SlideShare a Scribd company logo
1 of 9
[Type here]
BOLTZMANNENTROPY: PROBABILITYAND
INFORMATION
We have presentedfirstanaxiomaticderivationof Boltzmannentropyonthe basisof twoaxiomsconsistentwithtwo
basicpropertiesof thermodynamicentropy.We have thenstudiedthe relationshipbetweenBoltzmannentropyand
informationalongwithitsphysical significance.PACS:89.70, + C
Keywords:Boltzmannentropy,thermodynamicprobability,axiomaticderivation,information,statistical equilibrium.
1. INTRODUCTION
The concept of entropywasfirstintroducedinthermodynamicsbyClausiusthrough the secondlaw of thermodynamics.
It was Boltzmannwhofirstprovidedthe statistical analogue of thermodynamicentropylinkingthe conceptof entropy
withmoleculardisorderorchaos [1].The conceptof entropywaslaterdevelopedwiththe adventof stati stical
mechanicsandinformationtheory[3].Boltzmannentropyisabuildingblocktothe foundationof statistical mechanics
and the literature onBoltzmannentropyisvast.Inspiteof this,there isscope forfurtherextensionof the existing
methodsand principles. Inthe presentpaperwe have providedfirstanaxiomaticderivationof Boltzmannentropyon
the basisof twoaxiomsconsistentwiththe additivityandthe increasinglaw of thermodynamicentropy. We have then
introducedthe probabilitydistributionof amacrostate throughthe conceptof priorprobabilities.Thishasledtoan
interestingrelationconnectingnegentropyandinformation.The physical significance of thisrelationinthe
characterizationof statistical equilibriumhasbeeninvestigated.
2. THERMODYNAMIC PROBABILITY AND BOLTZMANN ENTROPY
Boltzmannentropyisdefinedby[1]
S = k ln W … (2.1)
where k isthe thermodynamicunitof the measurementof the entropyand isthe Boltzmannconstant,W calledthe
thermodynamicprobabilityorstatistical weightisthe total numberof microscopicstatesorcomplexionscompatible
withthe macroscopicstate of the system.FollowingCarnop[4],we shall,however,call Was the degree of disorderor
simplydisorderof the system.We canthusrestate Boltzmannprincipleas
Entropy= k ln(Disorder) … (2.2)
The entropySbeinga monotonicincreasingfunctionof disorder,canitself be consideredasameasure of disorderof
the system.Boltzmannentropythusprovidesameasure of the disorderof the distributionof the statesoverpermissible
microstates[4].Letus derive the expression(2.1) of entropyaxiomaticallyonthe
basisof two fundamental propertiesof thermodynamicentropy.We make the followingaxioms:
Axiom (i) :
The entropyS(W) of systemisa positive increasingfunctionof the disorderW,
that is,
S (W) ≤ S (W + 1) … (2.3)
This ismotivatedbythe increasinglawof entropyinthermodynamics.
[Type here]
Axiom (ii) :
The entropyS(W) isassumedtobe an additive functionof the disorderW,that is,forany twostatisticallyindependent
systemswithdegreesof disorderW1and W2 respectively,the entropyof the compositesystemisgivenby
S (W1 . W2) = S (W1) + S (W2) … (2.4)
This axiomisthe statistical analogue of the thermodynamicpostulate of additivityof entropy.We have thenthe
theorem:
Theorem(1) :
If the entropyfunction S(W) satisfiesthe above twoaxioms(i) and(ii),thenS(W) isgivenby
S = k lnW … (2.5)
where k isa positive constantdependingonthe unitof measurementof entropy.
Proof :
Let us assume thatW > e. Thisisjustifiedbythe factthat the macroscopicsystemwe are interestedinconsists
of a large numberof microscopicstatesandhence correspondstoa large value of statistical weightorthermodynamic
probabilityW.Forany integern,we can findanintegerm(n) suchthat
em(n) ≤ Wn ≤ em(n) +1 … (2.6)
or
𝑚( 𝑛)
𝑛
≤ ln 𝑊 ≤
𝑚( 𝑛)+1
𝑛
consequently, lim
𝑛→∞
𝑚( 𝑛)
𝑛
= ln 𝑊
The entropyfunctionS(W) satisfiesboththe axioms(i) and(ii).Byaxiom(i) we have thenfrom(2.6)
S (em(n)) ≤ S (Wn) ≤ S (em(n) +1) … (2.8)
Againbyaxiom(ii) we have from(2.8)
m(n) S(e) ≤ nS (W) ≤ (m(n) + 1) S(e)
consequently, , lim
𝑛→∞
𝑚( 𝑛)
𝑛
=
𝑆(𝑊)
𝑆(𝑒)
……………………………(2.9)
Comparing(2.7) and (2.9),we get
S(W) = k lnW .....................…(2.10)
where S(e) =k isa positive constant,the positivityfollowsfromthe positivityof the entropy –functionpostulatedin
axiom(i).The above theoremprovidesarigorousderivationof the entropyfunctionwhichisindependentof the micro-
model of the system – classical orquantal.In mostof the bookson statistical physicsexceptafew [6]
the expressionof entropy(2.1) isdeterminedfromthe additivitypostulate of entropyonly.Thisisnotcorrect.The
above derivationbasedonthe axioms(i) and(ii)whichare variantformsof twobasicpropertiesof thermodynamic
entropyismore sound and isvalidformacroscopicsystemcontainingalarge numberof molecules[6].
3. PRIOR PROBABILITIES: ENTROPY AND INFORMATION
[Type here]
The thermodynamicprobabilitywhichappearsinBoltzmannentropy(2.1) isnota probabilitybutaninteger.
