 𝐴𝑃 Γ— Τ¦π‘Ÿπ‘ƒπ΄ = βˆ’6ΰ· π‘˜ Γ— 106.42∠1200 = βˆ’6ΰ· π‘˜ Γ— (βˆ’53.21 Ƹ𝑖 + 92.16 Ƹ𝑗 ࡯𝑉𝑃 = 552.96 Ƹ𝑖 + 319.26 Ƹ𝑗 = 638.5∠300 (π‘š Ξ€π‘š 𝑠 From the diagram… 𝑉𝑃 β€² = 𝑉𝑃 sin(500)∠700 = 638.5sin(50)∠700 = 489.12∠700 (angle measured from horizontal axis) 𝑉 ΀𝑃 𝑓 = 𝑉𝑃 cos(500)∠ βˆ’ 200 = 638.5cos(50)∠ βˆ’ 200 = 410.42∠ βˆ’ 200 For frame f2… 𝑉𝑃 β€² = πœ” 𝑃𝐡 Γ— Τ¦π‘Ÿπ‘ƒπ΅ = πœ” 𝑃𝐡 ΰ· π‘˜ Γ— 269.46∠1600 ࡯𝑉𝑃 β€² = πœ” 𝑃𝐡 ΰ· π‘˜ Γ— (βˆ’253.21 Ƹ𝑖 + 92.16 Ƹ𝑗 𝑉𝑃 β€² = βˆ’253.21πœ” 𝑃𝐡 Ƹ𝑗 βˆ’ 92.16πœ” 𝑃𝐡 Ƹ𝑖 from f1, since 𝑉𝑃 β€² = 489.12∠700 𝑉𝑃 β€² = 167.29 Ƹ𝑖 + 459.62 Ƹ𝑗 πœ” 𝑃𝐡 = 169.29 βˆ’92.16 = βˆ’1.82ΰ· π‘˜ Alternatively, equating j component… πœ” 𝑃𝐡 = 459.62 βˆ’253.21 = βˆ’1.82ΰ· π‘˜ For frame f1… 𝑉𝑃 = 𝑉𝐡 + πœ” 𝐡𝑃 2 Γ— Τ¦π‘Ÿπ΅π‘ƒ+ π‘‰π‘Ÿπ‘’π‘™ π‘‰π‘Ÿπ‘’π‘™= 410.42∠ βˆ’ 200 Equating i component…
  • 106. 106 Question 2 𝐿𝑒𝑑 π‘‰π‘Ÿπ‘’π‘™ = 𝑉 ΀𝐡 𝑓 𝑉 ΀𝐡 𝑓 = βˆ’2 Ƹ𝑖 Τ¦π‘Ÿπ΅π‘‚ = 2 Ƹ𝑗 πœ” = 5ΰ· π‘˜ 𝑉𝐡 = 𝑉𝑂 + πœ” Γ— Τ¦π‘Ÿπ΅π‘‚ + 𝑉 ΀𝐡 𝑓 𝑉𝐡 = 5ΰ· π‘˜ Γ— 2 Ƹ𝑗 βˆ’ 2 Ƹ𝑖 = βˆ’12 Ƹ𝑖 𝐿𝑒𝑑 π‘‰π‘Ÿπ‘’π‘™ = 𝑉 ΀𝐡 𝑓 𝑉 ΀𝐡 𝑓 = βˆ’2 Ƹ𝑖 Τ¦π‘Ÿπ΅π‘‚ = (1.1547 Ƹ𝑖 + 2 Ƹ𝑗) πœ” = 5ΰ· π‘˜ 𝑉𝐡 = 𝑉𝑂 + πœ” Γ— Τ¦π‘Ÿπ΅π‘‚ + 𝑉 ΀𝐡 𝑓 𝑉𝐡 = 5ΰ· π‘˜ Γ—= 1.1547 Ƹ𝑖 + 2 Ƹ𝑗 βˆ’ 2 Ƹ𝑖 = βˆ’12 Ƹ𝑖 + 5.77 Ƹ𝑗
  • 107. 107 Question 3 Τ¦π‘Ÿπ΅π΄ = 6∠300 = 5.2 Ƹ𝑖 + 3 Ƹ𝑗 π‘‰π‘Ÿπ‘’π‘™ = 0.15∠ βˆ’ 1500 πœ” = βˆ’0.075ΰ· π‘˜ 𝑉𝐡 = 𝑉𝐴 + πœ” Γ— Τ¦π‘Ÿπ΅π΄ + π‘‰π‘Ÿπ‘’π‘™ 𝑉𝐡 = βˆ’0.075ΰ· π‘˜ Γ— 6∠300 + 0.15∠ βˆ’ 1500 = 0.475∠ βˆ’ 78.430 Point B has: β€’ Constant rate of retraction β€’ Constant angular velocity β€’ Linear motion with respect to frame-f Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΅π΄ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™ ΰ΅―πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) = βˆ’0.075ΰ· π‘˜ Γ— (βˆ’0.075ΰ· π‘˜ Γ— (5.2 Ƹ𝑖 + 3 Ƹ𝑗) πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) = βˆ’0.0292 Ƹ𝑖 βˆ’ 0.0169 Ƹ𝑗 π‘‰π‘Ÿπ‘’π‘™ = 0.15∠ βˆ’ 1500 = βˆ’0.121 Ƹ𝑖 βˆ’ 0.070 Ƹ𝑗 2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™ = βˆ’0.0112 Ƹ𝑖 + 0.0195 Ƹ𝑗 ∴ Τ¦π‘Ž 𝐡 = (βˆ’0.0292 Ƹ𝑖 βˆ’ 0.0169ෑ𝑗) + (βˆ’0.0112 Ƹ𝑖 + 0.0195 Ƹ𝑗) ∴ Τ¦π‘Ž 𝐡 = βˆ’0.0404 Ƹ𝑖 + 0.0026 Ƹ𝑗
  • 108. 108 Question 4 Point B has β€’ Constant rate of retraction β€’ Constant angular velocity β€’ Linear motion with respect to frame-f 𝑉𝐡 = 𝑉𝑂 + πœ” Γ— Τ¦π‘Ÿπ΅π‘‚ + π‘‰π‘Ÿπ‘’π‘™ 𝑉𝐡 = βˆ’2.4ΰ· π‘˜ Γ— (βˆ’250 Ƹ𝑖 βˆ’ 188 Ƹ𝑗) + 375 Ƹ𝑖 ࡯𝑉𝐡 = βˆ’76.2 Ƹ𝑖 + 600 Ƹ𝑗(π‘š Ξ€π‘š 𝑠 X Y x yf Radius r is measured from the centre of rotation of the rotating reference frame to particle A
  • 109. 109 Question 4 )Τ¦π‘Ž 𝐡 = πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π‘‚) + (2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™ )Τ¦π‘Ž 𝐡 = πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π‘‚) + (2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™ ΰ΅―Τ¦π‘Ž 𝐡 = βˆ’2.4ΰ· π‘˜ Γ— (βˆ’2.4ΰ· π‘˜ Γ— (βˆ’250 Ƹ𝑖 βˆ’ 188 Ƹ𝑗)) + (2 β‹… βˆ’2.4ΰ· π‘˜ Γ— 375 Ƹ𝑖 Τ¦π‘Ž 𝐡 = 1440.06 Ƹ𝑖 βˆ’ 717.2 Ƹ𝑗 β€’ Constant rate of retraction β€’ Constant angular velocity β€’ Linear motion with respect to frame-f x y f
  • 110. 110 Question 5 17.32 10.00 10.00 𝑉𝑃 = πœ” Γ— Τ¦π‘Ÿπ‘ƒπ‘‚ + π‘‰π‘Ÿπ‘’π‘™ 𝑉𝑃 = 0.3ΰ· π‘˜ Γ— (17.32 Ƹ𝑖 βˆ’ 30 Ƹ𝑗) + 10∠ βˆ’ 600 ࡯𝑉𝑃 = 0.3ΰ· π‘˜ Γ— (17.32 Ƹ𝑖 βˆ’ 30 Ƹ𝑗) + (5.00 Ƹ𝑖 βˆ’ 8.66 Ƹ𝑗 ࡯𝑉𝑃 = (9𝑖 + 5.2 Ƹ𝑗) + (5.00 Ƹ𝑖 βˆ’ 8.66 Ƹ𝑗 𝑉𝑃 = 14𝑖 βˆ’ 3.46 Ƹ𝑗 β€’ Constant angular velocity β€’ Circular motion with respect to rotating reference frame x”-y” Y X Radius r is measured from the centre of rotation of the rotating reference frame to particle A
  • 111. 111 Question 5 17.32 10.00 10.00 ΰ΅―2πœ” Γ— π‘‰π‘Ÿπ‘’π‘™ = 2 β‹… 0.3ΰ· π‘˜ Γ— (5.00 Ƹ𝑖 βˆ’ 8.66 Ƹ𝑗) = (5.20 Ƹ𝑖 + 3.00 Ƹ𝑗 πœ” Γ— πœ” Γ— Τ¦π‘Ÿπ‘ƒπ‘‚ = 0.3ΰ· π‘˜ Γ— (0.3ΰ· π‘˜ Γ— (17.32 Ƹ𝑖 βˆ’ 30 Ƹ𝑗)) = βˆ’1.56 Ƹ𝑖 + 2.70 Ƹ𝑗 Τ¦π‘Ž π‘Ÿπ‘’π‘™ = π‘‰π‘Ÿπ‘’π‘™ 2 π‘Ÿ ∠2100 = 102 20 ∠2100 = 5∠2100 = βˆ’4.33 Ƹ𝑖 βˆ’ 2.50 Ƹ𝑗 Τ¦π‘Ž 𝑝 = 3.28∠102.20 π‘š Ξ€π‘š 𝑠 Y X Summing these three acceleration components gives…
  • 112. Tutorial 7 Kinetics of particles (Newton’s Second Law) Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 114. 114 Key point ෍ πΉπ‘œπ‘Ÿπ‘π‘’ = π‘š β‹… Τ¦π‘Ž In a given direction Absolute acceleration along that direction Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Τ¦π‘Ž ΀𝐴 𝐡 Τ¦π‘Ž 𝐴 = Τ¦π‘Ž 𝐡 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄π΅ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΄π΅) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™ Translating reference frame: Translating and rotating reference frame:
  • 115. 115 Question 1 𝑉 = 3π‘š/𝑠x y ෍ 𝐹𝑦 = π‘š β‹… π‘Ž 𝑦 𝑁 βˆ’ π‘šπ‘” = βˆ’π‘š 𝑉2 𝜌 𝑁 = βˆ’π‘š 𝑉2 𝜌 + π‘šπ‘” 𝑁 = βˆ’(2) 3 2 1.8 + (2)(9.81) = 9.62𝑁 N will be zero at point of losing contact 0= βˆ’π‘š 𝑉2 𝜌 + π‘šπ‘” Solving for V 𝑉max = π‘”πœŒ = 9.81 β‹… 1.8 = 4.2 Ξ€π‘š 𝑠
  • 116. 116 Question 2 For block A For block B Belt direction Slip direction Equations of Motion along i-axis 0.2π‘š 𝐴 𝑔 βˆ’ 𝐹 = π‘š 𝐴 π‘Ž π‘₯ 0.1π‘š 𝐡 𝑔 + 𝐹 = π‘š 𝐡 π‘Ž π‘₯ 0.1(30)𝑔 + 𝐹 = (30)π‘Ž π‘₯ 0.2(24)𝑔 βˆ’ 𝐹 = (24)π‘Ž π‘₯ Solve for F and ax 𝐹 = 13.07𝑁 π‘Ž = 1.417 Ξ€π‘š 𝑠2
