SlideShare a Scribd company logo
1 of 24
INTRODUCTION
ANTILOCK BRAKING SYSTEM 1
• Anti-lock braking system (ABS) is an automobile safety system that allows
the wheels on a motor vehicle to maintain tractive contact with the road surface
according to driver inputs while braking, preventing the wheels from locking up
and avoiding uncontrolled skidding.
• ABS generally offers improved vehicle control and decreases stopping distances
on dry and slippery surfaces.
• ABS modulates the brake line pressure independent of the pedal force, to bring
the wheel speed back to the slip level range that is necessary for optimal
braking performance.
PROJECT OUTLINE
ANTILOCK BRAKING SYSTEM 2
• Objectives of ABS
• Components of ABS
• Working of ABS
• Mathematical model
• System model
• Results
• Conclusion
• References
OBJECTIVES OF ABS
ANTILOCK BRAKING SYSTEM 3
• To reduce stopping distance
1. The road surface type and conditions can be inferred from the vehicle's
braking pressure, wheel slip measurements, and deceleration rate
comparisons.
2. The wheel slip is regulated so that the road adhesion coefficient is
maximized. By keeping all of the wheels of a vehicle near the maximum
friction coefficient, an antilock system can attain maximum fictional
force
3. In turn, this strategy leads to the minimization of the vehicle stopping
distance.
ANTILOCK BRAKING SYSTEM 4
• Stability
1. A locked-up wheel generates a reduced braking force, smaller than the peak
value of the available adhesion between tires and road. A locked-up wheel
will also lose its capability to sustain any lateral force. This may result in the
loss of vehicle stability.
2. The basic purpose of a conventional ABS system is thus to prevent any
wheel from locking and to keep the longitudinal slip in an operational range
by cycling the braking pressure.
ANTILOCK BRAKING SYSTEM 5
• Steerability
1. Good peak frictional force control is necessary in order to achieve
satisfactory lateral forces and, therefore, satisfactory steer-ability.
2. If an obstacle appears without warning, emergency braking may not be
sufficient. When the wheels are locked, car no longer respond to the driver’s
steering intention.
3. With ABS car remains steerable even during emergency braking, and thus the
obstacle can be safely avoided.
COMPONENTS OF ABS
ANTILOCK BRAKING SYSTEM 6
The primary components of the ABS braking system are:
• Electronic control unit (ECU)
1. It receives signals from the sensors in the circuit and controls the brake
pressure at the road wheels according to the data analysed by the Unit.
2. ECU assists the vehicle operator to prevent wheel lockup by regulating the
wheel slip.
• Hydraulic control unit or modulator
1. It receives operating signals from the ECU to apply or release the brakes
under ABS conditions.
2. It executes the commands using three solenoid valves connected in series
with the master cylinder and the brake circuits- one valve for each front
wheel hydraulic circuit, and one for both of the rear wheels. Thus brakes can
be actuated by controlling hydraulic pressure.
ANTILOCK BRAKING SYSTEM 7
• Power booster and master cylinder assembly
1. It is activated when the driver pushes down on the brake pedal. The master
cylinder transforms the applied pedal force into hydraulic pressure which
is transmitted simultaneously to all four wheels.
2. It provides the power assistance required during braking.
• Wheel sensor unit
1. Speed sensors are comprised of a magnet wrapped in a coil and a toothed
sensor ring. An electrical field given off by the contact between the magnet
and the toothed ring creates a AC voltage.
2. The voltage frequency is directly proportional to the wheel's rotational
speed.
3. It monitors the rotational speed of the wheel and transmits this data to the
ABS control module.
WORKING OF ABS
ANTILOCK BRAKING SYSTEM 8
• If a wheel-speed sensor signals a lock up - the ECU sends a current to the
hydraulic unit. This energizes the solenoid valve. The action of the valve
isolates the brake circuit from the master cylinder. This stops the braking
pressure at that wheel from rising, and keeps it constant. It allows wheel
velocity to increase and slip to decrease.
• When the velocity increases, ECU re-applies the brake pressure to restrict
the wheel slip to a particular value.
• Hydraulic control unit controls the brake pressure in each wheel cylinder
based on the inputs from the system sensor. This in result controls the wheel
speed.
MATHEMATICAL MODEL
ANTILOCK BRAKING SYSTEM 9
• Wheel slip:
When the braking action is initiated, a slippage between the tire and the
contacted road surface will occur, which make the speed of the vehicle to be
different from that of the tire.
• The longitudinal slip is defined as
𝑆 =
𝑉𝑐𝑜𝑠𝛼 − 𝜔𝑅𝑤
𝑉𝑐𝑜𝑠𝛼
The side slip angle is
𝛼 = 𝑡𝑎𝑛−1 𝑉𝑠𝑦
𝑉𝑥
Force and velocity components on tyre
ANTILOCK BRAKING SYSTEM 10
• Vehicle Dynamics
According to Newton's second law, the equation of motion of the
simplified vehicle can be expressed by,
𝑚𝑡𝑉 = −𝐹𝑡 − 𝐹𝑎
The road friction force is given by Coulomb law
𝐹𝑡 = 𝜇𝑁
The total mass of the quarter vehicle can be written as
𝑚𝑡 = 𝑚𝑡𝑖𝑟𝑒 +
𝑚𝑐
4
Thus, the total normal load cm be expressed by
𝑁 = 𝑚𝑡𝑔 − 𝐹𝑙
𝐹𝑙 is the longitudinal weight transfer load due to braking
ANTILOCK BRAKING SYSTEM 11
Simulink model for vehicle dynamics
ANTILOCK BRAKING SYSTEM 12
• Wheel dynamics
According to Newton's second law, the equation of motion at wheel
level for the rotational DOF is given by,
𝐽𝑤𝜔 = −𝑇𝑏 + 𝐹𝑡𝑅𝑤
ANTILOCK BRAKING SYSTEM 13
Simulink model for wheel dynamics
SYSTEM MODEL
ANTILOCK BRAKING SYSTEM 14
Assumption: Only a linear model was considered and does not include actual road
conditions. The system here is modelled only for straight line braking.
INPUT PARAMETERS FOR SIMULINK MODEL
ANTILOCK BRAKING SYSTEM 15
Gravitational constant 𝑔 = 32.18 𝑓𝑡/𝑠2
Initial velocity of vehicle 𝑣0 = 88 𝑓𝑡/𝑠
Wheel Radius 𝑅𝑟 = 1.25 𝑓𝑡
Mass of vehicle 𝑚 = 50 lbs
Maximum Braking Torque 𝑇𝑏𝑚𝑎𝑥
= 1500 𝑙𝑏𝑓 ∗ 𝑓𝑡
Hydraulic Lag 𝑇𝐵 = 0.01 𝑠
Moment of Inertia 𝐽𝑤 = 5 𝑓𝑡4
RESULTS
ANTILOCK BRAKING SYSTEM 16
VEHICLE SPEED AND WHEEL SPEED
(WITHOUT ABS)
ANTILOCK BRAKING SYSTEM 17
ANTILOCK BRAKING SYSTEM 18
VEHICLE SPEED AND WHEEL SPEED
(WITH ABS)
SLIP (WITH ABS)
ANTILOCK BRAKING SYSTEM 19
STOPPING DISTANCE (WITHOUT ABS)
ANTILOCK BRAKING SYSTEM 20
STOPPING DISTANCE (WITH ABS)
ANTILOCK BRAKING SYSTEM 21
CONCLUSION
ANTILOCK BRAKING SYSTEM 22
• It is inferred that ABS improves the braking performance.
• The stopping distance after using ABS system has considerably reduced.
• The error in slip and desired slip is used to manipulate brake pressure in brake
cylinder.
REFERENCES
ANTILOCK BRAKING SYSTEM 23
• Tianku Fu,“Modelling and performance analysis of ABS system with non-linear control”,
2000.
• Tobias Eriksson,“Co-simulation of full vehicle model in Adams and anti-lock brake system
model in Simulink”, 2014.
ANTILOCK BRAKING SYSTEM 24
THANK YOU!

