SlideShare a Scribd company logo
1 of 46
Download to read offline
Project on Transformer Design
Course no.: EE-3220
Group No.: 16
Name Roll
Md. Ataur Rahman 1703002
Shetu Mohanto 1703018
Md. Nafis Jawad 1703026
Md. Sabbir Mahamud 1703072
Question
Project on Transformer Design
β€’ Design a 150 KVA, 11KV/0.415KV, 50Hz, 3-phase, core type,
delta/star and ONAN cooling-based distribution transformer.
Use cylindrical and crossover type windings, and 5% tapping at
HV side. Also ensure that the impedance voltage is below 4%.
Core Design
Project on Transformer Design
β€’ The value of k is taken from the previous table π‘˜ = 0.45 for 3-phase core type
distribution transformer.
β€’ Voltage per turn, 𝐸𝑑 = π‘˜ 𝑄 = 0.45 150 = 5.511𝑉
β€’ Therefore, Flux in the core, πœ™π‘š =
πΈπ‘˜π‘‘
4..44βˆ—π‘“
=
5.511
4..44βˆ—50
= 0.02482π‘Šπ‘
β€’ Hot rolled silicon steel grade 92 is used. The value of flux density π΅π‘š is assumed as
1.0π‘Šπ‘/π‘š2
β€’ ∴Net iron Area , 𝐴𝑖 =
πœ™π‘š
π΅π‘š
=
0.02482
1
=0.02482 π‘š2
=24.82 βˆ— 103
π‘šπ‘š2
Project on Transformer Design
β€’ Using a cruciform core, cross section area of the core,
𝐴𝑖 = 0.56 βˆ— 𝑑2 [π‘π‘œπ‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’π‘Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘  = 0.5 𝑑 = π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘ π‘π‘Ÿπ‘–π‘π‘–π‘› π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘Ÿπ‘’]
β€’ Diameter of the circumscribing circle,
𝑑 =
𝐴𝑖
0.56
=
24.82βˆ—103
0.56
= 211π‘šπ‘š
β€’ Reference width laminations,
π‘Ž = 0.85 βˆ— 𝑑 = 0.85 βˆ— 210.52 = 178.94π‘šπ‘š β‰ˆ 179π‘šπ‘š
𝑏 = 0.53 βˆ— 𝑑 = 0.53 βˆ— 210.52 = 111.57π‘šπ‘š β‰ˆ 112π‘šπ‘š
Window Dimension
Project on Transformer Design
β€’ For transformer rating in between 50 π‘‘π‘œ 200 𝐾𝑉𝐴 ,the equation for window spacing factor,
𝐾𝑀 =
10
30 + 𝐾𝑉 π‘Ÿπ‘Žπ‘‘π‘–π‘›π‘” π‘œπ‘“ 𝐻𝑇 𝑠𝑖𝑑𝑒 π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘Ÿ
=
10
30+11
= 0.244
β€’ Assuming the current density of the conductor 𝛿 = 2 𝐴/π‘šπ‘š2
,
β€’ We can find the window area from the KVA equation of the Transformer
𝑄 = 3.33 βˆ— 𝑓 βˆ— π΅π‘š βˆ— 𝐾𝑀 βˆ— 𝛿 βˆ— 𝐴𝑀 βˆ— 𝐴𝑖 βˆ— 10βˆ’3
⟹ 𝐴𝑀 =
𝑄
3.33βˆ—π‘“βˆ— π΅π‘šβˆ— πΎπ‘€βˆ— π›Ώβˆ—π΄π‘–βˆ—10βˆ’3
=
150
3.33βˆ—50βˆ—1βˆ—0.244βˆ— 2βˆ—106 βˆ—0.02482βˆ—10βˆ’3
∴ 𝐴𝑀 = 0.0744π‘š2
β€’ Taking the ratio of Height to width 3.28 [𝑏𝑒𝑑𝑀𝑒𝑒𝑛 2 π‘‘π‘œ 4] for the window dimension,
𝐻𝑀 βˆ— π‘Š
𝑀 = 74,400 π‘šπ‘š2
β€’ Width of the window, π‘Š
𝑀 =
74400
3.28
= 150.607π‘šπ‘š β‰ˆ 150.6π‘šπ‘š
β€’ Height of the window, 𝐻𝑀 =
74400
π‘Šπ‘€
= 494.02π‘šπ‘š β‰ˆ 494π‘šπ‘š
β€’ Distance between two adjacent limb center ,
𝐷 = π‘Š
𝑀 + 𝑑 = 150.6 + 211 = 361.6π‘šπ‘š 𝑑 = π·π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘ π‘π‘Ÿπ‘–π‘π‘–π‘›π‘” π‘‘β„Žπ‘’ π‘π‘œπ‘Ÿπ‘’
Yoke Design
Project on Transformer Design
β€’ The cross sectional area of yoke is 15 π‘‘π‘œ 25% greater than that of limb. Considering 20% larger,
𝐹𝑙𝑒π‘₯ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 𝑖𝑛 π‘¦π‘œπ‘˜π‘’ =
𝐹𝑙𝑒π‘₯ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 𝑖𝑛 π‘™π‘–π‘šπ‘ βˆ— π‘™π‘–π‘šπ‘ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž
π‘¦π‘œπ‘˜π‘’ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž
=
1βˆ— π‘™π‘–π‘šπ‘ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž
1.2βˆ—π‘™π‘–π‘šπ‘ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž
= 0.833π‘Šπ‘/π‘š2
β€’ Net area of yoke = 1.2 βˆ— 24820 π‘šπ‘š2
= 29784 π‘šπ‘š2 = .02978 π‘š
β€’ Gross area of yoke =
29784
0.9
= 33093.33 π‘šπ‘š2
β€’ Taking the cross section of the yoke as rectangular,
∴The depth of yoke 𝐷𝑦 = π‘Ž = 179 π‘šπ‘š
β€’ Height of the yoke 𝐻𝑦 =
33093.33
179
= 184.87 π‘šπ‘š β‰ˆ 185 π‘šπ‘š
Overall Dimension
of Frame
Project on Transformer Design
β€’ Height of Frame ∢ 𝐻𝑀 + 2 βˆ— 𝐻𝑦 = 431 + 2 βˆ— 185 = 801 π‘šπ‘š
β€’ Width of frame: 2 βˆ— 𝐷 + π‘Ž = 2 βˆ— 361.6 + 179 = 902.2 π‘šπ‘š
β€’ Depth of frame, 𝐷𝑦 = π‘Ž = 179 π‘šπ‘š
Low Voltage(L.V.) Winding
(Cylindrical Winding)
Project on Transformer Design
β€’ Secondary voltage 415𝑉, star connected.
β€’ Phase voltage 𝑉
𝑠 =
𝑙𝑖𝑛𝑒 π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’
3
=
415
3
= 239.6 β‰ˆ 240 𝑉
β€’ No of turn per phase 𝑇𝑠 =
𝑉𝑠
𝐸𝑑
=
239
5.511
= 43.476 β‰ˆ 44
β€’ Secondary phase current, 𝐼𝑠 =
𝐾𝑉𝐴
3βˆ—π‘‰π‘ 
=
150βˆ—1000
3βˆ—239.6
= 208.68 A
β€’ Assuming current density 2.1 𝐴/π‘šπ‘š2,
∴Area of the conductor =
208.68
2.1
= 99.37 π‘šπ‘š2
.
β€’ As the current rating is greater than πŸπŸŽπ‘¨, it is not advisable to use circular cross section conductor.
β€’ Taking 15 βˆ— 7 π‘šπ‘š (π‘€π‘–π‘‘π‘‘β„Ž βˆ— π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘ ) strip (rectangular) type bare conductor.
∴Conductor area, 𝐴𝑠 = 105 π‘šπ‘š2
β€’ Current density in secondary winding,
𝐼𝑠
𝐴𝑠
=
208.68
105
= 1.98𝐴/π‘šπ‘š2
That is less than our assumed current density value.
β€’ The conductor is paper insulated (0.25 π‘šπ‘š in each side).
β€’ The increase in dimension on account of paper covering is 0.5 π‘šπ‘š.
β€’ So, Dimension of insulated conductor = 15.5 βˆ— 7.5 = 116.25 π‘šπ‘š2
Project on Transformer Design
β€’ Taking 2 βˆ’ π‘™π‘Žπ‘¦π‘’π‘Ÿ cylindrical winding, 22 π‘‡π‘’π‘Ÿπ‘›π‘  per layer,
∴Axial depth of L.V. winding = 22 βˆ— 15.5 = 341 π‘šπ‘š.
β€’ The height of window is 431 mm. So, the winding leaves
( 431βˆ’341)
2
= 45 π‘šπ‘š clearance in each side.