  • 117. 117 Question 3 Τ¦π‘Ž 𝐴 Τ¦π‘Ž 𝐡/𝐴 The acceleration of B is composed of the acceleration of A plus the acceleration of B relative to A. Apply equation of motion along i direction for block A 𝑇sin(250) = π‘š 𝐴 π‘Ž 𝐴 Apply equation of motion along i and j direction for block B ࡧ𝑇(sin(250 ) Ƹ𝑖 + cos(250 ) Ƹ𝑗) βˆ’ π‘š 𝐡 𝑔 Ƹ𝑗 = π‘š 𝐡[π‘Ž 𝐴(βˆ’π‘–) + π‘Ž ΀𝐡 𝐴(cos(250 ) Ƹ𝑖 βˆ’ sin(250 ) Ƹ𝑗) Equating i and j components for block B ࡯𝑇sin(250 ) = βˆ’π‘š 𝐡 π‘Ž 𝐴 + π‘Ž ΀𝐡 𝐴 π‘š 𝐡cos(250 ࡯𝑇cos(250 ) βˆ’ π‘š 𝐡 𝑔 = βˆ’π‘Ž ΀𝐡 𝐴 π‘š 𝐡sin(250 250 250
  • 118. 118 Question 3 𝑇sin(250) = π‘š 𝐴 π‘Ž 𝐴 Three unknows and three equations ࡯𝑇sin(250 ) = βˆ’π‘š 𝐡 π‘Ž 𝐴 + π‘Ž ΀𝐡 𝐴 π‘š 𝐡cos(250 ࡯𝑇cos(250 ) βˆ’ π‘š 𝐡 𝑔 = βˆ’π‘Ž ΀𝐡 𝐴 π‘š 𝐡sin(250 𝑇 = 117.6𝑁 π‘Ž 𝐴 = 2.49 Ξ€π‘š 𝑠2 ΰ΅―π‘š 𝐴 π‘Ž 𝐴 = βˆ’π‘š 𝐡 π‘Ž 𝐴 + π‘Ž ΀𝐡 𝐴 π‘š 𝐡cos(250 Therefore…. π‘š 𝐴 π‘Ž 𝐴 )sin(250 cos(250) βˆ’ π‘š 𝐡 𝑔 = βˆ’π‘Ž ΀𝐡 𝐴 π‘š 𝐡sin(250) Rearranging and substituting… 20π‘Ž 𝐴 + 15π‘Ž 𝐴 = 13.6π‘Ž ΀𝐡 𝐴 2.14(20)π‘Ž 𝐴 βˆ’ 15𝑔 = βˆ’6.3π‘Ž ΀𝐡 𝐴 Simplifying… 35π‘Ž 𝐴 = 13.6π‘Ž ΀𝐡 𝐴 42.8π‘Ž 𝐴 βˆ’ 147.15 = βˆ’6.3π‘Ž ΀𝐡 𝐴 Substituting… 42.8 13.6 35 π‘Ž ΀𝐡 𝐴 βˆ’ 147.15 = βˆ’6.3π‘Ž ΀𝐡 𝐴 16.63π‘Ž ΀𝐡 𝐴 βˆ’ 147.15 = βˆ’6.3π‘Ž ΀𝐡 𝐴 Solve for π‘Ž ΀𝐡 𝐴 π‘Ž ΀𝐡 𝐴 = 6.4 Ξ€π‘š 𝑠2 Therefore…
  • 121. 121 Question 4 Only sum the non-constant lengths in next time instant!
  • 124. 124 Question 5 mg N Ƹ𝑒𝑑 The acceleration of C is composed of the acceleration of A plus the acceleration of C relative to A. aA Writing equation of motion along shaft AB ෍ Ƹ𝑒 𝑑 Ԧ𝐹 = π‘š β‹… π‘Ž 𝐢 Ƹ𝑒 𝑑 βˆ’π‘š 𝐢 𝑔cos(450 ) = π‘š 𝐢 π‘Ž ΀𝐢 𝐴 + π‘š 𝐢 π‘Ž 𝐴cos(450 ) ΰ΅―βˆ’π‘”cos(450 ) = π‘Ž ΀𝐢 𝐴 + π‘Ž 𝐴cos(450 ∴ π‘Ž ΀𝐢 𝐴 = βˆ’9.81cos(450 ) βˆ’ 4cos(450 ) = βˆ’9.765 ∴ Τ¦π‘Ž ΀𝐢 𝐴 = βˆ’9.765 Ƹ𝑒𝑑 ∴ Τ¦π‘Ž ΀𝐢 𝐴 = 9.765∠ βˆ’ 1350 Τ¦π‘Ž 𝐢 = Τ¦π‘Ž 𝐴 + Τ¦π‘Ž ΀𝐢 𝐴 ∴ Τ¦π‘Ž 𝐢 = 4∠900 + 9.765∠ βˆ’ 1350 Τ¦π‘Ž 𝐢 = βˆ’6.91 Ƹ𝑖 βˆ’ 2.90 Ƹ𝑗 = 7.49∠ βˆ’ 157.20 Negative sign indicates assumed direction of aC/A was wrong
  • 125. 125 Question 5 mg N Ƹ𝑒 𝑛 The acceleration of C is composed of the acceleration of A plus the acceleration of C relative to A. aA Writing equation of motion perpendicular to shaft AB ෍ Ƹ𝑒 𝑛 Ԧ𝐹 = π‘š β‹… π‘Ž 𝐢 Ƹ𝑒 𝑛 )𝑁 βˆ’ π‘š 𝐢 𝑔cos(450) = π‘š 𝐢 Τ¦π‘Ž π‘Žcos(450 )𝑁 = π‘š 𝐢( Τ¦π‘Ž π‘Žcos(450) + 𝑔cos(450) 𝑁 = (2)(4cos(450) + 9.81cos(450)) = 19.530 ࡯𝑁 = 19.53∠1350 (𝑁
  • 126. Tutorial 8 Kinetics of particles (Auxiliary Principles) Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 127. 127 Conservation of energy in conservative field (applies only to conservative system, i.e no external force) Key points 𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 where T : Kinetic energy of a particle at a given position V: Potential energy of a particle at a given position 𝑉 = π‘šπ‘”β„Ž 𝑉 = 1 2 π‘˜ π‘₯ π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘ βˆ’ π‘₯ π‘’π‘›π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘ 2 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠 where π›₯𝐾. 𝐸 = 𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1 π›₯𝑃. 𝐸 = 𝑃. 𝐸2 βˆ’ 𝑃. 𝐸1 Principle of linear Impulse and Momentum Impulse in a given direction Momentum in that direction Principle of angular Impulse and Momentum Impulse in a given direction Momentum in that direction Datum can be placed at any convenient location, but points above datum has to be taken positive gravitation potential energy (vice versa for points below datum) Conservation of energy (General form) ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍ 𝑖 𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖 Work done is zero if the particle or the system is not subjected to any external force or moment Impulse is zero if the particle or the system is not subjected to any external force or moment 𝑇 = 1 2 π‘šπ‘‰π‘Žπ‘π‘  2
  • 128. 128 Key points Ask yourself: Am I applying conservation of energy /momentum to a particle or a system? Particle (ignore external forces/moment) System (ignore internal forces/moment)
  • 129. 129 Question 1 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Datum Based on defined datum, K.E and P.E of block A is zero 1 2 Block A, position 1 Block A, position 2 𝑃. 𝐸: π‘š 𝐴 π‘”β„Ž = 12(𝑔)(1.5π‘š) = 176.58𝐽 𝐾. 𝐸: 1 2 π‘š 𝐴 𝑉𝐴 2 = 1 2 (12) 1.4 2 = 11.76𝐽 ∴ π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 11.76 + 176.58 = 188.34𝐽 ∴ π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = 188.34𝐽 Since π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠 𝑇𝐴 = π‘Šπ΄ Ԧ𝑠 𝐴 = 188.34 1.5 = 125.56𝑁 +s12kg 15kg Work done is non-zero since particle β€œA” is subjected to tension force which acts along displacement direction
  • 130. 130 Question 1 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Datum K.E is zero as Block B is at rest 2 1 Block B, position 1 Block B, position 2 𝑃. 𝐸: π‘š 𝐡 π‘”β„Ž = 15(𝑔)(1.5π‘š) = 220.73𝐽 𝐾. 𝐸: 1 2 π‘š 𝐡 𝑉𝐡 2 = 1 2 (15) 1.4 2 = 14.7𝐽 ∴ π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 14.7 + βˆ’220.73 = βˆ’206.03𝐽 Since π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠 𝑇𝐡 = π‘Šπ΅ Ԧ𝑠 𝐡 = βˆ’206.03 βˆ’1.5 = 137.35𝑁 Based on defined datum: P.E is zero +s12kg 15kg Work done is non-zero since particle β€œB” is subjected to tension force which acts along displacement direction