How to introduce the conceptof probability?Itwas
Einstein[7] whofirstintroducedthe conceptof probabilityof amacrostate by invertingBoltzmannprinciple [8].We
shall,however,followadifferentapproach.We consideranisolatedsystemconsisting of N moleculesclassifiedinton
energystatesεi ( i = 1, 2, ….n) andletNi ( i = 1, 2, ….n) be the occupationnumberof the ithenergy-state εi.The
macroscopicstate of the systemisgivenbythe setof occupationnumbersAn= {N1,N2, … Nn}.
We are nowinterestedinthe probabilitydistributionof the macrostate Anorthe probabilitydistributionof the
setof occupationnumbersAn= {N1,N2, …, Nn}.In view of the many-body aspect of the system, the setof
occupationnumbers{N1,N2,… Nn}canbe assumedtobe a setof randomvariables.The probabilitydistributionof the
macrostate An = {N1, N2, … Nn} is thengivenby
P (An) = P (N1,N2,… Nn) = W (An) ∏ 𝑝0𝑖
𝑁𝑛
𝑖=1 …………..(3.1)
where pi0isthe priorprobabilitythatamolecule liesinthe ithenergy-state εi.The probability(3.1) isof fundamental
importance inconnectingthe disorderW(An)withthe probabilityP(An),while the formerisrelatedtothe Boltzmann
entropyandthe later toinformationasshall see.The appearance of priorprobabilities{pi0} makesthe systemcomplex.
If no state is preferable toother,itisthenreasonable toassume thatall priorprobabilitiesare equal toone anotherso
that pio= 1/n,(i = 1, 2, … n). ThisisLaplace principle of insufficientknowledge[10].AccordingtoJaynes[3] it isthe state
of maximumpriorignorance of the system.Itthatcase itis easyto see from(3.1) that
- k lnP (An) = Smax – S … (3.2)
where Smax = k N ln n isthe maximumvalue of the entropyS.The l.h.s.of (3.2) isthe information-contentof the
macrostate An.that is,the informationgainedfromthe realizationof the macrostate An[2].The r.h.sof (3.2) isthe
negentropyof the systemgivingameasure of distance of non-equilibriumstate fromthe equilibriumstate [9,12].The
relation(3.2) thenimpliesthe equivalence of informationwithnegentropyconsistentwithBrillouin’snegentropy
principle of information[9].
Let us nowinvestigate the significance of the relation(3.2) forthe statistical equilibriumof asystem.According
to BoltzmannandPlanckthe statistical equilibriumof asystemcorrespondstothe mostprobable state of the system.
The thermodynamicprobabilityW(An) isnota probability,itisaninteger.Sothe statistical equilibriumasassumedto
correspondtothe maximumof the thermodynamicprobabilityorequivalentlythe Boltzmannentropygivesrise tosome
confusion[8].However,fromthe relation(3.2) we see thatthe mostprobable state of the systemobtainedby
maximizingthe probabilityof the macrostate P(An) isequivalenttothe maximizationof the Boltzmannentropy(2.1) or
the maximizationof the thermodynamicprobabilityW(An) providedwe acceptthe hypothesisof equal aprior
probabilitypio =1/n, (i = 1, 2, …n).It isin thiswaythe confusionaboutthe non-probabilisticcharacterof
thermodynamicprobabilityW(An) andthe most-probableinterpretationof statistical equilibriumcanbe resolved.
4. CONCLUSION
The objectof the presentpaperistopresent significantlydifferentapproachtothe characterizationof
Boltzmannentropyinrelationtoboththermodynamicprobabilityandinformation.The mainresultsof the paperare as
follows:
(i) We have presentedarigorousaxiomaticderivationof Boltzmannentropyonthe basisof the axiomsof additivity
and increasinglawof entropyconsistentwithtwobasic propertiesof thermodynamicentropy[11].The methodis
superior,bothmathematicallyandphysically,tothe existingmethods(exceptafew) basedmainlyonthe propertyof
additivityof entropyonly.
[Type here]
(ii)Boltzmannentropyisindependentof probability.We have introducedthe probabilityof amacrostate throughthe
hypothesisof priorprobability{pi0}.
(iii)The probabilitydistributionof macrostate leadstothe interestingrelation(3.2) connectinginformationand
BoltzmannentropyornegentropyconsistentwithBrillouins’negentropyprinciple of information[4].There is,however,
a difference. Inourcase informationcomesthroughthe conceptof probabilityandthe l.h.sof (3.2) isin fact,a
probabilisticmeasure of informationandnotlike the one introducedbyBrillouin[9] andothers[12].
(iv) The relation(3.2) has importantphysical significance forstatistical equilibrium.Itresolvesthe confusionaboutthe
most–probable state of statistical equilibriumachievedbymaximizingthe thermodynamicprobabilityunderthe
hypothesisof equal priorprobabilities.
(v) In the case of unequal priorprobabilities{pio} the situationbecomescomplicated and interesting forboth
physical andnon-physical systems[13-15].
METHODS FOR DERTERMINATION OF
AVOGADROS NUMBER:
AMEDEO CARLO AVOGADROwasan ItalianScientistgave the conceptof AvogadroLaw.(atoms,ions,ormolecules)