β€’ Considering 1.5 π‘šπ‘š thick Bakelite cylinders between the core and the L.V. winding , using 0.5 π‘šπ‘š pressboard
cylinder between layers of the L.V. winding,
β€’ Radial depth of low voltage winding,
𝑏𝑠 = π‘›π‘œ. π‘œπ‘“ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  βˆ— π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™ π‘‘π‘’π‘π‘‘β„Ž π‘œπ‘“ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ + π‘–π‘›π‘ π‘’π‘™π‘Žπ‘‘π‘œπ‘Ÿ 𝑏𝑒𝑑𝑛 π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘ 
= 2 βˆ— 7.5 + 0.5
= 15.5 π‘šπ‘š
β€’ Diameter of circumscribing circle ,𝑑 = 211 π‘šπ‘š
β€’ The inner diameter of of L.V. winding = 211 + (2 βˆ— 1.5) = 214 π‘šπ‘š
β€’ The outer diameter of L.V. winding = 214 + 2 βˆ— 15.5 = 245 π‘šπ‘š
High Voltage(H.V.) Winding
(Crossover Winding)
Project on Transformer Design
β€’ π‘ƒπ‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦ 𝑙𝑖𝑛𝑒 π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = π‘π‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦ π‘β„Žπ‘Žπ‘ π‘’ π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = 11 𝐾𝑉
β€’ No of turns per phase 𝑇𝑝 =
π‘‰π‘βˆ—π‘‡π‘ 
𝑉𝑠(π‘π‘’π‘Ÿ π‘β„Žπ‘Žπ‘ π‘’)
=
11000βˆ—44
239.6
= 2020
β€’ As 5% tapping is to be provided so, the no. of turn has to be,= 1.05 βˆ— 2020 = 2121
β€’ Taking no. of coil in the H.V. side =14 ,
β€’ 7 coils of 169 Turns , each of them has 13 layers , so there is 13 turns per layer.
β€’ 6 coils of 140 turns, each of them has 14 layers , so there is 10 turns per layer.
β€’ 1 coil of 98 turns, it has 14 layer , so there is 7 turns per layer.
β€’ So the overall no of turns = 7 βˆ— 169 + 6 βˆ— 140 + 1 βˆ— 98 = 2121.
β€’ In the turn combinations, the maximum no of turns in the coils is 169. the impressed voltage on those coils is
169 βˆ— 5.511 = 931.36 𝑉 which is below 1000 𝑉. The impressed voltage on the rest coils will also be less
than 1000 𝑉.
β€’ In the turn combinations, the maximum voltage between two layers will be
= 2 βˆ— π‘›π‘œ. π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘›π‘  π‘π‘’π‘Ÿ π‘™π‘Žπ‘¦π‘’π‘Ÿ βˆ— 𝑖𝑛𝑑𝑒𝑐𝑒𝑑 π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘π‘’π‘Ÿ π‘‘π‘’π‘Ÿπ‘›
= 2 βˆ— 13 βˆ— 5.511
= 143.286; π‘€β„Žπ‘–π‘β„Ž 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ π‘™π‘–π‘šπ‘–π‘‘.
β€’ So, the inter layer voltage difference for other coils also will be less than 143.286 V.
Project on Transformer Design
β€’ The phase current in H.V. side,
𝐼𝑝 =
150000
3βˆ—11000
= 4.54 𝐴
β€’ As the current is below 20 𝐴, circular cross-sectional conductor can be used . Taking 2.4 𝐴/π‘šπ‘š2
current density,
∴Area of H.V. conductor=
4.54
2.4
= 1.892 π‘šπ‘š2
β€’ Diameter of bare conductor=
4βˆ—1.892
πœ‹
= 1.5520 π‘šπ‘š
β€’ Taking diameter of bare conductor , 𝑑 = 1.55 π‘šπ‘š.
β€’ Modified area of bare conductor =
πœ‹
4
βˆ— 𝑑2 = 1.887 π‘šπ‘š2
β€’ The actual current density will be =
4.54
1.887
= 2.4 𝐴/π‘šπ‘š2
β€’ Insulated conductor diameter will be, 2.05 π‘šπ‘š. [ .25 π‘šπ‘š π‘–π‘›π‘ π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘£π‘’π‘Ÿπ‘–π‘›π‘”]
Project on Transformer Design
β€’ Total axial depth of coils,
= (7 βˆ— 13 βˆ— 2.05 + 6 βˆ— 10 βˆ— 2.05 + 1 βˆ— 7 βˆ— 2.05)
= 323.9 π‘šπ‘š
β€’ Total no. of coil = 14, so there is 13 inter coil spacing.
β€’ Considering 3.5 π‘šπ‘š inter coil spacing,
β€’ Total axial depth will be of H.V. = 323.9 + 13 βˆ— 3.5 = 369.4 π‘šπ‘š
β€’ The axial depth takes
369.4
494
βˆ— 100% = 74.77% of the window height which is below 75% that leaves
494βˆ’369.4
2
= 62.3 π‘šπ‘š spacing between coil and yoke on both side.
Project on Transformer Design
β€’ From π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 7.22 the thickness of insulation between H.V. & L.V. winding = 5 + 0.9 Γ— 11 = 14.9 π‘šπ‘š,
this includes the width of oil duct also.
β€’ The insulation between H.V. & L.V. winding is a 5π‘šπ‘š thick Bakelite paper cylinder. The H.V. winding is
wound on a former 5 π‘šπ‘š thick and the duct is 5π‘šπ‘š wide, space making the total insulation between
H.V. & L.V. winding 15π‘šπ‘š.
β€’ Considering 0.5 π‘šπ‘š thick paper insulation between layers,
β€’ Maximum Radial depth of H.V. winding = 14 βˆ— 2.05 + 13 βˆ— 0.5 = 35.2 π‘šπ‘š
β€’ 𝐼𝑛𝑠𝑖𝑑𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝐻𝑉 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 = 𝑂𝑒𝑑𝑠𝑖𝑑𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝐿. 𝑉. 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 + πΌπ‘›π‘ π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› π‘‘π‘’π‘π‘‘β„Ž 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 𝐻. 𝑉. & 𝐿. 𝑉.
= 245 + 2 βˆ— 15
= 275 π‘šπ‘š
β€’ 𝑂𝑒𝑑𝑠𝑖𝑑𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝐻. 𝑉. 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 = 275 + 2 βˆ— 35.2 = 345.4 π‘šπ‘š
β€’ πΆπ‘™π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‘π‘€π‘œ π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘™π‘–π‘šπ‘ = 𝐷 – 2 βˆ— π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ 𝐻. 𝑉. 𝑀𝑖𝑛𝑑𝑖𝑛𝑔
= 361.6 – 345.4
= 16.2 π‘šπ‘š
Resistance Calculation
Project on Transformer Design
➒ Resistance of primary (H.V.) side :
β€’ Mean diameter of primary winding for 140 turns =
275 + 345.4
2
= 310.2 π‘šπ‘š
β€’ Length of mean turn of 140 turns of winding = 310.2 βˆ— πœ‹ βˆ— 10βˆ’3
= 0.9745 π‘š
β€’ Resistance of 6 coils having 140 turns at 75 βˆ’ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’ Celsius ,
𝑇𝑝 =
π‘›π‘œ.π‘œπ‘“ π‘π‘œπ‘–π‘™βˆ— (π‘›π‘œ.π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘› βˆ— π‘šπ‘’π‘Žπ‘› π‘™π‘’π‘›π‘”π‘‘β„Ž βˆ— π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘–π‘£π‘–π‘‘π‘¦)
π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ
= 6 βˆ—
140βˆ— 0.9745βˆ— 0.021
1.887
= 9.11 π‘œβ„Žπ‘š
β€’ Radial depth of 169 turns ,
β€’ Radial depth = 13 βˆ— 2.05 + 12 βˆ— 0.5 = 32.65 π‘šπ‘š
β€’ Mean diameter of primary winding for 169 turns =
275+275+2βˆ—32.65
2
= 307.65 π‘šπ‘š