  • 131. 131 Question 1 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Datum K.E is zero as Block B is at rest 2 1 Block B, position 1 Block B, position 2 P. E is zero based on defined datum 𝐾. 𝐸: 1 2 π‘š 𝐡 𝑉𝐡 2 = 1 2 (15) 1.4 2 = 14.7𝐽 ∴ π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 14.7 + βˆ’220.73 = βˆ’206.03𝐽 Since π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠 𝑇𝐡 = π‘Šπ΅ Ԧ𝑠 𝐡 = βˆ’206.03 βˆ’1.5 = 137.35𝑁 Based on defined datum: P.E is zero +s 𝑃. 𝐸 = π‘š 𝐡 π‘”β„Ž = (15)𝑔(βˆ’1.5π‘š) = βˆ’220.73 12kg 15kg
  • 132. 132 Question 1 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Datum System at state 1 +s 𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘™π‘œπ‘π‘˜π‘  π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘) )𝑃. 𝐸1 = 220.73𝐽 (𝑑𝑒𝑒 π‘‘π‘œ π‘π‘™π‘œπ‘π‘˜ 𝐡 System at state 2 𝐾. 𝐸2 = 11.76+ 14.7=26.46J 𝑃. 𝐸2 = 176.58𝐽(due to block A) ∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (26.46 βˆ’ 0) + (176.58 βˆ’ 220.73) = βˆ’17.69𝐽 Based on the conservation equation, work done between states State 1 State 2 ∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1) + (𝑃. 𝐸2 - 𝑃. 𝐸1) 12kg 15kg
  • 133. 133 Question 1 πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ = 𝑁𝑒𝑑 π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ 𝑖𝑛 π‘†π‘‘π‘Žπ‘‘π‘’ 2 βˆ’ 𝑁𝑒𝑑 π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ 𝑖𝑛 π‘†π‘‘π‘Žπ‘‘π‘’ 1 Datum System at state 1 +s 𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘™π‘œπ‘π‘˜π‘  π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘) )𝑃. 𝐸1 = 220.73𝐽 (𝑑𝑒𝑒 π‘‘π‘œ π‘π‘™π‘œπ‘π‘˜ 𝐡 System at state 2 𝐾. 𝐸2 = 11.76+ 14.7=26.46J 𝑃. 𝐸2 = 176.58𝐽(due to block A) ∴ πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ = 26.46 + 176.58 βˆ’ (0 + 220.73) = βˆ’17.69𝐽 Based on the conservation equation, energy difference between states State 1 State 2 ∴ πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ = (𝐾. 𝐸2 + P. 𝐸2) - (𝐾. 𝐸1 + 𝑃. 𝐸1) 12kg 15kg
  • 134. Key points 134 Conservation applied to particle A Conservation applied to particle B Datum and positions 1 and 2 can be defined separately for each particle Conservation applied to a system Datum has to be common between states
  • 135. 135 Question 2 Knowing that the trailer and the load A are moving together: ΰ΅―π‘‰π‘‘π‘Ÿπ‘Žπ‘–π‘™π‘’π‘Ÿ = 25 Ƹ𝑖( Ξ€π‘š 𝑠 ΰ΅―π‘‰π‘™π‘œπ‘Žπ‘‘ = 25 Ƹ𝑖( Ξ€π‘š 𝑠 Static frictional force between the load and the trailer is Ԧ𝐹𝑓 = βˆ’πœ‡ 𝑠 β‹… 𝑁 Ƹ𝑖 = βˆ’πœ‡ 𝑠 π‘š 𝐴 𝑔 Ƹ𝑖 Using Principle of Impulse and Linear Momentum ΰ΅―βˆ’πœ‡ 𝑠 π‘š 𝐴 𝑔π›₯𝑑 Ƹ𝑖 = π‘š 𝐴(π‘‰π‘™π‘œπ‘Žπ‘‘,2 βˆ’ π‘‰π‘™π‘œπ‘Žπ‘‘,1 Ƹ𝑖 βˆ’πœ‡ 𝑠 π‘š 𝐴 𝑔π›₯𝑑 = βˆ’π‘š 𝐴 π‘‰π‘™π‘œπ‘Žπ‘‘,1 Ƹ𝑖 ΰ΅―π‘‰π‘™π‘œπ‘Žπ‘‘/π‘‘π‘Ÿπ‘Žπ‘–π‘™π‘’π‘Ÿ = 0 Ƹ𝑖( Ξ€π‘š 𝑠 π›₯𝑑 = π‘š 𝐴 π‘‰π‘™π‘œπ‘Žπ‘‘,1 πœ‡ 𝑠 π‘š 𝐴 𝑔 = π‘‰π‘™π‘œπ‘Žπ‘‘,1 πœ‡ 𝑠 𝑔 = 25 0.4)(9.81 = 6.371𝑠 Integral sign can be dropped off since we are dealing with a constant force w.r.t time Summation sign in L.H.S can be dropped off since we are dealing with single force i ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 Summation sign in R.H.S can be dropped off since the principal is applied to a single particle Ԧ𝐹π›₯𝑑 = π›₯π‘šπ‘‰
  • 136. 136 Question 3 Principle of angular Impulse and Momentum Impulse Momentum 35cos(300 ) β‹… 1.2)π›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1 π›₯𝑑 = 𝐼 β‹… πœ”2 35cos(300) β‹… 1.2 30ο‚° 10 N 35 N150 N 2 1 O Considering all the forces acting on B at the moment when the cord is broken (at position 2), and using Newton’s second law in normal direction, we have ෍ 𝐹 𝑛 = π‘šπ‘Ž 𝑛 = π‘šπœ”2 2 π‘Ÿ ቇ150 βˆ’ 10 βˆ’ 35 β‹… sin(300 ) = 50 𝑔 πœ”2 2 (1.2) πœ”2 = 4.4753π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑉2 = 1.2 β‹… 4.4753 = 5.37 Ξ€π‘š 𝑠 𝑛 )𝑇 β‹… π‘Ÿπ›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1 ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍ 𝑖 𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖
  • 137. 137 Question 3 Principle of angular Impulse and Momentum Impulse Momentum 35cos(300) β‹… 1.2)π›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1 π›₯𝑑 = 𝐼 β‹… πœ”2 35cos(300) β‹… 1.2 π›₯𝑑 = 𝐼 β‹… πœ”2 35cos(300) β‹… 1.2 π›₯𝑑 = π‘šπ‘Ÿ2 πœ”2 35 β‹… cos(300) β‹… 1.2 = 50 𝑔 β‹… 1.22 β‹… 4.4753 35 β‹… cos(300) β‹… 1.2 = 0.903𝑠 ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍ 𝑖 𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖 )𝑇 β‹… π‘Ÿπ›₯𝑑 = 𝐼(πœ”2 βˆ’ πœ”1
  • 138. Tutorial 9 Kinetics of particles (Conservation of Energy and Momentum) Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 139. 139 Conservation of energy in conservative field (applies only to conservative system, i.e no external force) Key points 𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 where T : Kinetic energy of a particle at a given position V: Potential energy of a particle at a given position 𝑉 = π‘šπ‘”β„Ž 𝑉 = 1 2 π‘˜ π‘₯ π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘ βˆ’ π‘₯ π‘’π‘›π‘ π‘‘π‘Ÿπ‘’π‘β„Žπ‘’π‘‘ 2 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠 where π›₯𝐾. 𝐸 = 𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1 π›₯𝑃. 𝐸 = 𝑃. 𝐸2 βˆ’ 𝑃. 𝐸1 Principle of linear Impulse and Momentum Impulse in a given direction Momentum in that direction Principle of angular Impulse and Momentum Impulse in a given direction Momentum in that direction Datum can be placed at any convenient location, but points above datum has to be taken positive gravitation potential energy (vice versa for points below datum) Conservation of energy (General form) ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍ 𝑖 𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖 Work done is zero if the particle or the system is not subjected to any external force or moment Impulse is zero if the particle or the system is not subjected to any external force or moment 𝑇 = 1 2 π‘šπ‘‰π‘Žπ‘π‘  2