The numberof particlesone mole of asubstance isalwaysconstanti.e,6.0221407574× 1023.It isshownby 𝑁𝐴.The
experimental methjodsare asfollows:
1-By Perrinmethod(Brownianmovement)
2-By X-rayDiffraction(Crystallographicmethod)
3-By Electrochemical method
4-By ElectricCharge
5-By counting∝- particles
By Perrin Method:
In 1909 J.Perrindetermined 𝑁𝐴 byBoltzmanndistributionlaw .he determinedBoltzmannconstantKfromnumberof
particlesatdifferentheightsinasuspensionbyusingrelationship 𝑁𝐴 =
𝑅
𝑘
.Perrinobtained colloidal particlesof uniform
densityanddiameterbycentrifugingemulsionof gambage (ayellowresinusedinwatercolor).He observedthatat
differentheightsno.ofparticlesare different.He usedmicroscopeof verylow depthtosee no.of particlesinverylow
depthof ` h’height.
Consideracylinderof areasA inwhichmoleculescome inequilibriumwithgravity.Pressure isPatheighthbut Pressure
become P-dPbychangingheightdh(byincreasingvolume,pressure isdecreasedi.e.-ve)
Two forcesact
Upward force =downwardforce
Fu=Fd
[Type here]
A× 𝑑𝑃 =Adh𝜌g
dP=dh𝜌g
-ve signisusedbecause pressure isdecreased
- dP=dh𝜌g
dP=-dh𝜌g……………….(1)
Value of 𝜌:
Accordingto Kineticequation 𝑃𝑣 =
2
3
𝐸. 𝑘 or 𝑉 =
2𝐸.𝑘
3𝑃
.and we know density 𝜌 =
𝑀
𝑉
𝜌 =
𝑀
2𝐸.𝑘
3𝑃
=
3𝑀𝑃
2𝐸.𝑘
by puttingvalue of 𝜌ineq1
- dP=
3𝑀𝑃𝑔𝑑ℎ
2𝐸.𝑘
…………….(2)
− dP
𝑃
=
3𝑀𝑔𝑑ℎ
2𝐸.𝑘
integrate itw.r.t P whenh=0 thenpressure is 𝑃0 whenheightishthen
pressure isP.
∫ −𝑑𝑃
𝑃
𝑃0
=
3𝑀𝑔
2𝐸.𝑘
∫ 𝑑ℎ
ℎ
0
-[ln 𝑃 − ln 𝑃0]=
3𝑀𝑔
2𝐸.𝑘
[h-0]
- lnP+ ln𝑃0 =
3𝑀𝑔ℎ
2𝐸.𝑘
lnP
Po⁄ =
3𝑀𝑔ℎ
2𝐸.𝑘
but P∝ 𝑛
thus ln n
𝑛0⁄ =
3𝑀𝑔ℎ
2𝐸.𝑘
……………….(3)
𝑛0 isno. f molseculeswhenh=0
n is no.of moleculeswhenheightish
Mg = 𝑁𝐴mg (1 -
𝜌′
𝜌
)
Thus eq3 will become
ln n
𝑛0⁄ =
3𝑁 𝐴 𝑚𝑔ℎ
2𝐸.𝑘
(1 -
𝜌′
𝜌
) ….. but E.k=
3
2
𝑅𝑇
ln n
𝑛0⁄ =
𝑁 𝐴 𝑚𝑔ℎ
𝑅𝑇
(1 -
𝜌′
𝜌
) ……. Andby multiplyingitbyRT
RT ln n
𝑛0⁄ = 𝑁𝐴 𝑚𝑔ℎ(
𝜌−𝜌′
𝜌
) ………(4) but V=
4
3
𝜋𝑟3, 𝜌 =
𝑀
𝑉
,M=
4
3
𝜋𝑟3 𝜌
[Type here]
By puttingvalue of min eq(4)
RT lnn
𝑛0⁄ = 𝑁𝐴
4
3
𝜋𝑟3 h𝜌g(
𝜌−𝜌′
𝜌
)
𝑅𝑇
𝑁 𝐴
lnn
𝑛0⁄ =
4
3
𝜋𝑟3 gh(𝜌 − 𝜌′)
𝑁𝐴 =
3RT lnn
𝑛0⁄
4𝜋𝑟3 𝑔ℎ(𝜌− 𝜌′)
By puttingvaluesof RT,n,r,g,h, 𝑛0, 𝜌, 𝜌′
𝑁𝐴 =6.022 × 1023.
Where n and 𝑛0can be determinedbymicroscopeof verylow depthof field.
By Crystallographic Method:
To determine Avogadronumberbycrystallographicmethodfollowingvaluesare required.
1- Volume of one mole of a crystalline solid,itcanbe determinedbyfollowingformula;
Density=
𝑚𝑎𝑠𝑠
𝑣𝑜𝑙𝑢𝑚𝑒
or volume =
𝑚𝑎𝑠𝑠
𝑑𝑒𝑛𝑠𝑖𝑡𝑦
2-the distance betweenparticlesinthe crystalslattice.Itcanbe determinedbyX-rays.
Example : calculate 𝑁𝐴 inLiFhaving2.65g𝑐𝑚−3densityanddistance betweenionsis2.01 𝐴0.
SOLVE: Formulamass of LiF= 6.939+18.9984=25.9374
𝑔
𝑚𝑜𝑙⁄
Volume =
𝑚𝑎𝑠𝑠
𝑑𝑒𝑛𝑠𝑖𝑡𝑦
=
25.9374
2.65
= 9.788𝑐𝑚3 burt volume = 𝑙 × 𝑙 × 𝑙 =𝑙3, 𝑙 =√ 𝑣3
= √9.7883
= 2.139𝑐𝑚3
No.of ionsalongone length
𝑙𝑒𝑛𝑔𝑡ℎ
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑜𝑛𝑠
=
2.139
2.01×10−8
=1.064× 108
Total no.of ionsalongthree lengths=(1.064× 108)3 = 1.204 × 1024 𝑖𝑜𝑛𝑠
Thus inLiF total no,of Li+ ionsis one Avogadronumberandtotal no of F- ionsisone Avogadronumber.
Therefore, no. of onlyLi+ or F- , ions=
1.204 ×1024
2
= 6.022× 1023 ions
By Electrolysis Method:
As we knowthat
1 mole of electron=6.022× 1023 e- and1 mole of Cu = 6.022× 1023 atoms
Avogadrosnumber=
𝑛𝑜.𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠
𝑛𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠
Thus we can calculate no.of electronsandno.of molesof electronsbyelectrolysisexperiment.
Experiment : take CuSO4 in a container .dip two strip of Cu which act as Electrode .the CuSO4 is
ionized into
CuSO4 ↔ 𝐶𝑢2+ + 𝑆𝑂4−2
[Type here]
Electronsmove towards –ve electrode .one Cuelectrode loses2e-s
Cu → 𝐶𝑢+2 + 2𝑒−
Thus massof one Cu electrode decreases(∆𝑚1). 𝐶𝑢+2ionsinsolutiongain2e-sand deposite of otherelectrode mass
of thiselectrode increases(∆𝑚2).duringreaction(∆𝑚1 ≠ ∆𝑚2) butwhenreactioncomplete then(∆𝑚1 = ∆𝑚2)
To determine no.of electronsandno.of molesof electronisdifficultbutwe cancalculate charge of electron.
In physicscharge Q = I × 𝑡 𝑠𝑒𝑐
But charge of 1 e- = 1.6022× 10−19 coulombs
Thus Q charge =𝐼(𝑒𝑚𝑝) × 𝑡 𝑠𝑒𝑐 ×
1 𝑒−
1.602×10−19 𝑐𝑜𝑙𝑜𝑢𝑚𝑏𝑠
From chemical reactioneq
No.of e-s=no.of mole of electrons
No.of e-=
𝐼 × 𝑡
1.602×10−19
byputtingno of e-s
No.of Cu atoms =
𝐼 × 𝑡
1.602×10−19 ×2𝑒−𝑓𝑜𝑟 1 𝐶𝑢 𝑎𝑡𝑜𝑚
………..(2)
Now calculate no. of molesofCu
From massof Cu we can calculate moles of Cu
No.of mole of Cu= ∆𝑚2 ×
1 𝑚𝑜𝑙𝑒 𝑜𝑓 𝐶𝑢
63.543
…………..(3)
We knowthat No.of atoms =no. of moles × 𝑁𝐴
Or Avogadrono.=
𝑛𝑜.𝑜𝑓 𝐶𝑢 𝑎𝑡𝑜𝑚𝑠
𝑛𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶𝑢
By puttingvaluesfromeq2 and eq3
𝑁𝐴 =
𝐼 × 𝑡
1.602×10−19 ×2𝑒−𝑓𝑜𝑟 1 𝐶𝑢 𝑎𝑡𝑜𝑚
∆𝑚2
1 𝑚𝑜𝑙𝑒 𝑜𝑓 𝐶𝑢
63.543
=
𝐼 × 𝑡 ×63.543
1.60210−19 × 2× ∆𝑚2
By puttingvaluesof I,tand ∆𝑚2 we can calculate Avogadronumber.
[Type here]
Composed by
Maria Aamer Sabah
Roll No: MCEC-17-09
[Type here]

