SlideShare a Scribd company logo
1 of 23
VTS
ANTILOCK BRAKING SYSTEM 1
INTRODUCTION
ANTILOCK BRAKING SYSTEM 2
• Anti-lock braking system (ABS) is an automobile safety system that allows
the wheels on a motor vehicle to maintain tractive contact with the road surface
according to driver inputs while braking, preventing the wheels from locking up
and avoiding uncontrolled skidding.
• ABS generally offers improved vehicle control and decreases stopping distances
on dry and slippery surfaces.
• ABS modulates the brake line pressure independent of the pedal force, to bring
the wheel speed back to the slip level range that is necessary for optimal
braking performance.
PROJECT OUTLINE
ANTILOCK BRAKING SYSTEM 3
• Objectives of ABS
• Components of ABS
• Working of ABS
• Mathematical model
• System model
• Results
• Conclusion
• References
OBJECTIVES OF ABS
ANTILOCK BRAKING SYSTEM 4
• To reduce stopping distance
1. The road surface type and conditions can be inferred from the vehicle's
braking pressure, wheel slip measurements, and deceleration rate
comparisons.
2. The wheel slip is regulated so that the road adhesion coefficient is
maximized. By keeping all of the wheels of a vehicle near the maximum
friction coefficient, an antilock system can attain maximum fictional
force
3. In turn, this strategy leads to the minimization of the vehicle stopping
distance.
ANTILOCK BRAKING SYSTEM 5
• Stability
1. A locked-up wheel generates a reduced braking force, smaller than the peak
value of the available adhesion between tires and road. A locked-up wheel
will also lose its capability to sustain any lateral force. This may result in the
loss of vehicle stability.
2. The basic purpose of a conventional ABS system is thus to prevent any
wheel from locking and to keep the longitudinal slip in an operational range
by cycling the braking pressure.
ANTILOCK BRAKING SYSTEM 6
• Steerability
1. Good peak frictional force control is necessary in order to achieve
satisfactory lateral forces and, therefore, satisfactory steer-ability.
2. If an obstacle appears without warning, emergency braking may not be
sufficient. When the wheels are locked, car no longer respond to the driver’s
steering intention.
3. With ABS car remains steerable even during emergency braking, and thus the
obstacle can be safely avoided.
ANTILOCK BRAKING SYSTEM 7
• Power booster and master cylinder assembly
1. It is activated when the driver pushes down on the brake pedal. The master
cylinder transforms the applied pedal force into hydraulic pressure which
is transmitted simultaneously to all four wheels.
2. It provides the power assistance required during braking.
• Wheel sensor unit
1. Speed sensors are comprised of a magnet wrapped in a coil and a toothed
sensor ring. An electrical field given off by the contact between the magnet
and the toothed ring creates a AC voltage.
2. The voltage frequency is directly proportional to the wheel's rotational
speed.
3. It monitors the rotational speed of the wheel and transmits this data to the
ABS control module.
WORKING OF ABS
ANTILOCK BRAKING SYSTEM 8
• If a wheel-speed sensor signals a lock up - the ECU sends a current to the
hydraulic unit. This energizes the solenoid valve. The action of the valve
isolates the brake circuit from the master cylinder. This stops the braking
pressure at that wheel from rising, and keeps it constant. It allows wheel
velocity to increase and slip to decrease.
• When the velocity increases, ECU re-applies the brake pressure to restrict
the wheel slip to a particular value.
• Hydraulic control unit controls the brake pressure in each wheel cylinder
based on the inputs from the system sensor. This in result controls the wheel
speed.
MATHEMATICAL MODEL
ANTILOCK BRAKING SYSTEM 9
• Wheel slip:
When the braking action is initiated, a slippage between the tire and the
contacted road surface will occur, which make the speed of the vehicle to be
different from that of the tire.
• The longitudinal slip is defined as
𝑆 =
𝑉𝑐𝑜𝑠𝛼 − 𝜔𝑅𝑤
𝑉𝑐𝑜𝑠𝛼
The side slip angle is
𝛼 = 𝑡𝑎𝑛−1 𝑉𝑠𝑦
𝑉𝑥
Force and velocity components on tyre
ANTILOCK BRAKING SYSTEM 10
Simulink model for vehicle dynamics
ANTILOCK BRAKING SYSTEM 11
• Wheel dynamics
According to Newton's second law, the equation of motion at wheel
level for the rotational DOF is given by,
𝐽𝑤𝜔 = −𝑇𝑏 + 𝐹𝑡𝑅𝑤
ANTILOCK BRAKING SYSTEM 12
Simulink model for wheel dynamics
SYSTEM MODEL
ANTILOCK BRAKING SYSTEM 13
Assumption: Only a linear model was considered and does not include actual road
conditions. The system here is modelled only for straight line braking.
INPUT PARAMETERS FOR SIMULINK MODEL
ANTILOCK BRAKING SYSTEM 14
Gravitational constant 𝑔 = 32.18 𝑓𝑡/𝑠2
Initial velocity of vehicle 𝑣0 = 88 𝑓𝑡/𝑠
Wheel Radius 𝑅𝑟 = 1.25 𝑓𝑡
Mass of vehicle 𝑚 = 50 lbs
Maximum Braking Torque 𝑇𝑏𝑚𝑎𝑥
= 1500 𝑙𝑏𝑓 ∗ 𝑓𝑡
Hydraulic Lag 𝑇𝐵 = 0.01 𝑠
Moment of Inertia 𝐽𝑤 = 5 𝑓𝑡4
RESULTS
ANTILOCK BRAKING SYSTEM 15
VEHICLE SPEED AND WHEEL SPEED
(WITHOUT ABS)
ANTILOCK BRAKING SYSTEM 16
ANTILOCK BRAKING SYSTEM 17
VEHICLE SPEED AND WHEEL SPEED
(WITH ABS)
SLIP (WITH ABS)
ANTILOCK BRAKING SYSTEM 18
STOPPING DISTANCE (WITHOUT ABS)
ANTILOCK BRAKING SYSTEM 19
STOPPING DISTANCE (WITH ABS)
ANTILOCK BRAKING SYSTEM 20
CONCLUSION
ANTILOCK BRAKING SYSTEM 21
• It is inferred that ABS improves the braking performance.
• The stopping distance after using ABS system has considerably reduced.
• The error in slip and desired slip is used to manipulate brake pressure in brake
cylinder.
REFERENCES
ANTILOCK BRAKING SYSTEM 22
• Tianku Fu,“Modelling and performance analysis of ABS system with non-linear control”,
2000.
• Tobias Eriksson,“Co-simulation of full vehicle model in Adams and anti-lock brake system
model in Simulink”, 2014.
ANTILOCK BRAKING SYSTEM 23
THANK YOU!