  • 140. 140 Key points Ask yourself: Am I applying conservation of energy /momentum to a particle or a system? Particle (ignore external forces/moment) System (ignore internal forces/moment)
  • 141. 141 Question 1 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 1 2 Datum +s At position 1 )𝐾. 𝐸1 = 0 (π‘ π‘‘π‘Žπ‘Ÿπ‘‘ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘’π‘ π‘‘ 𝑃. 𝐸 1,π‘ π‘π‘Ÿπ‘–π‘›π‘” = 1 2 π‘˜ 𝑅2 + 𝑅2 βˆ’ 𝑅 2 = 1 2 π‘˜( 2𝑅 βˆ’ 𝑅)2 At position 2 𝐾. 𝐸2 = 1 2 π‘šπ‘‰2 2 𝑃. 𝐸 2,π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ = 0 𝑃. 𝐸 2,π‘ π‘π‘Ÿπ‘–π‘›π‘” = 1 2 π‘˜ 𝑅 βˆ’ 𝑅 2 = 0 π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’1 β†’ 2 = 1 2 π‘šπ‘‰2 2 βˆ’ π‘šπ‘”π‘… βˆ’ 1 2 π‘˜ 2𝑅 βˆ’ 𝑅 2 = 0 At position 3 𝐾. 𝐸3 = 1 2 π‘šπ‘‰3 2 𝑃. 𝐸 3,π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ = βˆ’π‘šπ‘”R 𝑃. 𝐸 3,π‘ π‘π‘Ÿπ‘–π‘›π‘” = 1 2 π‘˜ 𝑅 βˆ’ 𝑅 2 = 0 𝑃. 𝐸 1,π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ = π‘šπ‘”π‘… 𝑉2 = π‘˜ π‘š 2𝑅 βˆ’ 𝑅 2 + 2𝑔𝑅 𝑉2 = 0.1716 π‘˜π‘…2 π‘š + 2𝑔𝑅 π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’1 β†’ 3 = 1 2 π‘šπ‘‰3 2 βˆ’ 1 2 π‘˜( 2𝑅 βˆ’ 𝑅)+( βˆ’ π‘šπ‘”R βˆ’ mgR) = 0 𝑉3 = 0.1716 π‘˜π‘…2 π‘š + 4𝑔𝑅
  • 142. 142 Question 1 1 2 Datum +s 𝑉C = 0.1716 π‘˜π‘…2 π‘š + 4𝑔𝑅 +↑ ෍ 𝐹 = π‘š β‹… π‘Žβ†‘ 𝑁 βˆ’ π‘šπ‘” = π‘š β‹… π‘Žβ†‘ 𝑁 βˆ’ π‘šπ‘” = π‘š β‹… 𝑉3 2 𝑅 𝑁 = π‘š 𝑉3 2 𝑅 + 𝑔 𝑁 = π‘š 0.1716 π‘˜π‘…2 π‘š + 4𝑔𝑅 𝑅 + 𝑔 )𝑁 = π‘š(0.1716π‘˜π‘… + 5𝑔
  • 143. 143 The cord must be in tension in order for the bob to make a circular path about peg B. T mg Τ¦π‘Ž 𝑇 + π‘šπ‘” = π‘š β‹… Τ¦π‘Žβ†“ +↓ ෍ 𝐹 = π‘š β‹… Τ¦π‘Žβ†“ 𝑇 + π‘šπ‘” = π‘š 𝑉2 𝑅 𝑉 Therefore, the minimum velocity to describe a circle about the peg: R From the diagram above, the radius of the described circle as function of L and a is: )𝐿 = 2𝑅 + (π‘Ž βˆ’ 𝑅 𝐿 = 𝑅 + π‘Ž β‡’ 𝑅 = 𝐿 βˆ’ π‘Ž 𝑉min = 𝑔𝑅 Therefore, the minimum velocity to describe a circle about the peg as a function of L and a is: 𝑉min = )𝑔(𝐿 βˆ’ π‘Ž Question 2
  • 144. 144 R Datum 1 +s 2 Apply conservation of energy equation for points 1 and 2 𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 0 + 0 = 1 2 π‘šπ‘‰min 2 βˆ’ π‘šπ‘”(2π‘Ž βˆ’ 𝐿) 𝑉min = )2𝑔(2a βˆ’ 𝐿 )𝑔(𝐿 βˆ’ π‘Ž = )2𝑔(2a βˆ’ 𝐿 )𝑔(𝐿 βˆ’ π‘Ž) = 2𝑔(2a βˆ’ 𝐿 𝐿 βˆ’ π‘Ž) = 2(2a βˆ’ 𝐿 π‘Ž = 0.6𝐿 Question 2
  • 145. 145 ෍ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Datum System at state 1 +s 𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘™π‘œπ‘π‘˜π‘  π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘) )𝑃. 𝐸1 = 220.73𝐽 (𝑑𝑒𝑒 π‘‘π‘œ π‘π‘™π‘œπ‘π‘˜ 𝐡 System at state 2 𝐾. 𝐸2 = 11.76+ 14.7=26.46J 𝑃. 𝐸2 = 176.58𝐽(due to block A) ∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (26.46 βˆ’ 0) + (176.58 βˆ’ 220.73) = βˆ’17.69𝐽 Based on the conservation equation, work done between states State 1 State 2 ∴ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (𝐾. 𝐸2 βˆ’ 𝐾. 𝐸1) + (𝑃. 𝐸2 - 𝑃. 𝐸1) 12kg 15kg Recall…tutorial 8: question 1
  • 146. 146 Question 3 𝑉𝐢 𝑉𝐡 State 1 State 2 System at state 1 𝐾. 𝐸1 = 0 (π‘π‘œπ‘‘β„Ž π‘π‘Žπ‘Ÿπ‘‘ π‘Žπ‘›π‘‘ π‘π‘™π‘œπ‘π‘˜ π‘Žπ‘Ÿπ‘’ π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘) 𝑃. 𝐸1 = 1 2 π‘˜π‘₯ π‘‘π‘’π‘“π‘œπ‘Ÿπ‘šπ‘’π‘‘ 2 = 1 2 (300) 0.2 π‘‘π‘’π‘“π‘œπ‘Ÿπ‘šπ‘’π‘‘ 2 = 6𝐽 System at state 2 𝐾. 𝐸2 = 1 2 π‘š 𝐢 𝑉𝐢 2 + 1 2 π‘š 𝐡 𝑉𝐡 2 = 37.5𝑉𝐢 2 + 25𝑉𝐡 2 )𝑃. 𝐸2 = 0 (𝑠𝑖𝑛𝑐𝑒 π‘ π‘π‘Ÿπ‘–π‘›π‘” π‘π‘’π‘π‘œπ‘šπ‘’π‘  π‘’π‘›π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘’π‘‘ π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = (37.5𝑉𝐢 2 + 25𝑉𝐡 2 ) + (βˆ’6) = 0
  • 147. 147 Question 3 𝑉𝐢 𝑉𝐡 State 1 State 2 Treating the cart, block and the spring as system, the force exerted by the spring to the block is internal, thus can be ignored. Applying conservation of linear momentum between state 1 and 2 ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 0 = π›₯π‘š 𝐢 𝑉𝐢 + π›₯π‘š 𝐡 𝑉𝐡 Since mass of Cart and Block B does not change between state 1 and 2 0 = βˆ’75𝑉𝐢,2 + 50𝑉𝐡,2 βˆ’75𝑉𝐢,2 + 50𝑉𝐡,2=0 37.5𝑉𝐢 2 + 25𝑉𝐡 2 = 6 Solving these equations yields 𝑉𝐡 = 0.375𝑖( Ξ€π‘š 𝑠) 𝑉𝐢 = βˆ’0.253𝑖( Ξ€π‘š 𝑠) Ƹ𝑖 ΰ΅―0 = π‘š 𝐢(𝑉𝐢,2 βˆ’ 𝑉𝐢,1) + π‘š 𝐡(𝑉𝐡,2 βˆ’ 𝑉𝐡,1 ࡯𝑉 ΀𝐡 𝐢 = 𝑉𝐡 βˆ’ 𝑉𝐢 = 0.632 Ƹ𝑖( Ξ€π‘š 𝑠
  • 148. 148 Question 4 Treating the particle P and triangular block B as a system Apply conservation of Liner momentum along i direction Impulse Momentum ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 Impulse term can dropped off since there is no external force that acts on the system along the i direction π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 = 0 Since mass of particle P and Block B are constant π‘š 𝐡(𝑉𝐡,2 βˆ’ 𝑉𝐡,1) + π‘š 𝑃(𝑉𝑃,2 βˆ’ 𝑉𝑃,1) = 0 Since these masses start from rest, momentum equation simplifies to π‘š 𝐡 𝑉𝐡,2 + π‘š 𝑃 𝑉𝑃,2 = 0 Absolute velocity of Particle, P is 𝑉𝑃,2 = 𝑉𝐡,2 + 𝑉 ΀𝑃 𝐡,2 Substituting the absolute velocity into momentum equation along i direction βˆ’20𝑉𝐡,2 + 4(βˆ’π‘‰π΅,2 + 𝑉 ΀𝑃 𝐡,2cos(300)) = 0 ΰ΅―24𝑉𝐡,2 = 4𝑉 ΀𝑃 𝐡,2cos(300 𝑉 ΀𝑃 𝐡,2 = 6𝑉𝐡,2 )cos(300 Ƹ𝑖 Ƹ𝑗 π‘š 𝐡 𝑉𝐡,2 + π‘š 𝑃 𝑉𝑃,2 = 0 β†’ +