More Related Content

What's hot

Kompetisi sn 1, sn-2, e-1, dan e-2
Kompetisi sn 1, sn-2, e-1, dan e-2Kompetisi sn 1, sn-2, e-1, dan e-2
Kompetisi sn 1, sn-2, e-1, dan e-2
Annik Qurniawati
 
Nucleophilic Aromatic Substitution of Benzyne
Nucleophilic Aromatic Substitution of BenzyneNucleophilic Aromatic Substitution of Benzyne
Nucleophilic Aromatic Substitution of Benzyne
Aadil Ali Wani
 

What's hot (20)

Kompetisi sn 1, sn-2, e-1, dan e-2
Kompetisi sn 1, sn-2, e-1, dan e-2Kompetisi sn 1, sn-2, e-1, dan e-2
Kompetisi sn 1, sn-2, e-1, dan e-2
 
Metal Carbene Complexes.ppt
Metal Carbene Complexes.pptMetal Carbene Complexes.ppt
Metal Carbene Complexes.ppt
 
WACKER PROCESS
WACKER PROCESS WACKER PROCESS
WACKER PROCESS
 
Ash_PPT_New (2).pptx
Ash_PPT_New (2).pptxAsh_PPT_New (2).pptx
Ash_PPT_New (2).pptx
 
Gattermann koch
Gattermann kochGattermann koch
Gattermann koch
 
Chain Reactions
Chain ReactionsChain Reactions
Chain Reactions
 
SYMMETRY ELEMENTS AND SYMMETRY OPERATIONS
SYMMETRY ELEMENTS AND SYMMETRY OPERATIONSSYMMETRY ELEMENTS AND SYMMETRY OPERATIONS
SYMMETRY ELEMENTS AND SYMMETRY OPERATIONS
 
Aromatic Nucleophilic Substitution
Aromatic Nucleophilic SubstitutionAromatic Nucleophilic Substitution
Aromatic Nucleophilic Substitution
 
Metal Carbonyls
Metal CarbonylsMetal Carbonyls
Metal Carbonyls
 
Nucleophilic Aromatic Substitution of Benzyne
Nucleophilic Aromatic Substitution of BenzyneNucleophilic Aromatic Substitution of Benzyne
Nucleophilic Aromatic Substitution of Benzyne
 
Zinc metalloenzymes
Zinc metalloenzymesZinc metalloenzymes
Zinc metalloenzymes
 
Nonclassical Carbocation
Nonclassical CarbocationNonclassical Carbocation
Nonclassical Carbocation
 