More Related Content

Similar to VTS-255.pptx

Fundamental Concept of Anti Breaking System
Fundamental Concept of Anti Breaking SystemFundamental Concept of Anti Breaking System
Fundamental Concept of Anti Breaking System
sachinmaheshwara
 
ANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEMANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEM
VED KUMAR
 

Similar to VTS-255.pptx (20)

A seminar on antilock braking system(ABS)
A seminar on antilock braking system(ABS)A seminar on antilock braking system(ABS)
A seminar on antilock braking system(ABS)
 
Fundamental Concept of Anti Breaking System
Fundamental Concept of Anti Breaking SystemFundamental Concept of Anti Breaking System
Fundamental Concept of Anti Breaking System
 
Abs
AbsAbs
Abs
 
GT ABS (2).ppt
GT ABS (2).pptGT ABS (2).ppt
GT ABS (2).ppt
 
Anti-lock Braking System
Anti-lock Braking SystemAnti-lock Braking System
Anti-lock Braking System
 
ANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEMANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEM
 
Antilock braking system (abs)
Antilock braking system (abs)Antilock braking system (abs)
Antilock braking system (abs)
 
Linear Control Technique for Anti-Lock Braking System
Linear Control Technique for Anti-Lock Braking SystemLinear Control Technique for Anti-Lock Braking System
Linear Control Technique for Anti-Lock Braking System
 
ABS SYSTEM
ABS SYSTEMABS SYSTEM
ABS SYSTEM
 
IRJET- Intelligent Vehicle Safety Technology: Anti-Lock Braking System (ABS) ...
IRJET- Intelligent Vehicle Safety Technology: Anti-Lock Braking System (ABS) ...IRJET- Intelligent Vehicle Safety Technology: Anti-Lock Braking System (ABS) ...
IRJET- Intelligent Vehicle Safety Technology: Anti-Lock Braking System (ABS) ...
 