β€’ Length of mean turn of primary winding = 307.65 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.9665 π‘š
β€’ Resistance of 7 coils having 169 turns at 75 βˆ’ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’ Celsius
= 7 βˆ—
169 βˆ— 0.021 βˆ— 0.9665
1.887
= 12.72 π‘œβ„Žπ‘š
Project on Transformer Design
β€’ Radial depth = 14 βˆ— 2.05 + 13 βˆ— 0.5 = 35.2 π‘šπ‘š
β€’ Outer diameter of H.V. winding = 275 π‘šπ‘š + 2 βˆ— 35.2 = 345.4 π‘šπ‘š
β€’ Mean diameter of winding =
275 + 345.4
2
= 310.2 π‘šπ‘š
β€’ Length of mean turn = 310.2 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.975 π‘š
β€’ Resistance of turn = 1 βˆ—
98βˆ—0.021βˆ—0.975
1.887
= 1.063 π‘œβ„Žπ‘š
β€’ Total primary winding resistance = 9.11 + 12.72 + 1.063 π‘œβ„Žπ‘š = 22.89 π‘œβ„Žπ‘š
β€’ Mean diameter of secondary winding =
214 + 245
2
= 229.5 π‘šπ‘š
β€’ Length of mean turn of secondary winding = 229.5 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.721 π‘š
β€’ Resistance of secondary winding at 75-degree Celsius ,
𝑅𝑠 =
0.721 βˆ— 0.021 βˆ— 44
105
= 6.34 βˆ— 10βˆ’3
π‘œβ„Žπ‘š
β€’ Total Resistance referred to primary = 22.89 + (
2121
44
)2
βˆ— 6.34 βˆ— 10βˆ’3
= 37.62 π‘œβ„Žπ‘š
β€’ P.U. resistance of transformer =
πΌπ‘βˆ—π‘…π‘
𝑉𝑝
=
37.62 βˆ— 4.54
11000
= 0.0155
Leakage Resistance
Calculation
Project on Transformer Design
β€’ Mean diameter of windings =
214 + 345.4
2
= 279.7 π‘šπ‘š
β€’ Length of mean turn = 279.7 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.88 π‘š
β€’ Height of winding =
341+369.4
2
= 355.2 π‘šπ‘š = 0.3552 π‘š
β€’ Leakage reactance of transformer referred to primary side,
𝑋𝑝 = 2 βˆ— πœ‹ βˆ— 50 βˆ— 4 βˆ— πœ‹ βˆ— 10βˆ’7
βˆ— 21212
βˆ—
0.88
0.3552
βˆ— (15 +
35.2+15.5
3
) βˆ— 10βˆ’3
= 140.36 π‘œβ„Žπ‘š
β€’ P.U. leakage reactance of transformer =
4.54βˆ— 140.36
11000
= 0.058
β€’ P.U. impedance of transformer = 0.0582 + 0.01552 = 0.06
Regulation
Project on Transformer Design
β€’ Per unit regulation, κœͺ = 0.0155 βˆ— cos Ξ¦ + 0.058 βˆ— sin Ξ¦
β€’ So, per unit regulation at 𝑒𝑛𝑖𝑑𝑦 𝑃. 𝐹. = 0.0155
β€’ At zero P.F. lagging = 0.058 [Ξ¦ = 90Β°]
β€’ At 0.8 P.F. lagging = 0.0155 βˆ— 0.8 + 0.058 βˆ— 0.6 = 0.0472
Loss Calculation
Project on Transformer Design
β€’ 𝐼2𝑅 loss at 75-degree Celsius , 3 βˆ— 𝐼𝑝
2
βˆ— 𝑅𝑝 = 3 βˆ— 4.542 βˆ— 37.62 = 2326.23 π‘Šπ‘Žπ‘‘π‘‘
β€’ Total loss including 15% stray load loss = 1.15 βˆ— 2326.23 = 2675.16 π‘Šπ‘Žπ‘‘π‘‘
β€’ Taking density laminations as 7.6 βˆ— 103 π‘˜π‘”/π‘š3
β€’ π‘Šπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ 3 π‘™π‘–π‘šπ‘π‘  = 3 βˆ— π‘–π‘Ÿπ‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž βˆ— π‘€π‘–π‘›π‘‘π‘œπ‘€ β„Žπ‘’π‘–π‘”β„Žπ‘‘ βˆ— 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘™π‘Žπ‘šπ‘–π‘›π‘Žπ‘‘π‘–π‘œπ‘›π‘ 
= 3 βˆ— 0.02482 βˆ— 0.494 βˆ— 7.6 βˆ— 103
= 279.55 π‘˜π‘”
β€’ The flux density in the limbs is 1 π‘Šπ‘/π‘š2 & corresponding to this density, specific core loss is
1.2π‘Š/π‘˜π‘”
β€’ Core loss in limbs = 279.55𝑋1.2 = 335.46 π‘Š
β€’ Weight of two yokes = 2 βˆ— 0.9022 βˆ— 0.02978 βˆ— 7.6 βˆ— 103
= 408.4 π‘˜π‘”
β€’ Corresponding to 0.833 π‘Šπ‘/π‘š2 flux density in the yoke, Specific core loss = 0.85W
β€’ Core loss in Yoke = 408.4𝑋0.85 = 347.14 π‘Š
β€’ Total core loss, 𝑃𝑖 = 335.46 + 347.14 = 682.6 π‘Š
Efficiency
Project on Transformer Design
β€’ Total losses at full load : 682.6 + 2675.16 = 3357.76 π‘€π‘Žπ‘‘π‘‘
β€’ Efficiency at full load unity P.F. = (
150βˆ—103
3357.76 + 150βˆ—103) βˆ— 100%
β€’
= 97.81%
β€’ For maximum efficiency, (π‘₯2) βˆ— π‘π‘œπ‘π‘π‘’π‘Ÿ π‘™π‘œπ‘ π‘  = π‘π‘œπ‘Ÿπ‘’ π‘™π‘œπ‘ π‘ 
β‡’ π‘₯ =
682.6
2675.16
∴ π‘₯ = 0.505
β€’ So maximum efficiency occurs at 50.5% of the full load . This is a good figure for distribution transformer.
No Load Current
Project on Transformer Design
β€’ Corresponding to flux densities of 1 π‘Šπ‘/π‘š2
& 0.833 π‘Šπ‘/π‘š2
in core & yoke respectively, with the help
of B-H curve π‘Žπ‘‘π‘ = 120 𝐴/π‘š & π‘Žπ‘‘π‘¦ = 80 𝐴/π‘š.
β€’ So, total magnetizing m.m.f. = 3 Γ— 120 Γ— 0.494 + 2 Γ— 80 Γ— 0.9022 = 322.192 𝐴
β€’ So, magnetizing m.m.f. per phase, π΄π‘‡π‘œ =
322.192
3
= 107.4 𝐴
β€’ Magnetizing current πΌπ‘š =
π΄π‘‡π‘œ
2βˆ—π‘‡π‘
=
102.173
2βˆ—2121
= 0.0358 𝐴
β€’ Loss component of no load current =
π‘π‘œπ‘Ÿπ‘’ π‘™π‘œπ‘ π‘ 
3βˆ—π‘‰π‘
=
682.6
3βˆ—11000
= 0.021 𝐴
β€’ No load current = 0.03582 + 0.0212 = 0.0415 𝐴
β€’ No load current as a percent of full load current =
0.0415
4.15
βˆ— 100% = 1%
β€’ Allowing for joints etc. the no load current will be about 2 βˆ’ 2.5% of full load current.
Impedance Voltage
Project on Transformer Design
β€’ Impedence referred to primary = 37.622 + 140.362 = 145.31 π‘œβ„Žπ‘š
β€’ Percentage of input voltage that requires to flow rated current on the secondary side at short circuit,
145.31βˆ—4.54
11000
βˆ— 100% = 5.9% [ which lies in standard limit 5 βˆ’ 10%].
Tank Design
Project on Transformer Design
β€’ Height over yoke , 𝐻 = 801 π‘šπ‘š
β€’ Allowing 50 π‘šπ‘š at the base & 150 π‘šπ‘š for oil,
β€’ Height of oil level = 801 + 50 + 150 = 1001 π‘šπ‘š
β€’ Allowing another 200 π‘šπ‘š height for leads and bushing
Height of Tank, 𝐻𝑑 = 1001 + 200 = 1201 π‘šπ‘š
β€’ The height of tank is taken as 1.201 π‘š .
β€’ Width of the Tank,
π‘Šπ‘‘ = 2𝐷 + 𝐷𝑒 + 2𝑙 = 𝟐 Γ— 361.6 + 345.4 + 𝟐 Γ— πŸ’πŸŽ = 1148.6 π‘šπ‘š [ 𝑙 = π‘π‘™π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ π‘€π‘–π‘‘β„Ž π‘‘π‘Žπ‘›π‘˜]
β€’ The width of tank is taken as 1.148 π‘š .
β€’ The clearance used is approximately 50 π‘šπ‘š on each side.
β€’ Length of the tank,
𝐿𝑑 = 𝐷𝑒 + 2𝑏 = 345.4 + 2 βˆ— 70 = 385.4 π‘šπ‘š [𝑏 = π‘π‘™π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’]
β€’ The length of tank is taken as 0.385 π‘š
β€’ Total loss dissipating surface of tank
= 𝟐 βˆ— (1.148 + 0.385 ) Γ— 1.201 = 3.68 π‘š2
β€’ Total specific loss dissipation due to radiation & convection is 12.5 π‘Š/π‘š2
℃
Project on Transformer Design
β€’ Temperature rise =
3357.56
3.68βˆ—12.5
= 72.99 °𝐢. This is over 35℃, therefore plain tank alone is not sufficient
for cooling & so tubes are required.