Dinitrogen complexes
Dinitrogen complexesDinitrogen complexes
Dinitrogen complexes
 
WALSH DIAGRAM- SEMINAR TOPIC
WALSH DIAGRAM- SEMINAR TOPICWALSH DIAGRAM- SEMINAR TOPIC
WALSH DIAGRAM- SEMINAR TOPIC
 
Organolithium compounds
Organolithium compoundsOrganolithium compounds
Organolithium compounds
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
 
Electrophillic substitution of benzene
Electrophillic substitution of benzeneElectrophillic substitution of benzene
Electrophillic substitution of benzene
 
Chapter 1 ppt
Chapter 1 pptChapter 1 ppt
Chapter 1 ppt
 
Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
 
Metal nitrosyls and their derivatives
Metal nitrosyls and their derivativesMetal nitrosyls and their derivatives
Metal nitrosyls and their derivatives
 

Similar to Boltzmann entropy and methods for determination of Avogadro nummber

Introduction to polarization physics
Introduction to polarization physicsIntroduction to polarization physics
Introduction to polarization physics
Springer
 
REPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docxREPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docx
debishakespeare
 
Ls2 unit 4-----1
Ls2 unit 4-----1Ls2 unit 4-----1
Ls2 unit 4-----1
antualv
 
Paper id 25201479
Paper id 25201479Paper id 25201479
Paper id 25201479
IJRAT
 
MATH3031_Project 130515
MATH3031_Project 130515MATH3031_Project 130515
MATH3031_Project 130515
Matt Grifferty
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
Springer
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
Springer
 

Similar to Boltzmann entropy and methods for determination of Avogadro nummber (20)

Introduction to polarization physics
Introduction to polarization physicsIntroduction to polarization physics
Introduction to polarization physics
 
Quantum Assignment Help
Quantum Assignment HelpQuantum Assignment Help
Quantum Assignment Help
 
Quantum state
Quantum stateQuantum state
Quantum state
 
506
506506
506
 
statistic mechanics
statistic mechanicsstatistic mechanics
statistic mechanics
 
On the Cryptographic Measures and Chaotic Dynamical Complexity Measures
On the Cryptographic Measures and Chaotic Dynamical Complexity MeasuresOn the Cryptographic Measures and Chaotic Dynamical Complexity Measures
On the Cryptographic Measures and Chaotic Dynamical Complexity Measures
 
REPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docxREPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docx
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
Statistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VIStatistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VI
 
Mdof
MdofMdof
Mdof
 
01_AJMS_317_21.pdf
01_AJMS_317_21.pdf01_AJMS_317_21.pdf
01_AJMS_317_21.pdf
 
Ls2 unit 4-----1
Ls2 unit 4-----1Ls2 unit 4-----1
Ls2 unit 4-----1
 
Information theory and statistical mechanics
Information theory and statistical mechanicsInformation theory and statistical mechanics
Information theory and statistical mechanics
 
Paper id 25201479
Paper id 25201479Paper id 25201479
Paper id 25201479
 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
MATH3031_Project 130515
MATH3031_Project 130515MATH3031_Project 130515
MATH3031_Project 130515
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
 
Non equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flowsNon equilibrium thermodynamics in multiphase flows
Non equilibrium thermodynamics in multiphase flows
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 