Toyota ABS-braking-systems
Toyota ABS-braking-systemsToyota ABS-braking-systems
Toyota ABS-braking-systems
 
ABS.pptx
ABS.pptxABS.pptx
ABS.pptx
 
Automatic Breaking System
Automatic Breaking SystemAutomatic Breaking System
Automatic Breaking System
 
ANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEMANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEM
 
Vehicle safety system in automobiles
Vehicle safety system in automobiles Vehicle safety system in automobiles
Vehicle safety system in automobiles
 
ABS.ppt
ABS.pptABS.ppt
ABS.ppt
 
Recent trends in chassis system
Recent trends in chassis systemRecent trends in chassis system
Recent trends in chassis system
 
Abs learning
Abs learningAbs learning
Abs learning
 
Chap81
Chap81Chap81
Chap81
 
K10692 ic engine
K10692 ic engineK10692 ic engine
K10692 ic engine
 

Recently uploaded

Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
meharikiros2
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 

Recently uploaded (20)

Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 

VTS-255.pptx

  • 2. INTRODUCTION ANTILOCK BRAKING SYSTEM 2 • Anti-lock braking system (ABS) is an automobile safety system that allows the wheels on a motor vehicle to maintain tractive contact with the road surface according to driver inputs while braking, preventing the wheels from locking up and avoiding uncontrolled skidding. • ABS generally offers improved vehicle control and decreases stopping distances on dry and slippery surfaces. • ABS modulates the brake line pressure independent of the pedal force, to bring the wheel speed back to the slip level range that is necessary for optimal braking performance.
  • 3. PROJECT OUTLINE ANTILOCK BRAKING SYSTEM 3 • Objectives of ABS • Components of ABS • Working of ABS • Mathematical model • System model • Results • Conclusion • References
  • 4. OBJECTIVES OF ABS ANTILOCK BRAKING SYSTEM 4 • To reduce stopping distance 1. The road surface type and conditions can be inferred from the vehicle's braking pressure, wheel slip measurements, and deceleration rate comparisons. 2. The wheel slip is regulated so that the road adhesion coefficient is maximized. By keeping all of the wheels of a vehicle near the maximum friction coefficient, an antilock system can attain maximum fictional force 3. In turn, this strategy leads to the minimization of the vehicle stopping distance.
  • 5. ANTILOCK BRAKING SYSTEM 5 • Stability 1. A locked-up wheel generates a reduced braking force, smaller than the peak value of the available adhesion between tires and road. A locked-up wheel will also lose its capability to sustain any lateral force. This may result in the loss of vehicle stability. 2. The basic purpose of a conventional ABS system is thus to prevent any wheel from locking and to keep the longitudinal slip in an operational range by cycling the braking pressure.
  • 6. ANTILOCK BRAKING SYSTEM 6 • Steerability 1. Good peak frictional force control is necessary in order to achieve satisfactory lateral forces and, therefore, satisfactory steer-ability. 2. If an obstacle appears without warning, emergency braking may not be sufficient. When the wheels are locked, car no longer respond to the driver’s steering intention. 3. With ABS car remains steerable even during emergency braking, and thus the obstacle can be safely avoided.