β€’ Let the area of tubes be π‘₯ βˆ— 3.68
β€’ Loss dissipating surface= (1 + π‘₯) βˆ— 𝑆𝑑 = 3.68 βˆ— (1 + π‘₯)
β€’ Loss dissipated=
12.5+8.8π‘₯
π‘₯+1
W/m2 - ℃
β€’ So, specific loss dissipation =
3357.56
3.68βˆ— 1+π‘₯ βˆ—35
=
26.1
1+π‘₯
β‡’
26.1
1+π‘₯
=
12.5+8.8βˆ—π‘₯
1+π‘₯
∴ π‘₯ = 1.55
β€’ Area of tubes needed = 1.55 Γ— 3.68 = 5.7 π‘š2
β€’ So, dissipating area of each tube = πœ‹ Γ— 0.05 Γ— 1.55 = 0.243 π‘š2
β€’ So number of tubes will be provided = 5.7/0.243 β‰ˆ 23.46
β€’ Arrangement of tubes : π΄π‘™π‘œπ‘›π‘” π‘™π‘’π‘›π‘”π‘‘β„Ž – 2 π‘Ÿπ‘œπ‘€π‘  – 3 & 2 𝑑𝑒𝑏𝑒𝑠
Design Sheet
Project on Transformer Design
Project on Transformer Design
β€’ Core:
1 Material --- 0.35mm thick 92 grade
2 Output Constant K 0.45
3 Voltage per turn Et 5.511V
4 Circumscribing circle
diameter
d 211 mm
5 No. of steps --- 2
6 Dimensions a 178.94 mm
b 111.57 mm
7 Net iron area Ai 24.82 Γ— 103
mm2
8 Flux density Bm 1.0 Wb/m2
9 Flux Ξ¦m 0.02482 Wb
10 Weight 279.55 kg
11 Specific iron loss 1.2 W/kg
12 Iron loss 335.46 W
Project on Transformer Design
β€’ Yoke:
β€’ Window:
1 Depth of Yoke Dy 179 mm
2 Height of Yoke Hy 184.87 mm
3 Net Yoke area 29.784x103 mm2
4 Flux density 0.833 Wb/m2
5 Flux 0.025 Wb
6 Weight 408.4 kg
7 Specific iron loss 0.85 W/kg
8 Iron loss 347.14 W
1 Number 2
2 Window space
factor
Kw 0.244
3 Height of window Hw 494 mm
4 Width of window Ww 150.6 mm
5 Area of window Aw 0.0744 m2
6 Height to width ratio 3.28
Project on Transformer Design
β€’ Frame:
β€’ Insulation:
1 Distance betn adjacent
limbs
D 361.6 mm
2 Height of Frame H 801 mm
3 Width of Frame W 902.2 mm
4 Depth of window Dy 179 mm
1 Betn L.V. winding & Core Press board wraps 1.5mm
2 Betn L.V. winding & H.V.
winding
Bakelite paper 5mm
3 Width of duct betn L.V &
H.V.
5mm
Project on Transformer Design
β€’ Winding:
Sl no. Properties L.V. H.V.
1 Type of winding Cylindrical Cross-over
2 Connections Star Delta
3 Conductor Dimensions bare 15x7 mm2 Diameter=1.55 mm
insulated 15.5x7.5 mm2 Diameter=2.05mm
Area 116.25 mm2 1.887 mm2
No. in parallel None None
4 Current Density 1.98 A/mm2 2.4 A/mm2
5 Turns per phase 44 2020 (2121 at Β±5%
tapping)
6 Coils total number 3 3x14
per core leg 1 14
7 Turns Per coil 44 7 of 169, 6 of 140, 1 of 98
Per layer 22 13,10,7
8 Number of layers 2 13,14,14
9 Height of winding 341 mm 369.4 mm
10 Depth of winding 15.5 mm 35.2 mm
11 Insulation Betn layers 0.5 mm press board 0.5mm paper
Betn coils 3.5mm spacers
12 Coil Diameters Inside 214mm 275mm
Outside 245mm 345.4mm
13 Length of mean turn 229.5mm 310.2mm
14 Resistance at 75℃ 0.00634Ω 22.89Ω
Project on Transformer Design
β€’ Tank:
1. Dimensions Height Ht 1.201m
Length Lt 0.385
Width Wt 1.148m
2. Tubes 8
3. Temperature rise --- 72.99 ℃
4. Impedance P.U. Resistance --- 0.0155
P.U. Reactance --- 0.058
P.U. Impedance --- 0.06
5. Losses Total Core loss --- 682.6 W
Total copper loss --- 2675.16 W
Total losses at full
load
--- 3357.76 W
Efficiency at full
load & unity p.f.
--- 97.81%
Thank You

More Related Content

What's hot

Design of Three Phase 11000/433 V And 100 KVA Transformer
Design of Three Phase 11000/433 V And 100 KVA TransformerDesign of Three Phase 11000/433 V And 100 KVA Transformer
Design of Three Phase 11000/433 V And 100 KVA TransformerSanjoy Biswas
Β 
Setp by step design of transformer
Setp by step design of transformerSetp by step design of transformer
Setp by step design of transformerbinodsahu8
Β 
Design of transformer
Design of transformerDesign of transformer
Design of transformerSubrata Dey
Β 
Transformer design by s u khaparkar
Transformer design by s u khaparkarTransformer design by s u khaparkar
Transformer design by s u khaparkarexhod
Β 
A Design Calculation for Single Phase Step Down Transformer
A Design Calculation for Single Phase Step Down TransformerA Design Calculation for Single Phase Step Down Transformer
A Design Calculation for Single Phase Step Down TransformerIJSRED
Β 
11kVby400v, 20kVA three phase core type distribution transformer.
11kVby400v, 20kVA three phase core type distribution transformer.11kVby400v, 20kVA three phase core type distribution transformer.
11kVby400v, 20kVA three phase core type distribution transformer.Anamul Hasan
Β 
Presentation Design of Computer aided design of power transformer
Presentation Design of Computer aided design of power transformerPresentation Design of Computer aided design of power transformer
Presentation Design of Computer aided design of power transformerSMDDTech
Β 
Design of transformer and chock coil
Design of transformer and chock coilDesign of transformer and chock coil
Design of transformer and chock coilShubham Champaneri
Β 
Transformer design 2072 batch IOE - TU
Transformer design 2072 batch IOE - TU Transformer design 2072 batch IOE - TU
Transformer design 2072 batch IOE - TU Bikash Gyawali
Β 
Transformer Designing
Transformer Designing Transformer Designing
Transformer Designing Praveen Sharma
Β 
transformer_design.pdf
transformer_design.pdftransformer_design.pdf
transformer_design.pdfNerupaSharma
Β 
Three Phase Induction Motor Design (Electrical Machine Design)
Three Phase Induction Motor Design (Electrical Machine Design)Three Phase Induction Motor Design (Electrical Machine Design)
Three Phase Induction Motor Design (Electrical Machine Design)MD.SAJJAD HOSSAIN
Β 
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGHHIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGHShankar Singh
Β 
Capacitance on transmission line
Capacitance on transmission lineCapacitance on transmission line
Capacitance on transmission linevishalgohel12195
Β 
CVT design
CVT designCVT design
CVT designbinodsahu8
Β 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parametersfiraoltemesgen1
Β 

What's hot (20)

Design of Three Phase 11000/433 V And 100 KVA Transformer
Design of Three Phase 11000/433 V And 100 KVA TransformerDesign of Three Phase 11000/433 V And 100 KVA Transformer
Design of Three Phase 11000/433 V And 100 KVA Transformer
Β 
Setp by step design of transformer
Setp by step design of transformerSetp by step design of transformer
Setp by step design of transformer
Β 
Design of transformer
Design of transformerDesign of transformer
Design of transformer
Β 
Transformer design by s u khaparkar
Transformer design by s u khaparkarTransformer design by s u khaparkar
Transformer design by s u khaparkar
Β 
A Design Calculation for Single Phase Step Down Transformer
A Design Calculation for Single Phase Step Down TransformerA Design Calculation for Single Phase Step Down Transformer
A Design Calculation for Single Phase Step Down Transformer
Β 
11kVby400v, 20kVA three phase core type distribution transformer.
11kVby400v, 20kVA three phase core type distribution transformer.11kVby400v, 20kVA three phase core type distribution transformer.
11kVby400v, 20kVA three phase core type distribution transformer.