Boltzmann entropy and methods for determination of Avogadro nummber

  • 1. [Type here] BOLTZMANNENTROPY: PROBABILITYAND INFORMATION We have presentedfirstanaxiomaticderivationof Boltzmannentropyonthe basisof twoaxiomsconsistentwithtwo basicpropertiesof thermodynamicentropy.We have thenstudiedthe relationshipbetweenBoltzmannentropyand informationalongwithitsphysical significance.PACS:89.70, + C Keywords:Boltzmannentropy,thermodynamicprobability,axiomaticderivation,information,statistical equilibrium. 1. INTRODUCTION The concept of entropywasfirstintroducedinthermodynamicsbyClausiusthrough the secondlaw of thermodynamics. It was Boltzmannwhofirstprovidedthe statistical analogue of thermodynamicentropylinkingthe conceptof entropy withmoleculardisorderorchaos [1].The conceptof entropywaslaterdevelopedwiththe adventof stati stical mechanicsandinformationtheory[3].Boltzmannentropyisabuildingblocktothe foundationof statistical mechanics and the literature onBoltzmannentropyisvast.Inspiteof this,there isscope forfurtherextensionof the existing methodsand principles. Inthe presentpaperwe have providedfirstanaxiomaticderivationof Boltzmannentropyon the basisof twoaxiomsconsistentwiththe additivityandthe increasinglaw of thermodynamicentropy. We have then introducedthe probabilitydistributionof amacrostate throughthe conceptof priorprobabilities.Thishasledtoan interestingrelationconnectingnegentropyandinformation.The physical significance of thisrelationinthe characterizationof statistical equilibriumhasbeeninvestigated. 2. THERMODYNAMIC PROBABILITY AND BOLTZMANN ENTROPY Boltzmannentropyisdefinedby[1] S = k ln W … (2.1) where k isthe thermodynamicunitof the measurementof the entropyand isthe Boltzmannconstant,W calledthe thermodynamicprobabilityorstatistical weightisthe total numberof microscopicstatesorcomplexionscompatible withthe macroscopicstate of the system.FollowingCarnop[4],we shall,however,call Was the degree of disorderor simplydisorderof the system.We canthusrestate Boltzmannprincipleas Entropy= k ln(Disorder) … (2.2) The entropySbeinga monotonicincreasingfunctionof disorder,canitself be consideredasameasure of disorderof the system.Boltzmannentropythusprovidesameasure of the disorderof the distributionof the statesoverpermissible microstates[4].Letus derive the expression(2.1) of entropyaxiomaticallyonthe basisof two fundamental propertiesof thermodynamicentropy.We make the followingaxioms: Axiom (i) : The entropyS(W) of systemisa positive increasingfunctionof the disorderW, that is, S (W) ≤ S (W + 1) … (2.3) This ismotivatedbythe increasinglawof entropyinthermodynamics.
  • 2. [Type here] Axiom (ii) : The entropyS(W) isassumedtobe an additive functionof the disorderW,that is,forany twostatisticallyindependent systemswithdegreesof disorderW1and W2 respectively,the entropyof the compositesystemisgivenby S (W1 . W2) = S (W1) + S (W2) … (2.4) This axiomisthe statistical analogue of the thermodynamicpostulate of additivityof entropy.We have thenthe theorem: Theorem(1) : If the entropyfunction S(W) satisfiesthe above twoaxioms(i) and(ii),thenS(W) isgivenby S = k lnW … (2.5) where k isa positive constantdependingonthe unitof measurementof entropy. Proof : Let us assume thatW > e. Thisisjustifiedbythe factthat the macroscopicsystemwe are interestedinconsists of a large numberof microscopicstatesandhence correspondstoa large value of statistical weightorthermodynamic probabilityW.Forany integern,we can findanintegerm(n) suchthat em(n) ≤ Wn ≤ em(n) +1 … (2.6) or 𝑚( 𝑛) 𝑛 ≤ ln 𝑊 ≤ 𝑚( 𝑛)+1 𝑛 consequently, lim 𝑛→∞ 𝑚( 𝑛) 𝑛 = ln 𝑊 The entropyfunctionS(W) satisfiesboththe axioms(i) and(ii).Byaxiom(i) we have thenfrom(2.6) S (em(n)) ≤ S (Wn) ≤ S (em(n) +1) … (2.8) Againbyaxiom(ii) we have from(2.8) m(n) S(e) ≤ nS (W) ≤ (m(n) + 1) S(e) consequently, , lim 𝑛→∞ 𝑚( 𝑛) 𝑛 = 𝑆(𝑊) 𝑆(𝑒) ……………………………(2.9) Comparing(2.7) and (2.9),we get S(W) = k lnW .....................…(2.10) where S(e) =k isa positive constant,the positivityfollowsfromthe positivityof the entropy –functionpostulatedin axiom(i).The above theoremprovidesarigorousderivationof the entropyfunctionwhichisindependentof the micro- model of the system – classical orquantal.In mostof the bookson statistical physicsexceptafew [6] the expressionof entropy(2.1) isdeterminedfromthe additivitypostulate of entropyonly.Thisisnotcorrect.The above derivationbasedonthe axioms(i) and(ii)whichare variantformsof twobasicpropertiesof thermodynamic entropyismore sound and isvalidformacroscopicsystemcontainingalarge numberof molecules[6]. 3. PRIOR PROBABILITIES: ENTROPY AND INFORMATION