  • 149. 149 Question 4 Treating the particle P and triangular block B as a system Conservation of Energy principal π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 0 (Work done is zero since there is no external force or moment acts on the system) π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 1 2 π‘š 𝑃 𝑉𝐡 2 + 1 2 π‘š 𝑃 𝑉𝑃 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 βˆ’ 0 + π‘š 𝑃 π‘”β„Ž π‘ π‘‘π‘Žπ‘‘π‘’ 1= 0 8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 1 2 π‘š 𝐡 𝑉𝐡 2 + 1 2 π‘š 𝑃 𝑉𝑃 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 1 2 π‘š 𝐡 𝑉𝐡 2 + 1 2 π‘š 𝑃 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 Since 𝑉𝑃 = 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 𝑉𝐡 = βˆ’π‘‰π΅ Ƹ𝑖 𝑉𝑃/𝐡 = 𝑉 ΀𝑃 𝐡∠ βˆ’ 300 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 2 = 𝑉𝐡 2 + 2𝑉𝐡 𝑉 ΀𝑃 𝐡 )cos(300 + 𝑉 ΀𝑃 𝐡 2 Ƹ𝑖 Ƹ𝑗 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 2 = 𝑉𝐡,2 2 βˆ’ 2𝑉𝐡,26𝑉𝐡,2 + 6𝑉𝐡,2 )cos(300 2 = 𝑉𝐡,2 2 βˆ’ 12𝑉𝐡,2 2 + 48𝑉𝐡,2 2 = 37𝑉𝐡,2 2 ࡯𝑉 ΀𝑃 𝐡 2 = 𝑉 ΀𝑃 𝐡 2 cos2 (300 ) + 𝑉 ΀𝑃 𝐡 2 sin2 (300 𝑉 ΀𝑃 𝐡 2 = 𝑉 ΀𝑃 𝐡 2 (cos2 (300 ) + sin2 (300 )) = 𝑉 ΀𝑃 𝐡 2
  • 150. 150 Question 4 Treating the particle P and triangular block B as a system Conservation of Energy principal π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 0 (Work done is zero since there is no external force or moment acts on the system) 8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 1 2 π‘š 𝐡 𝑉𝐡 2 + 1 2 π‘š 𝑃 𝑉𝑃 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 1 2 π‘š 𝐡 𝑉𝐡 2 + 1 2 π‘š 𝑃 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 Since 𝑉𝑃 = 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 Ƹ𝑖 Ƹ𝑗 𝑉𝐡 + 𝑉 ΀𝑃 𝐡 2 = 𝑉𝐡,2 2 βˆ’ 2𝑉𝐡,26𝑉𝐡,2 + 6𝑉𝐡,2 )cos(300 2 = 𝑉𝐡,2 2 βˆ’ 12𝑉𝐡,2 2 + 48𝑉𝐡,2 2 = 37𝑉𝐡,2 2 8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 1 2 (20)𝑉𝐡 2 + 1 2 (4)37𝑉𝐡,2 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 8𝑔 π‘ π‘‘π‘Žπ‘‘π‘’ 1 = 10𝑉𝐡 2 + 74𝑉𝐡,2 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 𝑉𝐡 = βˆ’0.967 Ƹ𝑖( Ξ€π‘š 𝑠) 𝑉 ΀𝑃 𝐡 = 6.697( Ξ€π‘š 𝑠)∠ βˆ’ 300 ࡯𝑉𝑃 = βˆ’0.967 Ƹ𝑖 + 6.697∠ βˆ’ 300 ( Ξ€π‘š 𝑠 π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 1 2 π‘š 𝑃 𝑉𝐡 2 + 1 2 π‘š 𝑃 𝑉𝑃 2 π‘ π‘‘π‘Žπ‘‘π‘’ 2 βˆ’ 0 + π‘š 𝑃 π‘”β„Ž π‘ π‘‘π‘Žπ‘‘π‘’ 1= 0
  • 151. Tutorial 10 Kinetics of particles (Conservation of Energy and Momentum) Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 152. 152 Key points Principle of linear Impulse and Momentum Impulse in a given direction Momentum in that direction Principle of angular Impulse and Momentum Impulse in a given direction Momentum in that direction ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 ࢲ෍ 𝑀𝑑𝑑 = π›₯ ෍ 𝑖 𝐼𝑖 πœ” π‘Žπ‘π‘ ,𝑖 Impulse is zero if the particle or the system is not subjected to any external force or moment Collision β€’ Elastic: Objects collide and move away from each other β€’ Inelastic: Objects collide and stick together β€’ Momentum is conserved in both elastic and inelastic collision, but K.E is conserved only in perfectly elastic collision β€’ Coefficient of restitution is a ratio of relative velocity of the particles after collision to before collision Elastic (e=1) Inelastic (e = 0) Max K.E is lost K.E conserved Momentum conserved
  • 153. 153 Key points Ask yourself: Am I applying conservation of energy /momentum to a particle or a system? Particle (ignore external forces/moment) System (ignore internal forces/moment)
  • 154. 154 Bonus question Q: Assuming that all of the kinetic energy of the surging train was imparted to the stationary train, calculate the average retarding force experienced by the stationary train given that it moved 10.7 meters forward before stopping. Assume the weight of the surging train to be 140 tonne and it was moving at 20m/s before collision. Joo Koon train collision Treating stationary train as a particle, assuming an elastic collision 𝐾. 𝐸 π‘šπ‘œπ‘£π‘–π‘›π‘” π‘‘π‘Ÿπ‘Žπ‘–π‘› = 𝐾. πΈπ‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘‘π‘Ÿπ‘Žπ‘–π‘› ∴ 𝐾. πΈπ‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘‘π‘Ÿπ‘Žπ‘–π‘› = 1 2 π‘šπ‘‰2 = 1 2 (140 β‹… 103 ) 20 2 = 28𝑀𝐽 Since π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ = Ԧ𝐹 β‹… Ԧ𝑠 Ԧ𝐹 = π‘Šπ‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ Ԧ𝑠 Ԧ𝐹 = 28𝑀𝐽 10.7 = 2.62𝑀𝑁
  • 155. 155 Question 1 Consider the mass A and B as a system State 1 (Before contact) State 2 (Mass B stops sliding) Ƹ𝑖 ࢲ෍ Ԧ𝐹𝑑𝑑 = π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 Apply principal of impulse and linear momentum to system Since system is not subjected to any external forces π›₯ ෍ 𝑖 π‘šπ‘– π‘‰π‘Žπ‘π‘ ,𝑖 = 0 π›₯π‘š 𝐴 𝑉𝐴 + π›₯π‘š 𝐡 𝑉𝐡 = 0 ΰ΅«π‘š 𝐴 + π‘š 𝐡)π‘‰π‘“π‘–π‘›π‘Žπ‘™ βˆ’ (π‘š 𝐴 𝑉𝐴 + π‘š 𝐡 𝑉𝐡) = 0 Perfectly inelastic collision (Final velocity is common) π‘‰π‘“π‘–π‘›π‘Žπ‘™ = π‘š 𝐴 𝑉𝐴 + π‘š 𝐡 𝑉𝐡 π‘š 𝐴 + π‘š 𝐡 = 30 β‹… 0 Ƹ𝑖 + 12 β‹… 2.5 Ƹ𝑖 30 + 12 = 0.71 Ƹ𝑖