Β 
Presentation Design of Computer aided design of power transformer
Presentation Design of Computer aided design of power transformerPresentation Design of Computer aided design of power transformer
Presentation Design of Computer aided design of power transformer
Β 
Design of transformer and chock coil
Design of transformer and chock coilDesign of transformer and chock coil
Design of transformer and chock coil
Β 
Transformer design 2072 batch IOE - TU
Transformer design 2072 batch IOE - TU Transformer design 2072 batch IOE - TU
Transformer design 2072 batch IOE - TU
Β 
Transformer Designing
Transformer Designing Transformer Designing
Transformer Designing
Β 
transformer_design.pdf
transformer_design.pdftransformer_design.pdf
transformer_design.pdf
Β 
Three Phase Induction Motor Design (Electrical Machine Design)
Three Phase Induction Motor Design (Electrical Machine Design)Three Phase Induction Motor Design (Electrical Machine Design)
Three Phase Induction Motor Design (Electrical Machine Design)
Β 
Transformer
TransformerTransformer
Transformer
Β 
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGHHIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
Β 
ECNG 3013 A
ECNG 3013 AECNG 3013 A
ECNG 3013 A
Β 
Voltage Regulation
Voltage RegulationVoltage Regulation
Voltage Regulation
Β 
Capacitance on transmission line
Capacitance on transmission lineCapacitance on transmission line
Capacitance on transmission line
Β 
CVT design
CVT designCVT design
CVT design
Β 
Transformer
TransformerTransformer
Transformer
Β 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parameters
Β 

Similar to Transformer Design Project

Steel Plate Girder Bridge Design
Steel Plate Girder Bridge DesignSteel Plate Girder Bridge Design
Steel Plate Girder Bridge DesignVenkatesh A
Β 
Designing variable choke coil
Designing variable choke coilDesigning variable choke coil
Designing variable choke coilTrupesh Rupareliya
Β 
PNGE 310Class 21Overbalanced Drillingβ€’ Mos.docx
PNGE 310Class 21Overbalanced Drillingβ€’ Mos.docxPNGE 310Class 21Overbalanced Drillingβ€’ Mos.docx
PNGE 310Class 21Overbalanced Drillingβ€’ Mos.docxstilliegeorgiana
Β 
Chapter 7
Chapter 7Chapter 7
Chapter 7binodsahu8
Β 
Hemispherical pressure vessel
Hemispherical pressure vesselHemispherical pressure vessel
Hemispherical pressure vesseljaimin kemkar
Β 
Roll pass design in continuous bar mills
Roll pass design in continuous bar millsRoll pass design in continuous bar mills
Roll pass design in continuous bar millsSum K
Β 
Design of toggle jack
Design of toggle jackDesign of toggle jack
Design of toggle jackhemant Kuralkar
Β 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Soumith V
Β 
Waste disposal system of railway wagon
Waste disposal system of railway wagonWaste disposal system of railway wagon
Waste disposal system of railway wagonRajeshvaliya
Β 
Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfssuser021946
Β 
Casement Type Wind Turbine
Casement Type Wind TurbineCasement Type Wind Turbine
Casement Type Wind TurbineKaustubh Khandagale
Β 
Ehv line design
Ehv line designEhv line design
Ehv line designDemsew Mitiku
Β 
Draft Tube PPT.pptx
Draft Tube PPT.pptxDraft Tube PPT.pptx
Draft Tube PPT.pptxRohan624622
Β 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatusnganesh90
Β 
Unit III Design of Electrical Machines
Unit III Design of Electrical MachinesUnit III Design of Electrical Machines
Unit III Design of Electrical Machinesnganesh90
Β 
Design and analysis of solar support structure and daily tilting mechanism
Design and analysis of solar support structure and daily tilting mechanismDesign and analysis of solar support structure and daily tilting mechanism
Design and analysis of solar support structure and daily tilting mechanismSUROJU SAIKRISHNA
Β 
Design of torsion reinforcement
 Design of torsion reinforcement Design of torsion reinforcement
Design of torsion reinforcementMuskanDeura
Β 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI codeMahmoud Al-Sharawi
Β 
High Frequency Transformer for Multi-Output SMPS Applications
High Frequency Transformer for Multi-Output SMPS ApplicationsHigh Frequency Transformer for Multi-Output SMPS Applications
High Frequency Transformer for Multi-Output SMPS ApplicationsKaushik Naik
Β 

Similar to Transformer Design Project (20)

Steel Plate Girder Bridge Design
Steel Plate Girder Bridge DesignSteel Plate Girder Bridge Design
Steel Plate Girder Bridge Design
Β 
Designing variable choke coil
Designing variable choke coilDesigning variable choke coil
Designing variable choke coil
Β 
PNGE 310Class 21Overbalanced Drillingβ€’ Mos.docx
PNGE 310Class 21Overbalanced Drillingβ€’ Mos.docxPNGE 310Class 21Overbalanced Drillingβ€’ Mos.docx
PNGE 310Class 21Overbalanced Drillingβ€’ Mos.docx
Β 
Chapter 7
Chapter 7Chapter 7
Chapter 7
Β 
Hemispherical pressure vessel
Hemispherical pressure vesselHemispherical pressure vessel
Hemispherical pressure vessel
Β 
Roll pass design in continuous bar mills
Roll pass design in continuous bar millsRoll pass design in continuous bar mills
Roll pass design in continuous bar mills
Β 
Design of toggle jack
Design of toggle jackDesign of toggle jack
Design of toggle jack
Β 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe
Β 
Module 5.pdf
Module 5.pdfModule 5.pdf
Module 5.pdf
Β 
Waste disposal system of railway wagon
Waste disposal system of railway wagonWaste disposal system of railway wagon
Waste disposal system of railway wagon
Β 
Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdf
Β 
Casement Type Wind Turbine
Casement Type Wind TurbineCasement Type Wind Turbine
Casement Type Wind Turbine
Β 
Ehv line design
Ehv line designEhv line design
Ehv line design
Β 
Draft Tube PPT.pptx
Draft Tube PPT.pptxDraft Tube PPT.pptx
Draft Tube PPT.pptx
Β 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatus
Β 
Unit III Design of Electrical Machines
Unit III Design of Electrical MachinesUnit III Design of Electrical Machines
Unit III Design of Electrical Machines
Β 
Design and analysis of solar support structure and daily tilting mechanism
Design and analysis of solar support structure and daily tilting mechanismDesign and analysis of solar support structure and daily tilting mechanism
Design and analysis of solar support structure and daily tilting mechanism
Β 
Design of torsion reinforcement
 Design of torsion reinforcement Design of torsion reinforcement
Design of torsion reinforcement
Β 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
Β 
High Frequency Transformer for Multi-Output SMPS Applications
High Frequency Transformer for Multi-Output SMPS ApplicationsHigh Frequency Transformer for Multi-Output SMPS Applications
High Frequency Transformer for Multi-Output SMPS Applications
Β 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
Β 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
Β 

Transformer Design Project

  • 1. Project on Transformer Design Course no.: EE-3220 Group No.: 16 Name Roll Md. Ataur Rahman 1703002 Shetu Mohanto 1703018 Md. Nafis Jawad 1703026 Md. Sabbir Mahamud 1703072