  • 3. [Type here] The thermodynamicprobabilitywhichappearsinBoltzmannentropy(2.1) isnota probabilitybutaninteger. How to introduce the conceptof probability?Itwas Einstein[7] whofirstintroducedthe conceptof probabilityof amacrostate by invertingBoltzmannprinciple [8].We shall,however,followadifferentapproach.We consideranisolatedsystemconsisting of N moleculesclassifiedinton energystatesεi ( i = 1, 2, ….n) andletNi ( i = 1, 2, ….n) be the occupationnumberof the ithenergy-state εi.The macroscopicstate of the systemisgivenbythe setof occupationnumbersAn= {N1,N2, … Nn}. We are nowinterestedinthe probabilitydistributionof the macrostate Anorthe probabilitydistributionof the setof occupationnumbersAn= {N1,N2, …, Nn}.In view of the many-body aspect of the system, the setof occupationnumbers{N1,N2,… Nn}canbe assumedtobe a setof randomvariables.The probabilitydistributionof the macrostate An = {N1, N2, … Nn} is thengivenby P (An) = P (N1,N2,… Nn) = W (An) ∏ 𝑝0𝑖 𝑁𝑛 𝑖=1 …………..(3.1) where pi0isthe priorprobabilitythatamolecule liesinthe ithenergy-state εi.The probability(3.1) isof fundamental importance inconnectingthe disorderW(An)withthe probabilityP(An),while the formerisrelatedtothe Boltzmann entropyandthe later toinformationasshall see.The appearance of priorprobabilities{pi0} makesthe systemcomplex. If no state is preferable toother,itisthenreasonable toassume thatall priorprobabilitiesare equal toone anotherso that pio= 1/n,(i = 1, 2, … n). ThisisLaplace principle of insufficientknowledge[10].AccordingtoJaynes[3] it isthe state of maximumpriorignorance of the system.Itthatcase itis easyto see from(3.1) that - k lnP (An) = Smax – S … (3.2) where Smax = k N ln n isthe maximumvalue of the entropyS.The l.h.s.of (3.2) isthe information-contentof the macrostate An.that is,the informationgainedfromthe realizationof the macrostate An[2].The r.h.sof (3.2) isthe negentropyof the systemgivingameasure of distance of non-equilibriumstate fromthe equilibriumstate [9,12].The relation(3.2) thenimpliesthe equivalence of informationwithnegentropyconsistentwithBrillouin’snegentropy principle of information[9]. Let us nowinvestigate the significance of the relation(3.2) forthe statistical equilibriumof asystem.According to BoltzmannandPlanckthe statistical equilibriumof asystemcorrespondstothe mostprobable state of the system. The thermodynamicprobabilityW(An) isnota probability,itisaninteger.Sothe statistical equilibriumasassumedto correspondtothe maximumof the thermodynamicprobabilityorequivalentlythe Boltzmannentropygivesrise tosome confusion[8].However,fromthe relation(3.2) we see thatthe mostprobable state of the systemobtainedby maximizingthe probabilityof the macrostate P(An) isequivalenttothe maximizationof the Boltzmannentropy(2.1) or the maximizationof the thermodynamicprobabilityW(An) providedwe acceptthe hypothesisof equal aprior probabilitypio =1/n, (i = 1, 2, …n).It isin thiswaythe confusionaboutthe non-probabilisticcharacterof thermodynamicprobabilityW(An) andthe most-probableinterpretationof statistical equilibriumcanbe resolved. 4. CONCLUSION The objectof the presentpaperistopresent significantlydifferentapproachtothe characterizationof Boltzmannentropyinrelationtoboththermodynamicprobabilityandinformation.The mainresultsof the paperare as follows: (i) We have presentedarigorousaxiomaticderivationof Boltzmannentropyonthe basisof the axiomsof additivity and increasinglawof entropyconsistentwithtwobasic propertiesof thermodynamicentropy[11].The methodis superior,bothmathematicallyandphysically,tothe existingmethods(exceptafew) basedmainlyonthe propertyof additivityof entropyonly.
  • 4. [Type here] (ii)Boltzmannentropyisindependentof probability.We have introducedthe probabilityof amacrostate throughthe hypothesisof priorprobability{pi0}. (iii)The probabilitydistributionof macrostate leadstothe interestingrelation(3.2) connectinginformationand BoltzmannentropyornegentropyconsistentwithBrillouins’negentropyprinciple of information[4].There is,however, a difference. Inourcase informationcomesthroughthe conceptof probabilityandthe l.h.sof (3.2) isin fact,a probabilisticmeasure of informationandnotlike the one introducedbyBrillouin[9] andothers[12]. (iv) The relation(3.2) has importantphysical significance forstatistical equilibrium.Itresolvesthe confusionaboutthe most–probable state of statistical equilibriumachievedbymaximizingthe thermodynamicprobabilityunderthe hypothesisof equal priorprobabilities. (v) In the case of unequal priorprobabilities{pio} the situationbecomescomplicated and interesting forboth physical andnon-physical systems[13-15]. METHODS FOR DERTERMINATION OF AVOGADROS NUMBER: AMEDEO CARLO AVOGADROwasan ItalianScientistgave the conceptof AvogadroLaw.