  • 156. 156 Question 1 Consider the mass A and B as a system State 1 (Before contact) State 2 (Mass B stops sliding) Ƹ𝑖 Ratio of final to the initial K.E of the system Kinetic energy of the system at state 1 and 2 𝐾. 𝐸1 = 1 2 π‘š 𝐡 𝑉𝐡 2 = 37.5𝐽 𝐾. 𝐸2 = 1 2 (π‘š 𝐴 + π‘š 𝐡)𝑉𝑓 2 = 10.7𝐽 𝐾. 𝐸2 𝐾. 𝐸1 = 10.7 37.5 = 0.29 This shows that kinetic energy of the system is not conserved in an inelastic collision
  • 157. 157 Question 1 Consider the mass A and B as a system State 1 (Before contact) State 2 (Mass B stops sliding) Ƹ𝑖 Ratio of final to the initial K.E of the system Kinetic energy of the system at state 1 and 2 𝐾. 𝐸1 = 1 2 π‘š 𝐡 𝑉𝐡 2 = 37.5𝐽 𝐾. 𝐸2 = 1 2 (π‘š 𝐴 + π‘š 𝐡)𝑉𝑓 2 = 10.7𝐽 𝐾. 𝐸2 𝐾. 𝐸1 = 10.7 37.5 = 0.29 This shows that kinetic energy of the system is not considered in an inelastic collision
  • 158. 158 Question 2 Apply conservation of energy principal between position 1 and 2 1 2 Datum 𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 0 + 0 = 1 2 π‘šπ‘‰2 βˆ’ π‘š(9.81)(1.2) 𝑉 = )2(9.81)(1.2 = 4.85 Ξ€π‘š 𝑠 3 4 5 βˆ’ 4 5 Ƹ𝑖 + 3 5 Ƹ𝑗 3 5 Ƹ𝑖 + 4 5 Ƹ𝑗 4 5 Ƹ𝑖 βˆ’ 3 5 Ƹ𝑗 Unit vectors X’ Y’ 𝑉2,π‘₯β€² = 3 5 (4.85) = 2.91m/s 𝑉2,𝑦′ = 4 5 𝑒(4.85) = 3.1m/s +β†’ 𝑠 = 𝑠0 + 𝑉0 𝑑 +↓ 𝑠 = 𝑠0 + 𝑉0 𝑑 + 1 2 𝑔𝑑2 𝑑 = 0 + 𝑉2,π‘₯β€²t 4/5𝑑 = 0 + 𝑉2,𝑦′ 𝑑 + 1 2 9.81𝑑2 𝑑 = 𝑉2,π‘₯β€² 𝑑 (4/5)𝑉2,π‘₯β€² 𝑑 = 𝑉2,𝑦′ 𝑑 + 1 2 (9.81)( 4 5 )𝑑2 βˆ’1.35𝑑 + 3.96𝑑2 = 0 π‘ˆπ‘›π‘–π‘‘ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ π‘“π‘œπ‘Ÿ 𝑑 = 4 5 Ƹ𝑖 βˆ’ 3 5 Ƹ𝑗
  • 159. 159 Question 2 Apply conservation of energy principal between position 1 and 2 1 2 Datum 𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 0 + 0 = 1 2 π‘šπ‘‰2 βˆ’ π‘š(9.81)(1.2) 𝑉 = )2(9.81)(1.2 = 4.85 Ξ€π‘š 𝑠 3 4 5 βˆ’ 4 5 Ƹ𝑖 + 3 5 Ƹ𝑗 3 5 Ƹ𝑖 + 4 5 Ƹ𝑗 4 5 Ƹ𝑖 βˆ’ 3 5 Ƹ𝑗 Unit vectors X’ Y’ 𝑉2,π‘₯β€² = 3 5 (4.85) = 2.91m/s 𝑉2,𝑦′ = 4 5 𝑒(4.85) = 3.1m/s +β†’ 𝑠 = 𝑠0 + 𝑉0 𝑑 +↓ 𝑠 = 𝑠0 + 𝑉0 𝑑 + 1 2 𝑔𝑑2 𝑑 = 0 + 𝑉2,π‘₯β€²t 3 5 𝑑 = 0 + 𝑉2,𝑦′ 𝑑 + 1 2 9.81𝑑2 𝑑 = 𝑉2,π‘₯β€² 𝑑 3 5 β‹… 5 4 𝑉2,π‘₯β€² 𝑑 = 𝑉2,𝑦′ 𝑑 + 1 2 (9.81)𝑑2 0.918𝑑 + 4.91𝑑2 = 0
  • 160. 160 Question 3 Plane of contact (line drawn tangent to circles) Line of impact-Momentum is conserved in both directions -Coefficient of restitution applies only along line of impact t n Conservation of momentum of balls in t direction Ball A: t-dir π‘šπ‘£ π‘œsinπœƒ = π‘šπ‘£ 𝐴𝑑 β€² β‡’ 𝑣 𝐴𝑑 β€² = 𝑣 π‘œsinπœƒ Ball B: t-dir 0 = π‘šπ‘£ 𝐡𝑑 β€² β‡’ 𝑣 𝐡𝑑 β€² = 0 Conservation of momentum of balls in n direction Ball A+B: n-dir π‘šπ‘£ π‘œcosπœƒ + 0 = π‘šπ‘£ 𝐴𝑛 β€² + π‘šπ‘£ 𝐡𝑛 β€² ∴ 𝑣 π‘œcosπœƒ = 𝑣 𝐴𝑛 β€² + 𝑣 𝐡𝑛 β€² Apply coefficient of restitution along line of impact ࡯𝑣 𝐡𝑛 β€² βˆ’ 𝑣 𝐴𝑛 β€² = 𝑒(𝑣 𝐴𝑛 βˆ’ 𝑣 𝐡𝑛 )𝑣 𝐡𝑛 β€² βˆ’ 𝑣 𝐴𝑛 β€² = 𝑒(𝑣0cosπœƒ βˆ’ 0 Solving highlighted equations along n direction 𝑣 𝐴𝑛 β€² = 𝑣0 1 βˆ’ 𝑒 2 cosπœƒ 𝑣 𝐡𝑛 β€² = 𝑣0 1 + 𝑒 2 cosπœƒ
  • 161. 161 Conservation of momentum of balls in t direction Ball A: t-dir π‘šπ‘£ π‘œsinπœƒ = π‘šπ‘£ 𝐴𝑑 β€² β‡’ 𝑣 𝐴𝑑 β€² = 𝑣 π‘œsinπœƒ Ball B: t-dir 0 = π‘šπ‘£ 𝐡𝑑 β€² β‡’ 𝑣 𝐡𝑑 β€² = 0 Conservation of momentum of balls in n direction Ball A+B: n-dir π‘šπ‘£ π‘œcosπœƒ + 0 = π‘šπ‘£ 𝐴𝑛 β€² + π‘šπ‘£ 𝐡𝑛 β€² ∴ 𝑣 π‘œcosπœƒ = 𝑣 𝐴𝑛 β€² + 𝑣 𝐡𝑛 β€² Apply coefficient of restitution along line of impact ࡯𝑣 𝐡𝑛 β€² βˆ’ 𝑣 𝐴𝑛 β€² = 𝑒(𝑣 𝐴𝑛 βˆ’ 𝑣 𝐡𝑛 )𝑣 𝐡𝑛 β€² βˆ’ 𝑣 𝐴𝑛 β€² = 𝑒(𝑣0cosπœƒ βˆ’ 0 Solving highlighted equations along n direction 𝑣 𝐴𝑛 β€² = 𝑣0 1 βˆ’ 𝑒 2 cosπœƒ 𝑣 𝐡𝑛 β€² = 𝑣0 1 + 𝑒 2 cosπœƒ Question 3 Substitute the given parameters 𝑣 𝐴𝑛 β€² = 𝑣0 1 βˆ’ 0.8 2 cos45 = 0.070𝑣0 𝑣 𝐡𝑛 β€² = 𝑣0 1 + 0.8 2 cos45 = 0.6364𝑣0 𝑣 𝐴𝑑 β€² = 𝑣0sin45 = 0.707𝑣0 𝑣 𝐡𝑑 β€² = 0 Velocity magnitude and direction of each ball after impact is… |𝑣 𝐴 β€² | = 0.707𝑣0 2 + 0.070𝑣0 2 Ξ€1 2 = 0.711𝑣0 𝛽 = tanβˆ’1 0.0707 0.707 = 5.70 πœƒ = 450 βˆ’ 5.70 = 39.30 Ԧ𝑣 𝐴 β€² = 0.711𝑣0∠39.30 Ԧ𝑣 𝐡 β€² = 0.636𝑣0∠ βˆ’450
  • 162. 162 Question 5 t n -Momentum is conserved in both directions (n and t dir.) -Coefficient of restitution applies only along line of impact (n-dir.) 1 2 π‘š 𝐴 𝑣 𝐴0 2 = π‘š 𝐴 𝑔(𝑙 βˆ’ 𝑙cos450 ) β†’ 𝑣 𝐴0 = 0.7654 𝑔𝑙 Conservation of energy equation to find impact velocity of A Conservation of linear momentum along n-direction π‘š 𝐴 𝑣 𝐴0 + 0 = βˆ’π‘š 𝐴 𝑣 𝐴1 + π‘š 𝐡 𝑣 𝐡1 Apply restitution along n-direction )βˆ’π‘£ 𝐴1 βˆ’ 𝑣 𝐡1 = 𝑒(βˆ’π‘£ 𝐴0 βˆ’ 0 ࡯𝑣 𝐴1 + 𝑣 𝐡1 = 0.75(0.7654 𝑔𝑙 1.5(0.7654 𝑔𝑙) = βˆ’1.5𝑣 𝐴1 + 3𝑣 𝐡1 Solving highlighted equations simultaneously 𝑣 𝐴1 = 0.1276 𝑔𝑙 𝑣 𝐡1 = 0.4465 𝑔𝑙 Apply conservation of energy after impact to find the max height π‘š 𝐴 π‘”β„Ž 𝐴 = 1 2 π‘š 𝐴 𝑣 𝐴1 2 β†’ β„Ž 𝐴 = 0.00814𝑙 π‘š 𝐴 π‘”β„Ž 𝐴 = 1 2 π‘š 𝐴 𝑣 𝐡1 2 β†’ β„Ž 𝐡 = 0.09968𝑙 πœƒ = cosβˆ’1 𝑙 βˆ’ β„Ž 𝑙 πœƒ 𝐴 = 7.30 πœƒ 𝐡 = 25.80
  • 163. 163 Question 6 -Momentum is conserved in both directions -Coefficient of restitution applies only along line of impact ( Ƹ𝑒 𝑛-dir.) Ƹ𝑖 Ƹ𝑗 Ƹ𝑒 𝑛 = 1∠300 Ƹ𝑒𝑑 = 1∠1200 )𝑣 𝐴0 = βˆ’15 Ƹ𝑖( Ξ€π‘š 𝑠 Express initial velocity of sphere in terms of n-t direction 𝑣 𝐴0 = βˆ’15 Ƹ𝑖( Ξ€π‘š 𝑠) = 7.5 Ƹ𝑒𝑑 βˆ’ 12.99 Ƹ𝑒 𝑛 Express final velocity of block and sphere in terms of n-t direction 𝑣 𝐡1 = βˆ’π‘£ 𝐡1 Ƹ𝑖 = 0.5𝑣 𝐡1 Ƹ𝑒𝑑 βˆ’ 0.866𝑣 𝐡1 Ƹ𝑒 𝑛 𝑣 𝐴1 = 7.5 Ƹ𝑒𝑑 + 𝑣 𝐴1 Ƹ𝑒 𝑛 Note that momentum is conserved an t-dir. That’s why velocity of the sphere is remains unchanged after impact Conservation of linear momentum of the system along i direction is π‘š 𝐴 Ԧ𝑣 𝐴0 = π‘š 𝐴 Ԧ𝑣 𝐴1 + π‘š 𝐡 Ԧ𝑣 𝐡1 1.5(βˆ’15) = 1.5(7.5 Ƹ𝑒𝑑 + 𝑣 𝐴1 Ƹ𝑒 𝑛) βˆ’ 4𝑣 𝐡1 βˆ’22.5 = 11.25cos1200 + 1.5𝑣 𝐴1cos300 βˆ’ 4𝑣 𝐡1