  • 3. Project on Transformer Design β€’ Design a 150 KVA, 11KV/0.415KV, 50Hz, 3-phase, core type, delta/star and ONAN cooling-based distribution transformer. Use cylindrical and crossover type windings, and 5% tapping at HV side. Also ensure that the impedance voltage is below 4%.
  • 5. Project on Transformer Design β€’ The value of k is taken from the previous table π‘˜ = 0.45 for 3-phase core type distribution transformer. β€’ Voltage per turn, 𝐸𝑑 = π‘˜ 𝑄 = 0.45 150 = 5.511𝑉 β€’ Therefore, Flux in the core, πœ™π‘š = πΈπ‘˜π‘‘ 4..44βˆ—π‘“ = 5.511 4..44βˆ—50 = 0.02482π‘Šπ‘ β€’ Hot rolled silicon steel grade 92 is used. The value of flux density π΅π‘š is assumed as 1.0π‘Šπ‘/π‘š2 β€’ ∴Net iron Area , 𝐴𝑖 = πœ™π‘š π΅π‘š = 0.02482 1 =0.02482 π‘š2 =24.82 βˆ— 103 π‘šπ‘š2
  • 6. Project on Transformer Design β€’ Using a cruciform core, cross section area of the core, 𝐴𝑖 = 0.56 βˆ— 𝑑2 [π‘π‘œπ‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’π‘Ž π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘  = 0.5 𝑑 = π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘ π‘π‘Ÿπ‘–π‘π‘–π‘› π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘Ÿπ‘’] β€’ Diameter of the circumscribing circle, 𝑑 = 𝐴𝑖 0.56 = 24.82βˆ—103 0.56 = 211π‘šπ‘š β€’ Reference width laminations, π‘Ž = 0.85 βˆ— 𝑑 = 0.85 βˆ— 210.52 = 178.94π‘šπ‘š β‰ˆ 179π‘šπ‘š 𝑏 = 0.53 βˆ— 𝑑 = 0.53 βˆ— 210.52 = 111.57π‘šπ‘š β‰ˆ 112π‘šπ‘š
  • 8. Project on Transformer Design β€’ For transformer rating in between 50 π‘‘π‘œ 200 𝐾𝑉𝐴 ,the equation for window spacing factor, 𝐾𝑀 = 10 30 + 𝐾𝑉 π‘Ÿπ‘Žπ‘‘π‘–π‘›π‘” π‘œπ‘“ 𝐻𝑇 𝑠𝑖𝑑𝑒 π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘Ÿ = 10 30+11 = 0.244 β€’ Assuming the current density of the conductor 𝛿 = 2 𝐴/π‘šπ‘š2 , β€’ We can find the window area from the KVA equation of the Transformer 𝑄 = 3.33 βˆ— 𝑓 βˆ— π΅π‘š βˆ— 𝐾𝑀 βˆ— 𝛿 βˆ— 𝐴𝑀 βˆ— 𝐴𝑖 βˆ— 10βˆ’3 ⟹ 𝐴𝑀 = 𝑄 3.33βˆ—π‘“βˆ— π΅π‘šβˆ— πΎπ‘€βˆ— π›Ώβˆ—π΄π‘–βˆ—10βˆ’3 = 150 3.33βˆ—50βˆ—1βˆ—0.244βˆ— 2βˆ—106 βˆ—0.02482βˆ—10βˆ’3 ∴ 𝐴𝑀 = 0.0744π‘š2 β€’ Taking the ratio of Height to width 3.28 [𝑏𝑒𝑑𝑀𝑒𝑒𝑛 2 π‘‘π‘œ 4] for the window dimension, 𝐻𝑀 βˆ— π‘Š 𝑀 = 74,400 π‘šπ‘š2 β€’ Width of the window, π‘Š 𝑀 = 74400 3.28 = 150.607π‘šπ‘š β‰ˆ 150.6π‘šπ‘š β€’ Height of the window, 𝐻𝑀 = 74400 π‘Šπ‘€ = 494.02π‘šπ‘š β‰ˆ 494π‘šπ‘š β€’ Distance between two adjacent limb center , 𝐷 = π‘Š 𝑀 + 𝑑 = 150.6 + 211 = 361.6π‘šπ‘š 𝑑 = π·π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘ π‘π‘Ÿπ‘–π‘π‘–π‘›π‘” π‘‘β„Žπ‘’ π‘π‘œπ‘Ÿπ‘’
  • 10. Project on Transformer Design β€’ The cross sectional area of yoke is 15 π‘‘π‘œ 25% greater than that of limb. Considering 20% larger, 𝐹𝑙𝑒π‘₯ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 𝑖𝑛 π‘¦π‘œπ‘˜π‘’ = 𝐹𝑙𝑒π‘₯ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 𝑖𝑛 π‘™π‘–π‘šπ‘ βˆ— π‘™π‘–π‘šπ‘ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž π‘¦π‘œπ‘˜π‘’ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž = 1βˆ— π‘™π‘–π‘šπ‘ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž 1.2βˆ—π‘™π‘–π‘šπ‘ π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž = 0.833π‘Šπ‘/π‘š2 β€’ Net area of yoke = 1.2 βˆ— 24820 π‘šπ‘š2 = 29784 π‘šπ‘š2 = .02978 π‘š β€’ Gross area of yoke = 29784 0.9 = 33093.33 π‘šπ‘š2 β€’ Taking the cross section of the yoke as rectangular, ∴The depth of yoke 𝐷𝑦 = π‘Ž = 179 π‘šπ‘š β€’ Height of the yoke 𝐻𝑦 = 33093.33 179 = 184.87 π‘šπ‘š β‰ˆ 185 π‘šπ‘š
  • 12. Project on Transformer Design β€’ Height of Frame ∢ 𝐻𝑀 + 2 βˆ— 𝐻𝑦 = 431 + 2 βˆ— 185 = 801 π‘šπ‘š β€’ Width of frame: 2 βˆ— 𝐷 + π‘Ž = 2 βˆ— 361.6 + 179 = 902.2 π‘šπ‘š β€’ Depth of frame, 𝐷𝑦 = π‘Ž = 179 π‘šπ‘š
  • 14. Project on Transformer Design β€’ Secondary voltage 415𝑉, star connected. β€’ Phase voltage 𝑉 𝑠 = 𝑙𝑖𝑛𝑒 π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ 3 = 415 3 = 239.6 β‰ˆ 240 𝑉 β€’ No of turn per phase 𝑇𝑠 = 𝑉𝑠 𝐸𝑑 = 239 5.511 = 43.476 β‰ˆ 44 β€’ Secondary phase current, 𝐼𝑠 = 𝐾𝑉𝐴 3βˆ—π‘‰π‘  = 150βˆ—1000 3βˆ—239.6 = 208.68 A β€’ Assuming current density 2.1 𝐴/π‘šπ‘š2, ∴Area of the conductor = 208.68 2.1 = 99.37 π‘šπ‘š2 . β€’ As the current rating is greater than πŸπŸŽπ‘¨, it is not advisable to use circular cross section conductor. β€’ Taking 15 βˆ— 7 π‘šπ‘š (π‘€π‘–π‘‘π‘‘β„Ž βˆ— π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘ ) strip (rectangular) type bare conductor. ∴Conductor area, 𝐴𝑠 = 105 π‘šπ‘š2 β€’ Current density in secondary winding, 𝐼𝑠 𝐴𝑠 = 208.68 105 = 1.98𝐴/π‘šπ‘š2 That is less than our assumed current density value. β€’ The conductor is paper insulated (0.25 π‘šπ‘š in each side). β€’ The increase in dimension on account of paper covering is 0.5 π‘šπ‘š. β€’ So, Dimension of insulated conductor = 15.5 βˆ— 7.5 = 116.25 π‘šπ‘š2
  • 15. Project on Transformer Design β€’ Taking 2 βˆ’ π‘™π‘Žπ‘¦π‘’π‘Ÿ cylindrical winding, 22 π‘‡π‘’π‘Ÿπ‘›π‘  per layer, ∴Axial depth of L.V. winding = 22 βˆ— 15.5 = 341 π‘šπ‘š. β€’ The height of window is 431 mm. So, the winding leaves ( 431βˆ’341) 2 = 45 π‘šπ‘š clearance in each side. β€’ Considering 1.5 π‘šπ‘š thick Bakelite cylinders between the core and the L.V. winding , using 0.5 π‘šπ‘š pressboard cylinder between layers of the L.V. winding, β€’ Radial depth of low voltage winding, 𝑏𝑠 = π‘›π‘œ. π‘œπ‘“ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  βˆ— π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™ π‘‘π‘’π‘π‘‘β„Ž π‘œπ‘“ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ + π‘–π‘›π‘ π‘’π‘™π‘Žπ‘‘π‘œπ‘Ÿ 𝑏𝑒𝑑𝑛 π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  = 2 βˆ— 7.5 + 0.5 = 15.5 π‘šπ‘š β€’ Diameter of circumscribing circle ,𝑑 = 211 π‘šπ‘š β€’ The inner diameter of of L.V. winding = 211 + (2 βˆ— 1.5) = 214 π‘šπ‘š β€’ The outer diameter of L.V. winding = 214 + 2 βˆ— 15.5 = 245 π‘šπ‘š
  • 17. Project on Transformer Design β€’ π‘ƒπ‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦ 𝑙𝑖𝑛𝑒 π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = π‘π‘Ÿπ‘–π‘šπ‘Žπ‘Ÿπ‘¦ π‘β„Žπ‘Žπ‘ π‘’ π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = 11 𝐾𝑉 β€’ No of turns per phase 𝑇𝑝 = π‘‰π‘βˆ—π‘‡π‘  𝑉𝑠(π‘π‘’π‘Ÿ π‘β„Žπ‘Žπ‘ π‘’) = 11000βˆ—44 239.6 = 2020 β€’ As 5% tapping is to be provided so, the no. of turn has to be,= 1.05 βˆ— 2020 = 2121 β€’ Taking no. of coil in the H.V. side =14 , β€’ 7 coils of 169 Turns , each of them has 13 layers , so there is 13 turns per layer. β€’ 6 coils of 140 turns, each of them has 14 layers , so there is 10 turns per layer. β€’ 1 coil of 98 turns, it has 14 layer , so there is 7 turns per layer. β€’ So the overall no of turns = 7 βˆ— 169 + 6 βˆ— 140 + 1 βˆ— 98 = 2121. β€’ In the turn combinations, the maximum no of turns in the coils is 169. the impressed voltage on those coils is 169 βˆ— 5.511 = 931.36 𝑉 which is below 1000 𝑉. The impressed voltage on the rest coils will also be less than 1000 𝑉. β€’ In the turn combinations, the maximum voltage between two layers will be = 2 βˆ— π‘›π‘œ. π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘›π‘  π‘π‘’π‘Ÿ π‘™π‘Žπ‘¦π‘’π‘Ÿ βˆ— 𝑖𝑛𝑑𝑒𝑐𝑒𝑑 π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘π‘’π‘Ÿ π‘‘π‘’π‘Ÿπ‘› = 2 βˆ— 13 βˆ— 5.511 = 143.286; π‘€β„Žπ‘–π‘β„Ž 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ π‘™π‘–π‘šπ‘–π‘‘. β€’ So, the inter layer voltage difference for other coils also will be less than 143.286 V.