(atoms,ions,ormolecules) The numberof particlesone mole of asubstance isalwaysconstanti.e,6.0221407574× 1023.It isshownby 𝑁𝐴.The experimental methjodsare asfollows: 1-By Perrinmethod(Brownianmovement) 2-By X-rayDiffraction(Crystallographicmethod) 3-By Electrochemical method 4-By ElectricCharge 5-By counting∝- particles By Perrin Method: In 1909 J.Perrindetermined 𝑁𝐴 byBoltzmanndistributionlaw .he determinedBoltzmannconstantKfromnumberof particlesatdifferentheightsinasuspensionbyusingrelationship 𝑁𝐴 = 𝑅 𝑘 .Perrinobtained colloidal particlesof uniform densityanddiameterbycentrifugingemulsionof gambage (ayellowresinusedinwatercolor).He observedthatat differentheightsno.ofparticlesare different.He usedmicroscopeof verylow depthtosee no.of particlesinverylow depthof ` h’height. Consideracylinderof areasA inwhichmoleculescome inequilibriumwithgravity.Pressure isPatheighthbut Pressure become P-dPbychangingheightdh(byincreasingvolume,pressure isdecreasedi.e.-ve) Two forcesact Upward force =downwardforce Fu=Fd
  • 5. [Type here] A× 𝑑𝑃 =Adh𝜌g dP=dh𝜌g -ve signisusedbecause pressure isdecreased - dP=dh𝜌g dP=-dh𝜌g……………….(1) Value of 𝜌: Accordingto Kineticequation 𝑃𝑣 = 2 3 𝐸. 𝑘 or 𝑉 = 2𝐸.𝑘 3𝑃 .and we know density 𝜌 = 𝑀 𝑉 𝜌 = 𝑀 2𝐸.𝑘 3𝑃 = 3𝑀𝑃 2𝐸.𝑘 by puttingvalue of 𝜌ineq1 - dP= 3𝑀𝑃𝑔𝑑ℎ 2𝐸.𝑘 …………….(2) − dP 𝑃 = 3𝑀𝑔𝑑ℎ 2𝐸.𝑘 integrate itw.r.t P whenh=0 thenpressure is 𝑃0 whenheightishthen pressure isP. ∫ −𝑑𝑃 𝑃 𝑃0 = 3𝑀𝑔 2𝐸.𝑘 ∫ 𝑑ℎ ℎ 0 -[ln 𝑃 − ln 𝑃0]= 3𝑀𝑔 2𝐸.𝑘 [h-0] - lnP+ ln𝑃0 = 3𝑀𝑔ℎ 2𝐸.𝑘 lnP Po⁄ = 3𝑀𝑔ℎ 2𝐸.𝑘 but P∝ 𝑛 thus ln n 𝑛0⁄ = 3𝑀𝑔ℎ 2𝐸.𝑘 ……………….(3) 𝑛0 isno. f molseculeswhenh=0 n is no.of moleculeswhenheightish Mg = 𝑁𝐴mg (1 - 𝜌′ 𝜌 ) Thus eq3 will become ln n 𝑛0⁄ = 3𝑁 𝐴 𝑚𝑔ℎ 2𝐸.𝑘 (1 - 𝜌′ 𝜌 ) ….. but E.k= 3 2 𝑅𝑇 ln n 𝑛0⁄ = 𝑁 𝐴 𝑚𝑔ℎ 𝑅𝑇 (1 - 𝜌′ 𝜌 ) ……. Andby multiplyingitbyRT RT ln n 𝑛0⁄ = 𝑁𝐴 𝑚𝑔ℎ( 𝜌−𝜌′ 𝜌 ) ………(4) but V= 4 3 𝜋𝑟3, 𝜌 = 𝑀 𝑉 ,M= 4 3 𝜋𝑟3 𝜌
  • 6. [Type here] By puttingvalue of min eq(4) RT lnn 𝑛0⁄ = 𝑁𝐴 4 3 𝜋𝑟3 h𝜌g( 𝜌−𝜌′ 𝜌 ) 𝑅𝑇 𝑁 𝐴 lnn 𝑛0⁄ = 4 3 𝜋𝑟3 gh(𝜌 − 𝜌′) 𝑁𝐴 = 3RT lnn 𝑛0⁄ 4𝜋𝑟3 𝑔ℎ(𝜌− 𝜌′) By puttingvaluesof RT,n,r,g,h, 𝑛0, 𝜌, 𝜌′ 𝑁𝐴 =6.022 × 1023. Where n and 𝑛0can be determinedbymicroscopeof verylow depthof field. By Crystallographic Method: To determine Avogadronumberbycrystallographicmethodfollowingvaluesare required. 1- Volume of one mole of a crystalline solid,itcanbe determinedbyfollowingformula; Density= 𝑚𝑎𝑠𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 or volume = 𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 2-the distance betweenparticlesinthe crystalslattice.Itcanbe determinedbyX-rays. Example : calculate 𝑁𝐴 inLiFhaving2.65g𝑐𝑚−3densityanddistance betweenionsis2.01 𝐴0. SOLVE: Formulamass of LiF= 6.939+18.9984=25.9374 𝑔 𝑚𝑜𝑙⁄ Volume = 𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 25.9374 2.65 = 9.788𝑐𝑚3 burt volume = 𝑙 × 𝑙 × 𝑙 =𝑙3, 𝑙 =√ 𝑣3 = √9.7883 = 2.139𝑐𝑚3 No.of ionsalongone length 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑜𝑛𝑠 = 2.139 2.01×10−8 =1.064× 108 Total no.of ionsalongthree lengths=(1.064× 108)3 = 1.204 × 1024 𝑖𝑜𝑛𝑠 Thus inLiF total no,of Li+ ionsis one Avogadronumberandtotal no of F- ionsisone Avogadronumber. Therefore, no. of onlyLi+ or F- , ions= 1.204 ×1024 2 = 6.022× 1023 ions By Electrolysis Method: As we knowthat 1 mole of electron=6.022× 1023 e- and1 mole of Cu = 6.022× 1023 atoms Avogadrosnumber= 𝑛𝑜.𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑛𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 Thus we can calculate no.of electronsandno.of molesof electronsbyelectrolysisexperiment. Experiment : take CuSO4 in a container .dip two strip of Cu which act as Electrode .the CuSO4 is ionized into CuSO4 ↔ 𝐶𝑢2+ + 𝑆𝑂4−2
  • 7. [Type here] Electronsmove towards –ve electrode .one Cuelectrode loses2e-s Cu → 𝐶𝑢+2 + 2𝑒− Thus massof one Cu electrode decreases(∆𝑚1). 𝐶𝑢+2ionsinsolutiongain2e-sand deposite of otherelectrode mass of thiselectrode increases(∆𝑚2).duringreaction(∆𝑚1 ≠ ∆𝑚2) butwhenreactioncomplete then(∆𝑚1 = ∆𝑚2) To determine no.of electronsandno.of molesof electronisdifficultbutwe cancalculate charge of electron. In physicscharge Q = I × 𝑡 𝑠𝑒𝑐 But charge of 1 e- = 1.6022× 10−19 coulombs Thus Q charge =𝐼(𝑒𝑚𝑝) × 𝑡 𝑠𝑒𝑐 × 1 𝑒− 1.602×10−19 𝑐𝑜𝑙𝑜𝑢𝑚𝑏𝑠 From chemical reactioneq No.of e-s=no.of mole of electrons No.of e-= 𝐼 × 𝑡 1.602×10−19 byputtingno of e-s No.of Cu atoms = 𝐼 × 𝑡 1.602×10−19 ×2𝑒−𝑓𝑜𝑟 1 𝐶𝑢 𝑎𝑡𝑜𝑚 ………..(2) Now calculate no. of molesofCu From massof Cu we can calculate moles of Cu No.of mole of Cu= ∆𝑚2 × 1 𝑚𝑜𝑙𝑒 𝑜𝑓 𝐶𝑢 63.543 …………..(3) We knowthat No.of atoms =no. of moles × 𝑁𝐴 Or Avogadrono.= 𝑛𝑜.𝑜𝑓 𝐶𝑢 𝑎𝑡𝑜𝑚𝑠 𝑛𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶𝑢 By puttingvaluesfromeq2 and eq3 𝑁𝐴 = 𝐼 × 𝑡 1.602×10−19 ×2𝑒−𝑓𝑜𝑟 1 𝐶𝑢 𝑎𝑡𝑜𝑚 ∆𝑚2 1 𝑚𝑜𝑙𝑒 𝑜𝑓 𝐶𝑢 63.543 = 𝐼 × 𝑡 ×63.543 1.60210−19 × 2× ∆𝑚2 By puttingvaluesof I,tand ∆𝑚2 we can calculate Avogadronumber.
  • 8. [Type here] Composed by Maria Aamer Sabah Roll No: MCEC-17-09