  • 7. ANTILOCK BRAKING SYSTEM 7 • Power booster and master cylinder assembly 1. It is activated when the driver pushes down on the brake pedal. The master cylinder transforms the applied pedal force into hydraulic pressure which is transmitted simultaneously to all four wheels. 2. It provides the power assistance required during braking. • Wheel sensor unit 1. Speed sensors are comprised of a magnet wrapped in a coil and a toothed sensor ring. An electrical field given off by the contact between the magnet and the toothed ring creates a AC voltage. 2. The voltage frequency is directly proportional to the wheel's rotational speed. 3. It monitors the rotational speed of the wheel and transmits this data to the ABS control module.
  • 8. WORKING OF ABS ANTILOCK BRAKING SYSTEM 8 • If a wheel-speed sensor signals a lock up - the ECU sends a current to the hydraulic unit. This energizes the solenoid valve. The action of the valve isolates the brake circuit from the master cylinder. This stops the braking pressure at that wheel from rising, and keeps it constant. It allows wheel velocity to increase and slip to decrease. • When the velocity increases, ECU re-applies the brake pressure to restrict the wheel slip to a particular value. • Hydraulic control unit controls the brake pressure in each wheel cylinder based on the inputs from the system sensor. This in result controls the wheel speed.
  • 9. MATHEMATICAL MODEL ANTILOCK BRAKING SYSTEM 9 • Wheel slip: When the braking action is initiated, a slippage between the tire and the contacted road surface will occur, which make the speed of the vehicle to be different from that of the tire. • The longitudinal slip is defined as 𝑆 = 𝑉𝑐𝑜𝑠𝛼 − 𝜔𝑅𝑤 𝑉𝑐𝑜𝑠𝛼 The side slip angle is 𝛼 = 𝑡𝑎𝑛−1 𝑉𝑠𝑦 𝑉𝑥 Force and velocity components on tyre
  • 10. ANTILOCK BRAKING SYSTEM 10 Simulink model for vehicle dynamics
  • 11. ANTILOCK BRAKING SYSTEM 11 • Wheel dynamics According to Newton's second law, the equation of motion at wheel level for the rotational DOF is given by, 𝐽𝑤𝜔 = −𝑇𝑏 + 𝐹𝑡𝑅𝑤
  • 12. ANTILOCK BRAKING SYSTEM 12 Simulink model for wheel dynamics
  • 13. SYSTEM MODEL ANTILOCK BRAKING SYSTEM 13 Assumption: Only a linear model was considered and does not include actual road conditions. The system here is modelled only for straight line braking.
  • 14. INPUT PARAMETERS FOR SIMULINK MODEL ANTILOCK BRAKING SYSTEM 14 Gravitational constant 𝑔 = 32.18 𝑓𝑡/𝑠2 Initial velocity of vehicle 𝑣0 = 88 𝑓𝑡/𝑠 Wheel Radius 𝑅𝑟 = 1.25 𝑓𝑡 Mass of vehicle 𝑚 = 50 lbs Maximum Braking Torque 𝑇𝑏𝑚𝑎𝑥 = 1500 𝑙𝑏𝑓 ∗ 𝑓𝑡 Hydraulic Lag 𝑇𝐵 = 0.01 𝑠 Moment of Inertia 𝐽𝑤 = 5 𝑓𝑡4
  • 16. VEHICLE SPEED AND WHEEL SPEED (WITHOUT ABS) ANTILOCK BRAKING SYSTEM 16
  • 17. ANTILOCK BRAKING SYSTEM 17 VEHICLE SPEED AND WHEEL SPEED (WITH ABS)
  • 18. SLIP (WITH ABS) ANTILOCK BRAKING SYSTEM 18
  • 19. STOPPING DISTANCE (WITHOUT ABS) ANTILOCK BRAKING SYSTEM 19
  • 20. STOPPING DISTANCE (WITH ABS) ANTILOCK BRAKING SYSTEM 20
  • 21. CONCLUSION ANTILOCK BRAKING SYSTEM 21 • It is inferred that ABS improves the braking performance. • The stopping distance after using ABS system has considerably reduced. • The error in slip and desired slip is used to manipulate brake pressure in brake cylinder.
  • 22. REFERENCES ANTILOCK BRAKING SYSTEM 22 • Tianku Fu,“Modelling and performance analysis of ABS system with non-linear control”, 2000. • Tobias Eriksson,“Co-simulation of full vehicle model in Adams and anti-lock brake system model in Simulink”, 2014.
  • 23. ANTILOCK BRAKING SYSTEM 23 THANK YOU!