  • 18. Project on Transformer Design β€’ The phase current in H.V. side, 𝐼𝑝 = 150000 3βˆ—11000 = 4.54 𝐴 β€’ As the current is below 20 𝐴, circular cross-sectional conductor can be used . Taking 2.4 𝐴/π‘šπ‘š2 current density, ∴Area of H.V. conductor= 4.54 2.4 = 1.892 π‘šπ‘š2 β€’ Diameter of bare conductor= 4βˆ—1.892 πœ‹ = 1.5520 π‘šπ‘š β€’ Taking diameter of bare conductor , 𝑑 = 1.55 π‘šπ‘š. β€’ Modified area of bare conductor = πœ‹ 4 βˆ— 𝑑2 = 1.887 π‘šπ‘š2 β€’ The actual current density will be = 4.54 1.887 = 2.4 𝐴/π‘šπ‘š2 β€’ Insulated conductor diameter will be, 2.05 π‘šπ‘š. [ .25 π‘šπ‘š π‘–π‘›π‘ π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘£π‘’π‘Ÿπ‘–π‘›π‘”]
  • 19. Project on Transformer Design β€’ Total axial depth of coils, = (7 βˆ— 13 βˆ— 2.05 + 6 βˆ— 10 βˆ— 2.05 + 1 βˆ— 7 βˆ— 2.05) = 323.9 π‘šπ‘š β€’ Total no. of coil = 14, so there is 13 inter coil spacing. β€’ Considering 3.5 π‘šπ‘š inter coil spacing, β€’ Total axial depth will be of H.V. = 323.9 + 13 βˆ— 3.5 = 369.4 π‘šπ‘š β€’ The axial depth takes 369.4 494 βˆ— 100% = 74.77% of the window height which is below 75% that leaves 494βˆ’369.4 2 = 62.3 π‘šπ‘š spacing between coil and yoke on both side.
  • 20. Project on Transformer Design β€’ From π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 7.22 the thickness of insulation between H.V. & L.V. winding = 5 + 0.9 Γ— 11 = 14.9 π‘šπ‘š, this includes the width of oil duct also. β€’ The insulation between H.V. & L.V. winding is a 5π‘šπ‘š thick Bakelite paper cylinder. The H.V. winding is wound on a former 5 π‘šπ‘š thick and the duct is 5π‘šπ‘š wide, space making the total insulation between H.V. & L.V. winding 15π‘šπ‘š. β€’ Considering 0.5 π‘šπ‘š thick paper insulation between layers, β€’ Maximum Radial depth of H.V. winding = 14 βˆ— 2.05 + 13 βˆ— 0.5 = 35.2 π‘šπ‘š β€’ 𝐼𝑛𝑠𝑖𝑑𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝐻𝑉 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 = 𝑂𝑒𝑑𝑠𝑖𝑑𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝐿. 𝑉. 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 + πΌπ‘›π‘ π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› π‘‘π‘’π‘π‘‘β„Ž 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 𝐻. 𝑉. & 𝐿. 𝑉. = 245 + 2 βˆ— 15 = 275 π‘šπ‘š β€’ 𝑂𝑒𝑑𝑠𝑖𝑑𝑒 π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝐻. 𝑉. 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 = 275 + 2 βˆ— 35.2 = 345.4 π‘šπ‘š β€’ πΆπ‘™π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‘π‘€π‘œ π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘™π‘–π‘šπ‘ = 𝐷 – 2 βˆ— π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ 𝐻. 𝑉. 𝑀𝑖𝑛𝑑𝑖𝑛𝑔 = 361.6 – 345.4 = 16.2 π‘šπ‘š
  • 22. Project on Transformer Design ➒ Resistance of primary (H.V.) side : β€’ Mean diameter of primary winding for 140 turns = 275 + 345.4 2 = 310.2 π‘šπ‘š β€’ Length of mean turn of 140 turns of winding = 310.2 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.9745 π‘š β€’ Resistance of 6 coils having 140 turns at 75 βˆ’ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’ Celsius , 𝑇𝑝 = π‘›π‘œ.π‘œπ‘“ π‘π‘œπ‘–π‘™βˆ— (π‘›π‘œ.π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘› βˆ— π‘šπ‘’π‘Žπ‘› π‘™π‘’π‘›π‘”π‘‘β„Ž βˆ— π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘–π‘£π‘–π‘‘π‘¦) π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ = 6 βˆ— 140βˆ— 0.9745βˆ— 0.021 1.887 = 9.11 π‘œβ„Žπ‘š β€’ Radial depth of 169 turns , β€’ Radial depth = 13 βˆ— 2.05 + 12 βˆ— 0.5 = 32.65 π‘šπ‘š β€’ Mean diameter of primary winding for 169 turns = 275+275+2βˆ—32.65 2 = 307.65 π‘šπ‘š β€’ Length of mean turn of primary winding = 307.65 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.9665 π‘š β€’ Resistance of 7 coils having 169 turns at 75 βˆ’ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’ Celsius = 7 βˆ— 169 βˆ— 0.021 βˆ— 0.9665 1.887 = 12.72 π‘œβ„Žπ‘š
  • 23. Project on Transformer Design β€’ Radial depth = 14 βˆ— 2.05 + 13 βˆ— 0.5 = 35.2 π‘šπ‘š β€’ Outer diameter of H.V. winding = 275 π‘šπ‘š + 2 βˆ— 35.2 = 345.4 π‘šπ‘š β€’ Mean diameter of winding = 275 + 345.4 2 = 310.2 π‘šπ‘š β€’ Length of mean turn = 310.2 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.975 π‘š β€’ Resistance of turn = 1 βˆ— 98βˆ—0.021βˆ—0.975 1.887 = 1.063 π‘œβ„Žπ‘š β€’ Total primary winding resistance = 9.11 + 12.72 + 1.063 π‘œβ„Žπ‘š = 22.89 π‘œβ„Žπ‘š β€’ Mean diameter of secondary winding = 214 + 245 2 = 229.5 π‘šπ‘š β€’ Length of mean turn of secondary winding = 229.5 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.721 π‘š β€’ Resistance of secondary winding at 75-degree Celsius , 𝑅𝑠 = 0.721 βˆ— 0.021 βˆ— 44 105 = 6.34 βˆ— 10βˆ’3 π‘œβ„Žπ‘š β€’ Total Resistance referred to primary = 22.89 + ( 2121 44 )2 βˆ— 6.34 βˆ— 10βˆ’3 = 37.62 π‘œβ„Žπ‘š β€’ P.U. resistance of transformer = πΌπ‘βˆ—π‘…π‘ 𝑉𝑝 = 37.62 βˆ— 4.54 11000 = 0.0155
  • 25. Project on Transformer Design β€’ Mean diameter of windings = 214 + 345.4 2 = 279.7 π‘šπ‘š β€’ Length of mean turn = 279.7 βˆ— πœ‹ βˆ— 10βˆ’3 = 0.88 π‘š β€’ Height of winding = 341+369.4 2 = 355.2 π‘šπ‘š = 0.3552 π‘š β€’ Leakage reactance of transformer referred to primary side, 𝑋𝑝 = 2 βˆ— πœ‹ βˆ— 50 βˆ— 4 βˆ— πœ‹ βˆ— 10βˆ’7 βˆ— 21212 βˆ— 0.88 0.3552 βˆ— (15 + 35.2+15.5 3 ) βˆ— 10βˆ’3 = 140.36 π‘œβ„Žπ‘š β€’ P.U. leakage reactance of transformer = 4.54βˆ— 140.36 11000 = 0.058 β€’ P.U. impedance of transformer = 0.0582 + 0.01552 = 0.06
  • 27. Project on Transformer Design β€’ Per unit regulation, κœͺ = 0.0155 βˆ— cos Ξ¦ + 0.058 βˆ— sin Ξ¦ β€’ So, per unit regulation at 𝑒𝑛𝑖𝑑𝑦 𝑃. 𝐹. = 0.0155 β€’ At zero P.F. lagging = 0.058 [Ξ¦ = 90Β°] β€’ At 0.8 P.F. lagging = 0.0155 βˆ— 0.8 + 0.058 βˆ— 0.6 = 0.0472
  • 29. Project on Transformer Design β€’ 𝐼2𝑅 loss at 75-degree Celsius , 3 βˆ— 𝐼𝑝 2 βˆ— 𝑅𝑝 = 3 βˆ— 4.542 βˆ— 37.62 = 2326.23 π‘Šπ‘Žπ‘‘π‘‘ β€’ Total loss including 15% stray load loss = 1.15 βˆ— 2326.23 = 2675.16 π‘Šπ‘Žπ‘‘π‘‘ β€’ Taking density laminations as 7.6 βˆ— 103 π‘˜π‘”/π‘š3 β€’ π‘Šπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ 3 π‘™π‘–π‘šπ‘π‘  = 3 βˆ— π‘–π‘Ÿπ‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž βˆ— π‘€π‘–π‘›π‘‘π‘œπ‘€ β„Žπ‘’π‘–π‘”β„Žπ‘‘ βˆ— 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘™π‘Žπ‘šπ‘–π‘›π‘Žπ‘‘π‘–π‘œπ‘›π‘  = 3 βˆ— 0.02482 βˆ— 0.494 βˆ— 7.6 βˆ— 103 = 279.55 π‘˜π‘” β€’ The flux density in the limbs is 1 π‘Šπ‘/π‘š2 & corresponding to this density, specific core loss is 1.2π‘Š/π‘˜π‘” β€’ Core loss in limbs = 279.55𝑋1.2 = 335.46 π‘Š β€’ Weight of two yokes = 2 βˆ— 0.9022 βˆ— 0.02978 βˆ— 7.6 βˆ— 103 = 408.4 π‘˜π‘” β€’ Corresponding to 0.833 π‘Šπ‘/π‘š2 flux density in the yoke, Specific core loss = 0.85W β€’ Core loss in Yoke = 408.4𝑋0.85 = 347.14 π‘Š β€’ Total core loss, 𝑃𝑖 = 335.46 + 347.14 = 682.6 π‘Š
  • 31. Project on Transformer Design β€’ Total losses at full load : 682.6 + 2675.16 = 3357.76 π‘€π‘Žπ‘‘π‘‘ β€’ Efficiency at full load unity P.F. = ( 150βˆ—103 3357.76 + 150βˆ—103) βˆ— 100% β€’ = 97.81% β€’ For maximum efficiency, (π‘₯2) βˆ— π‘π‘œπ‘π‘π‘’π‘Ÿ π‘™π‘œπ‘ π‘  = π‘π‘œπ‘Ÿπ‘’ π‘™π‘œπ‘ π‘  β‡’ π‘₯ = 682.6 2675.16 ∴ π‘₯ = 0.505 β€’ So maximum efficiency occurs at 50.5% of the full load . This is a good figure for distribution transformer.