  • 164. 164 Question 6 -Momentum is conserved in both directions -Coefficient of restitution applies only along line of impact ( Ƹ𝑒 𝑛-dir.) Ƹ𝑖 Ƹ𝑗 Apply restitution along line of impact 𝑣𝐴1 Ƹ𝑒 𝑛 βˆ’ 𝑣 𝐡1 Ƹ𝑒 𝑛 ) = βˆ’π‘’(𝑣𝐴0 Ƹ𝑒 𝑛 βˆ’ 𝑣 𝐡0 Ƹ𝑒 𝑛 ቀ𝑣𝐴1 Ƹ𝑒 𝑛 + 0.866𝑣 𝐡1) = 9.7425 Solving highlighted equations… 𝑣 𝐡1 = 5.762 Ξ€π‘š 𝑠 1 2 π‘˜π‘₯2 = 1 2 π‘š 𝐡 𝑣 𝐡1 2 β†’ π‘₯ = 0.163π‘š Use conservation of energy equations to find spring deflection π‘€π‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Since system isn’t subjected to any external force, such a friction, workdone is zero. π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 = 0 P.E before impact from sphere is zero and K.E is zero at max spring deflection βˆ’πΎ. 𝐸1 + 𝑃. 𝐸2 = 0 βˆ’πΎ. 𝐸1 = βˆ’π‘ƒ. 𝐸2
  • 165. Tutorial 11 Kinetics of rigid body(Newton’s Second Law) Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 166. 166 Question 1 Find the absolute acceleration of point B, by fixing a rotating reference frame at A. Since… Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐴 + Ԧ𝛼 Γ— Τ¦π‘Ÿπ΅π΄ + πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄) + 2πœ” Γ— Ԧ𝑣 π‘Ÿπ‘’π‘™ + Τ¦π‘Ž π‘Ÿπ‘’π‘™ )∴ Τ¦π‘Ž 𝐡 = πœ” Γ— (πœ” Γ— Τ¦π‘Ÿπ΅π΄ - Point A does not translate - Disk rotates with constant angular velocity - Point me does not translated w.r.t rotating reference frame ΰ΅―πœ” = 18.85ΰ· π‘˜(π‘Ÿπ‘Ž ΀𝑑 𝑠 Τ¦π‘Ÿπ΅π΄ = 0.2π‘šβˆ 600 Τ¦π‘Ž 𝐡 = βˆ’35.53 Ƹ𝑖 βˆ’ 61.54 Ƹ𝑗 Since rod BC is in translational (pin-pin end boundary condition) Τ¦π‘Ž 𝐡 = Τ¦π‘Ž 𝐺 G Ԧ𝐹 = π‘š Τ¦π‘Ž 𝐺 Ԧ𝐹 = 7(βˆ’35.53 Ƹ𝑖 βˆ’ 61.54 Ƹ𝑗) 𝑁 Since pin-pin end boundary condition does not resists moment 𝑀 𝐺 = 0
  • 167. 167 Question 1 G Free body diagram of the road with constrains at both ends ෍ Ԧ𝐹 = π‘š Τ¦π‘Ž ࡯𝐹𝐡 π‘₯ Ƹ𝑖 + 𝐹𝐡 𝑦 Ƹ𝑗 βˆ’ π‘šπ‘” Ƹ𝑗 + 𝐹𝐢 π‘₯ Ƹ𝑖 + 𝐹𝐢 𝑦 Ƹ𝑗 = 7(βˆ’35.53 Ƹ𝑖 βˆ’ 61.54 Ƹ𝑗 Equating Ƹ𝑖 and Ƹ𝑗 components 𝐹𝐡 π‘₯ + 𝐹𝐢 π‘₯ = βˆ’248.71 𝐹𝐡 𝑦 + 𝐹𝐢 𝑦 = βˆ’362.11 Since moment about C.G is zero… 𝐹𝐡 𝑦 = 𝐹𝐢 𝑦 𝑀 𝐺 = 0 𝐹𝐡 𝑦 = 𝐹𝐢 𝑦 = βˆ’181.1𝑁
  • 168. 168 Question 2 𝐼𝐴 = 𝐼 𝐺 + π‘š π‘Ÿπ‘œπ‘‘ 𝐿 2 2 𝐼𝐴 = 1 12 π‘š π‘Ÿπ‘œπ‘‘ 𝐿2 + π‘š π‘Ÿπ‘œπ‘‘ 𝐿 2 2 = 0.375π‘˜π‘” β‹… π‘š2 +𝑐𝑐𝑀 ෍ 𝑀 = 𝐼𝐴 Ԧ𝛼 𝑇 β‹… π‘Ÿ = 𝐼 𝐺 Ԧ𝛼 12 β‹… 𝐿 = (0.375) Ԧ𝛼 Ԧ𝛼 = 24π‘Ÿπ‘Ž ΀𝑑 𝑠2 π‘Ž 𝐺 = Ԧ𝛼 β‹… 𝐿 2 = βˆ’9 Ƹ𝑖 Apply Equation of motion at point G ΰ΅―βˆ’2𝑔 Ƹ𝑗 βˆ’ 12 Ƹ𝑖 + 𝐹𝐴 π‘₯ Ƹ𝑖 + 𝐹𝐴 𝑦 Ƹ𝑗 = 2(βˆ’9 Ƹ𝑖 Ƹ𝑖 Ƹ𝑗 Equation i and j components 𝐹𝐴 π‘₯ = βˆ’6𝑁 𝐹𝐴 𝑦 = 19.63𝑁
  • 169. 169 Question 3 Ƹ𝑖 Ƹ𝑗 𝐼 𝐺 = 1 2 π‘šπ‘Ÿ2 = 0.5(7) 0.125 2 π‘˜π‘” β‹… π‘š2 +𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼 4(0.125) = 0.5(0.7) 0.125 2 Ԧ𝛼 Ԧ𝛼 = 9.143π’Œ(π‘Ÿπ‘Ž ΀𝑑 𝑠2) Ԧ𝐹 = π‘š Τ¦π‘Ž 𝐺 4 = 7 Τ¦π‘Ž 𝐺 Τ¦π‘Ž 𝐺 = 0.57𝐒 Ξ€(π‘š 𝑠2) Τ¦π‘Ž ΀𝐴 𝐺 = Ԧ𝛼 Γ— Τ¦π‘Ÿπ΄πΊ ΰ΅―Τ¦π‘Ž ΀𝐴 𝐺 = 9.143ΰ· π‘˜ Γ— βˆ’0.125 Ƹ𝑗 = 1.14 Ƹ𝑖( Ξ€π‘š 𝑠 𝑠 = 1 2 π‘Ž ΀𝐴 𝐺 𝑑2 = 2.28π‘š
  • 170. 170 Question 5 Τ¦π‘Ž 𝑃 = Τ¦π‘Ž 𝐴 + Τ¦π‘Ž ΀𝑃 𝐴 Τ¦π‘Ž 𝐴 = π‘Ž 𝐴 Ƹ𝑖 Τ¦π‘Ž ΀𝑃 𝐴 = βˆ’π‘Ž ΀𝑃 𝐴 Ƹ𝑒𝑑 Ƹ𝑒𝑑 = 1∠300 Ƹ𝑒 𝑛 = 1∠1200 𝛼 = π‘Ž ΀𝑃 𝐡 π‘Ÿ Angular acceleration of the pipe is Linear equation of motion of the ring ࡯𝑁 Ƹ𝑒 𝑛 + 𝐹 Ƹ𝑒𝑑 βˆ’ 500𝑔 Ƹ𝑗 = 500(π‘Ž 𝐴 Ƹ𝑖 βˆ’ π‘Ž ΀𝑃 𝐴 Ƹ𝑒𝑑 π‘π‘œπ‘‘π‘’: Ƹ𝑖 β‹… Ƹ𝑖 = 1 Ƹ𝑖 β‹… Ƹ𝑗 = 0 Ƹ𝑗 β‹… Ƹ𝑖 = 0 Ƹ𝑗 β‹… Ƹ𝑗 = 1 )Ƹ𝑖 β‹… Ƹ𝑒𝑑 = cos(πœƒ Dot Equation of motion of pipe by Ƹ𝑒 𝑛 )𝑁 βˆ’ 500𝑔(0.866) = 500π‘Ž 𝐴(βˆ’0.5 Dot Equation of motion of pipe by Ƹ𝑒𝑑 𝐹 βˆ’ 500𝑔(0.5) = 500π‘Ž 𝐴(0.866) βˆ’ 500π‘Ž ΀𝑃 𝐴 +𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝑝 𝛼 πΉπ‘Ÿ = 𝐼 𝑝 𝛼 = 𝐼 𝑝 π‘Ž ΀𝑃 𝐡 π‘Ÿ 𝐹 = 500π‘Ž ΀𝑃 𝐴 Rotational equation of motion of pipe Where theta is the angle between the unit vectors.
  • 171. 171 Question 5 Τ¦π‘Ž 𝐴 = π‘Ž 𝐴 Ƹ𝑖 Equation of motion of the ramp βˆ’π‘ Ƹ𝑒 𝑛 βˆ’ 𝐹 Ƹ𝑒𝑑 βˆ’ 300𝑔 Ƹ𝑗 + 𝑅 Ƹ𝑗 = 300π‘Ž 𝐴 Ƹ𝑖 Dot Ƹ𝑖 𝑁(0.5) βˆ’ 𝐹(0.866) = 300π‘Ž π‘Ž Since… 𝐹 = 500π‘Ž ΀𝑃 𝐴 ∴ 𝑁 = 866π‘Ž ΀𝑃 𝐴 + 600π‘Ž 𝐴 )𝑁 βˆ’ 500𝑔(0.866) = 500π‘Ž 𝐴(βˆ’0.5 𝐹 βˆ’ 500𝑔(0.5) = 500π‘Ž 𝐴(0.866) βˆ’ 500π‘Ž ΀𝑃 𝐴 Linear equation of motion of ring is… Where… 𝐹 = 500π‘Ž ΀𝑃 𝐴 𝑁 = 866π‘Ž ΀𝑃 𝐴 + 600π‘Ž 𝐴 866π‘Ž ΀𝑃 𝐴 + 850π‘Ž 𝐴 = 433𝑔 Therefore… 1000π‘Ž ΀𝑃 𝐴 βˆ’ 433π‘Ž 𝐴 = 250𝑔 Solving… π‘Ž ΀𝑃 𝐴 = 3.203 Ξ€π‘š 𝑠2 π‘Ž 𝐴 = 1.73 Ξ€π‘š 𝑠2
  • 172. 172 Question 6 Length of the rope has to be constant 2π‘₯ 𝐡 + π‘₯ 𝐷 = constant 2 ሢπ‘₯ 𝐡 + ሢπ‘₯ 𝐷 = 0 Velocity relationship Acceleration relationship 2 ሷπ‘₯ 𝐡 + ሷπ‘₯ 𝐷 = 0 Acceleration relationship ሷπ‘₯ 𝐺 = π›Όπ‘Ÿ = 0.15𝛼 ሷπ‘₯ 𝐷 = 𝛼(2π‘Ÿ) = 0.3𝛼 ሷπ‘₯ 𝐡 = βˆ’0.5 ሷπ‘₯ 𝐷 = βˆ’0.15𝛼 +↓ ෍ 𝐹 = π‘šπ‘Ž 20 βˆ’ 2𝑇 = 20 𝑔 ሷπ‘₯ 𝐡 = 20 𝑔 (βˆ’0.15𝛼) Linear equation of motion for weight Linear equation and rotational EOM for disc +β†’ ෍ 𝐹 = π‘šπ‘Ž 𝑇 + 𝐹 = βˆ’50 𝑔 (0.15𝛼)
  • 173. 173 Question 6 Linear EOM for disc +β†’ ෍ 𝐹 = π‘šπ‘Ž 𝑇 + 𝐹 = βˆ’50 𝑔 (0.15𝛼) Rotational EOM for disc +𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼 ( 𝐹 βˆ’ 𝑇)π‘Ÿ = 𝐼 𝐺 𝛼 (𝐹 βˆ’ 𝑇)(0.15) = 1 2 50 𝑔 0.15 2 𝛼 Simultaneously solving highlighted EOM gives 𝛼 = βˆ’13.77π‘Ÿπ‘Ž ΀𝑑 𝑠2 𝐹 = 2.6315𝑁 𝑇 = 7.89𝑁