  • 33. Project on Transformer Design β€’ Corresponding to flux densities of 1 π‘Šπ‘/π‘š2 & 0.833 π‘Šπ‘/π‘š2 in core & yoke respectively, with the help of B-H curve π‘Žπ‘‘π‘ = 120 𝐴/π‘š & π‘Žπ‘‘π‘¦ = 80 𝐴/π‘š. β€’ So, total magnetizing m.m.f. = 3 Γ— 120 Γ— 0.494 + 2 Γ— 80 Γ— 0.9022 = 322.192 𝐴 β€’ So, magnetizing m.m.f. per phase, π΄π‘‡π‘œ = 322.192 3 = 107.4 𝐴 β€’ Magnetizing current πΌπ‘š = π΄π‘‡π‘œ 2βˆ—π‘‡π‘ = 102.173 2βˆ—2121 = 0.0358 𝐴 β€’ Loss component of no load current = π‘π‘œπ‘Ÿπ‘’ π‘™π‘œπ‘ π‘  3βˆ—π‘‰π‘ = 682.6 3βˆ—11000 = 0.021 𝐴 β€’ No load current = 0.03582 + 0.0212 = 0.0415 𝐴 β€’ No load current as a percent of full load current = 0.0415 4.15 βˆ— 100% = 1% β€’ Allowing for joints etc. the no load current will be about 2 βˆ’ 2.5% of full load current.
  • 35. Project on Transformer Design β€’ Impedence referred to primary = 37.622 + 140.362 = 145.31 π‘œβ„Žπ‘š β€’ Percentage of input voltage that requires to flow rated current on the secondary side at short circuit, 145.31βˆ—4.54 11000 βˆ— 100% = 5.9% [ which lies in standard limit 5 βˆ’ 10%].
  • 37. Project on Transformer Design β€’ Height over yoke , 𝐻 = 801 π‘šπ‘š β€’ Allowing 50 π‘šπ‘š at the base & 150 π‘šπ‘š for oil, β€’ Height of oil level = 801 + 50 + 150 = 1001 π‘šπ‘š β€’ Allowing another 200 π‘šπ‘š height for leads and bushing Height of Tank, 𝐻𝑑 = 1001 + 200 = 1201 π‘šπ‘š β€’ The height of tank is taken as 1.201 π‘š . β€’ Width of the Tank, π‘Šπ‘‘ = 2𝐷 + 𝐷𝑒 + 2𝑙 = 𝟐 Γ— 361.6 + 345.4 + 𝟐 Γ— πŸ’πŸŽ = 1148.6 π‘šπ‘š [ 𝑙 = π‘π‘™π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ π‘€π‘–π‘‘β„Ž π‘‘π‘Žπ‘›π‘˜] β€’ The width of tank is taken as 1.148 π‘š . β€’ The clearance used is approximately 50 π‘šπ‘š on each side. β€’ Length of the tank, 𝐿𝑑 = 𝐷𝑒 + 2𝑏 = 345.4 + 2 βˆ— 70 = 385.4 π‘šπ‘š [𝑏 = π‘π‘™π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’] β€’ The length of tank is taken as 0.385 π‘š β€’ Total loss dissipating surface of tank = 𝟐 βˆ— (1.148 + 0.385 ) Γ— 1.201 = 3.68 π‘š2 β€’ Total specific loss dissipation due to radiation & convection is 12.5 π‘Š/π‘š2 ℃
  • 38. Project on Transformer Design β€’ Temperature rise = 3357.56 3.68βˆ—12.5 = 72.99 °𝐢. This is over 35℃, therefore plain tank alone is not sufficient for cooling & so tubes are required. β€’ Let the area of tubes be π‘₯ βˆ— 3.68 β€’ Loss dissipating surface= (1 + π‘₯) βˆ— 𝑆𝑑 = 3.68 βˆ— (1 + π‘₯) β€’ Loss dissipated= 12.5+8.8π‘₯ π‘₯+1 W/m2 - ℃ β€’ So, specific loss dissipation = 3357.56 3.68βˆ— 1+π‘₯ βˆ—35 = 26.1 1+π‘₯ β‡’ 26.1 1+π‘₯ = 12.5+8.8βˆ—π‘₯ 1+π‘₯ ∴ π‘₯ = 1.55 β€’ Area of tubes needed = 1.55 Γ— 3.68 = 5.7 π‘š2 β€’ So, dissipating area of each tube = πœ‹ Γ— 0.05 Γ— 1.55 = 0.243 π‘š2 β€’ So number of tubes will be provided = 5.7/0.243 β‰ˆ 23.46 β€’ Arrangement of tubes : π΄π‘™π‘œπ‘›π‘” π‘™π‘’π‘›π‘”π‘‘β„Ž – 2 π‘Ÿπ‘œπ‘€π‘  – 3 & 2 𝑑𝑒𝑏𝑒𝑠
  • 41. Project on Transformer Design β€’ Core: 1 Material --- 0.35mm thick 92 grade 2 Output Constant K 0.45 3 Voltage per turn Et 5.511V 4 Circumscribing circle diameter d 211 mm 5 No. of steps --- 2 6 Dimensions a 178.94 mm b 111.57 mm 7 Net iron area Ai 24.82 Γ— 103 mm2 8 Flux density Bm 1.0 Wb/m2 9 Flux Ξ¦m 0.02482 Wb 10 Weight 279.55 kg 11 Specific iron loss 1.2 W/kg 12 Iron loss 335.46 W
  • 42. Project on Transformer Design β€’ Yoke: β€’ Window: 1 Depth of Yoke Dy 179 mm 2 Height of Yoke Hy 184.87 mm 3 Net Yoke area 29.784x103 mm2 4 Flux density 0.833 Wb/m2 5 Flux 0.025 Wb 6 Weight 408.4 kg 7 Specific iron loss 0.85 W/kg 8 Iron loss 347.14 W 1 Number 2 2 Window space factor Kw 0.244 3 Height of window Hw 494 mm 4 Width of window Ww 150.6 mm 5 Area of window Aw 0.0744 m2 6 Height to width ratio 3.28
  • 43. Project on Transformer Design β€’ Frame: β€’ Insulation: 1 Distance betn adjacent limbs D 361.6 mm 2 Height of Frame H 801 mm 3 Width of Frame W 902.2 mm 4 Depth of window Dy 179 mm 1 Betn L.V. winding & Core Press board wraps 1.5mm 2 Betn L.V. winding & H.V. winding Bakelite paper 5mm 3 Width of duct betn L.V & H.V. 5mm
  • 44. Project on Transformer Design β€’ Winding: Sl no. Properties L.V. H.V. 1 Type of winding Cylindrical Cross-over 2 Connections Star Delta 3 Conductor Dimensions bare 15x7 mm2 Diameter=1.55 mm insulated 15.5x7.5 mm2 Diameter=2.05mm Area 116.25 mm2 1.887 mm2 No. in parallel None None 4 Current Density 1.98 A/mm2 2.4 A/mm2 5 Turns per phase 44 2020 (2121 at Β±5% tapping) 6 Coils total number 3 3x14 per core leg 1 14 7 Turns Per coil 44 7 of 169, 6 of 140, 1 of 98 Per layer 22 13,10,7 8 Number of layers 2 13,14,14 9 Height of winding 341 mm 369.4 mm 10 Depth of winding 15.5 mm 35.2 mm 11 Insulation Betn layers 0.5 mm press board 0.5mm paper Betn coils 3.5mm spacers 12 Coil Diameters Inside 214mm 275mm Outside 245mm 345.4mm 13 Length of mean turn 229.5mm 310.2mm 14 Resistance at 75℃ 0.00634Ω 22.89Ω
  • 45. Project on Transformer Design β€’ Tank: 1. Dimensions Height Ht 1.201m Length Lt 0.385 Width Wt 1.148m 2. Tubes 8 3. Temperature rise --- 72.99 ℃ 4. Impedance P.U. Resistance --- 0.0155 P.U. Reactance --- 0.058 P.U. Impedance --- 0.06 5. Losses Total Core loss --- 682.6 W Total copper loss --- 2675.16 W Total losses at full load --- 3357.76 W Efficiency at full load & unity p.f. --- 97.81%