  • 174. Tutorial 12 Kinetics of rigid body (Auxiliary Principles) Dr N SATHEESH Kumar Research Fellow,SMRT-NTU SmartUrban Rail Corporate Laboratory 50 Nanyang Avenue, S2.1-B3-01, Singapore 639798 T 65-98466232 F65-6790-9313 nsatheesh@ntu.edu.sg www.ntu.edu.sg http://tiny.cc/smlssy
  • 175. 175 Question 1 π‘Ÿπ΄ πœƒ = 𝑠 𝐴 = 900π‘šπ‘š π‘Ÿπ΅ πœƒ = 𝑠 𝐡 πœƒ = 𝑠 𝐴 π‘Ÿ 𝐴 =7.5 rad π‘Ÿπ΅ β‹… 𝑠 𝐴 π‘Ÿπ΄ = 𝑠 𝐡 180 β‹… 900 120 = 𝑠 𝐡 𝑠 𝐡 = 1.35π‘š Apply Conservation of Energy Principal to System Placing datum at state 1 position, P.E and K.E is… 𝐾. 𝐸1 = 0 𝑃. 𝐸1 = 0 State 2 𝐾. 𝐸2 = 1 2 𝐼 𝐺 πœ”2 + 1 2 π‘š 𝐴 𝑉𝐴 2 + 1 2 π‘š 𝐡 𝑉𝐡 2 𝐾. 𝐸2 = 0.5(0.1176)πœ”2 + 0.5(3) 0.12 2 πœ”2 + 0.5(3)(0.18)2 πœ”2 π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 𝐼 𝐺 = π‘šπ‘˜2 = 6 β‹… 0.142 = 0.1176 πœ” = 8.5π‘Ÿπ‘Ž ΀𝑑 𝑠 𝑣 = πœ” β‹… π‘Ÿ = 8.5(0.12) = 1.03 Ξ€π‘š 𝑠 𝐾. 𝐸1 = 𝑃. 𝐸1 = 0 π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ π‘“π‘Ÿπ‘–π‘π‘‘π‘–π‘œπ‘› = βˆ’0.5 β‹… 7.5 = βˆ’3.75𝐽 𝑃. 𝐸2 = βˆ’π‘šπ‘”π‘  𝐡 + π‘šπ‘”π‘  𝐴 )𝑃. 𝐸2 = βˆ’3𝑔(1.35) + 3𝑔(0.9 = -13.24J ∴ βˆ’3.75 = βˆ’13.24 + 0.13πœ”2
  • 176. 176 Question 2 πœ” 𝐴 π‘Ÿπ΄ = πœ” 𝐡 π‘Ÿπ΅ )πœ” 𝐴(150) = πœ” 𝐡(100 πœ” 𝐴 = 𝑣 𝐴 π‘Ÿπ΄ = 10𝑣 𝐴 ∴ πœ” 𝐡 = 10𝑣 𝐴 150 100 = 15𝑣 𝐴 Likewise… 𝛼 𝐴 π‘Ÿπ΄ = π‘Ž 𝛼 𝐴 = π‘Ž π‘Ÿπ΄ = 10π‘Ž 𝛼 𝐴 π‘Ÿπ΄ = 𝛼 𝐡 π‘Ÿπ΅ 𝛼 𝐡 = 15π‘Ž Apply Conservation of Energy Principal to System Placing datum at state 1 position, P.E and K.E is… 𝑃. 𝐸1 = 0 𝐾. 𝐸1 = 0 State 2 𝑃. 𝐸2 = βˆ’π‘š 𝐢 𝑔𝑠 𝐾. 𝐸2 = 1 2 π‘š 𝐢 𝑉𝐢 2 + 1 2 𝐼 𝐺 πœ” 𝐴 2 + 1 2 𝐼 𝐺 πœ” 𝐡 2 π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸=0 (no external force) ∴ 𝑃. 𝐸2 = 𝐾. 𝐸2 10𝑔𝑠 = 45.625𝑣 π‘Ž 2 )10𝑔𝑠 = 45.625(2π‘Žπ‘  ∴ π‘Ž = 10𝑔 2 β‹… 45.625 = 1.075 Ξ€π‘š 𝑠2 Velocity after 3s is… 𝑣 = π‘Žπ‘‘ = 1.075(3) = 3.23 Ξ€π‘š 𝑠
  • 177. 177 Question 2 +𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼 𝐡 𝑇𝐡(0.1) = 𝐼 𝐺 𝛼 𝐡 β†’ 𝑇𝐡 = 40.32𝑁 𝑇𝐴(0.1) βˆ’ 𝑇𝐡(0.15) = 𝐼 𝐺 𝛼 𝐴 β†’ 𝑇𝐴 = 87.35𝑁 Apply equation of motion to pulley A and pulley B
  • 178. 178 Question 3 𝑣 𝐺 = 𝐿 2 αˆΆπœƒ = 𝐿 2 πœ” Making use of IC 𝑇 = 1 2 π‘šπ‘£ 𝐺 2 + 1 2 𝐼 𝐺 πœ”2 = 1 6 π‘šπΏ2 πœ”2 K.E of the rod AB can be expressed as… P.E of the rod AB can be expressed as… 𝑉 = π‘šπ‘”π‘¦ + 1 2 π‘˜π›Ώ2 𝑉 = π‘šπ‘”(βˆ’0.5𝐿sinπœƒ) + 1 2 π‘˜ 𝐿sinπœƒ 2 Since the rod is not subjected to any external force π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = 0 0 = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Since, the K.E and P.E of the rod is zero when theta is equal to zero 𝐾. 𝐸2 = βˆ’π‘ƒ. 𝐸2 1 6 π‘šπΏ2 πœ”2 = π‘šπ‘”(0.5𝐿sinπœƒ) βˆ’ 1 2 π‘˜ 𝐿sinπœƒ 2 πœ” = Β± ቇ3( 𝑔 𝐿 sinπœƒ βˆ’ π‘˜ π‘š sin2 πœƒ 𝑣 𝐴 = 𝐿cos(πœƒ)πœ” 𝑣 𝐴 = ±𝐿cosπœƒ ቇ3( 𝑔 𝐿 sinπœƒ βˆ’ π‘˜ π‘š sin2 πœƒ Velocity of point A can be found using IC C.G of the rod
  • 179. 179 Question 4 Using the instant center for the rolling without slipping, we have… 𝑣 𝐴 = πœ” β‹… π‘Ÿπ΄ 𝑣 𝐢 = πœ” β‹… 2π‘ŸπΆ 𝑣 𝐡 = πœ” β‹… π‘Ÿπ΅ 𝐡𝑒𝑑 π‘ŸπΆ = 2π‘Ÿπ΄ = 2π‘Ÿπ΅ 𝑣 𝐴 = 𝑣 𝐡 = 0.5𝑣 𝐢 Therefore… πœ” 𝐴 = πœ” 𝐡 = πœ” = 0.5𝑣 π‘Ÿ The wheel rotates without slipping, work is force times distance. If there is no slip, the force of friction acts over a distance of 0. Therefore frictional force does no work. π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Since the cart starts from rest… 𝐹 β‹… 𝑠 = 𝐾. 𝐸2 + 𝑃. 𝐸2 The cart has translational K.E while the wheels have both translational and rotational K.E 10 β‹… 𝑠 = 1 2 (6)𝑣2 + 2[ 1 2 (4) 0.5𝑣 2 + 1 2 𝐼 𝐺 πœ”2 ] 𝐼 𝐺 = 1 2 (4)π‘Ÿ2 10𝑠 = 4.5𝑣2
  • 180. 180 Question 4 The wheel rotates without slipping, work is force times distance. If there is no slip, the force of friction acts over a distance of 0. Therefore frictional force does no work. π‘Šπ‘œπ‘Ÿπ‘˜π‘‘π‘œπ‘›π‘’ = π›₯𝐾. 𝐸 + π›₯𝑃. 𝐸 Since the cart starts from rest… 𝐹 β‹… 𝑠 = 𝐾. 𝐸2 + 𝑃. 𝐸2 The cart has translational K.E while the wheels have both translational and rotational K.E 10 β‹… 𝑠 = 1 2 (6)𝑣2 + 2[ 1 2 (4) 0.5𝑣 2 + 1 2 𝐼 𝐺 πœ”2 ] 𝐼 𝐺 = 1 (4)π‘Ÿ2 Recall constant acceleration formulas… 10𝑠 = 4.5𝑣2 )∴ 10𝑠 = 4.5(2π‘Žπ‘  π‘Ž = 1.11 Ξ€π‘š 𝑠2 𝑣 = π‘Žπ‘‘ 𝑣 = 1.11(2.5) = 2.78 Ξ€π‘š 𝑠
  • 181. 181 Question 5 2𝑠 𝐴 βˆ’ 𝑠 𝐷 = constant Author Setup Recommended D SD SA C1 𝑆𝐴 βˆ’ 𝐢1 𝑆𝐴 βˆ’ 𝑆 𝐷 ( 𝑆𝐴 βˆ’ 𝑆 𝐷) + (𝑆𝐴 βˆ’ 𝐢1) = constant 2𝑆𝐴 βˆ’ 𝑆 𝐷 = constant
  • 182. 182 Question 5 2𝑠 𝐴 βˆ’ 𝑠 𝐷 = constant 2𝑣 𝐴 = 𝑣 𝐷 π‘Žπ‘›π‘‘ 2π‘Ž 𝐴 = π‘Ž 𝐷 πœ” 𝐡 = 𝑣 𝐷 π‘Ÿ = 2𝑣 𝐴 π‘Ÿ πœ” 𝐴 = 𝑣 𝐴 π‘Ÿ 𝛼 𝐴 = π‘Ž 𝐴 π‘Ÿ 𝛼 𝐡 = 2π‘Ž 𝐴 π‘Ÿ Apply Conservation of Energy Principal to System 𝐾. 𝐸1 = 0 𝑃. 𝐸1 = βˆ’π‘šπ‘”π‘  𝐴 Placing datum at s = 0 position, P.E and K.E is… State 1 State 2 𝐾. 𝐸2 = 1 2 𝐼 𝐺 πœ” 𝐴 2 + 1 2 𝐼 𝐺 πœ” 𝐡 2 + 1 2 π‘šπ‘£ 𝐴 2 𝑃. 𝐸2 = βˆ’π‘šπ‘”π‘ π‘“π‘–π‘›π‘Žπ‘™ Work done by or on the system is zero as there is no external force 𝑙𝑒𝑑 𝑠 = π‘ π‘“π‘–π‘›π‘Žπ‘™ βˆ’ 𝑠 π‘Ž π‘šπ‘”π‘  = 1 2 π‘šπ‘£ 𝐴 2 + 1 2 𝐼 𝐺 πœ” 𝐴 2 + 1 2 𝐼 𝐺 πœ” 𝐡 2 𝑔𝑠 = 7 4 𝑣2 Recall constant acceleration formulas…
  • 183. 183 Question 5 𝑙𝑒𝑑 𝑠 = π‘ π‘“π‘–π‘›π‘Žπ‘™ βˆ’ 𝑠 π‘Ž π‘šπ‘”π‘  = 1 2 π‘šπ‘£ 𝐴 2 + 1 2 𝐼 𝐺 πœ” 𝐴 2 + 1 2 𝐼 𝐺 πœ” 𝐡 2 𝑔𝑠 = 7 4 𝑣2 Recall constant acceleration formulas… 2π‘Žπ‘  = 𝑣2 Since 𝑣2 = 4 7 𝑔𝑠 π‘Ž = 1 2𝑠 4 7 𝑔𝑠 = 2 7 𝑔 = 2.803 Ξ€π‘š 𝑠2 Speed after 2.5 seconds is… 𝑣 = π‘Žπ‘‘ = 2.803(2.5) = 7.01 Ξ€π‘š 𝑠 +𝑐𝑐𝑀 ෍ 𝑀 = 𝐼 𝐺 𝛼 𝐡 π‘‡π‘Ÿ = 𝐼 𝐺 𝛼 𝐡 π‘‡π‘Ÿ = 1 2 π‘šπ‘Ÿ2 2π‘Ž π‘Ÿ 𝑇 = 28.03𝑁