More Related Content

Similar to AbS PpT-2.pptx

Toyota ABS-braking-systems
Toyota ABS-braking-systemsToyota ABS-braking-systems
Toyota ABS-braking-systemsCharith Ruckshan
 
AntilockBrakingSystem.pdf
AntilockBrakingSystem.pdfAntilockBrakingSystem.pdf
AntilockBrakingSystem.pdfvijayan gn
 
Anti-lock Braking System
Anti-lock Braking SystemAnti-lock Braking System
Anti-lock Braking Systemtitarmare61
 
Vehicle safety system in automobiles
Vehicle safety system in automobiles Vehicle safety system in automobiles
Vehicle safety system in automobiles Praveen Kumar
 
Linear Control Technique for Anti-Lock Braking System
Linear Control Technique for Anti-Lock Braking SystemLinear Control Technique for Anti-Lock Braking System
Linear Control Technique for Anti-Lock Braking SystemIJERA Editor
 
ABS technology by akshat jain-2.pptx
ABS technology by akshat jain-2.pptxABS technology by akshat jain-2.pptx
ABS technology by akshat jain-2.pptxAYUSHGUPTA652625
 
ANTILOCK BRAKE SYSTEM
ANTILOCK BRAKE SYSTEMANTILOCK BRAKE SYSTEM
ANTILOCK BRAKE SYSTEMGTU
 
Anti lock braking system
Anti lock braking systemAnti lock braking system
Anti lock braking systemabhay singh
 
Abs (Anti-lock braking system )
Abs (Anti-lock braking system )Abs (Anti-lock braking system )
Abs (Anti-lock braking system )Subham Samir
 
Anti-Lock Braking System (ABS) - An Overview
Anti-Lock Braking System (ABS) - An OverviewAnti-Lock Braking System (ABS) - An Overview
Anti-Lock Braking System (ABS) - An OverviewDarshan Rajagopal
 
ANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEMANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEMRajneesh Singh
 

Similar to AbS PpT-2.pptx (20)

Abs learning
Abs learningAbs learning
Abs learning
 
Toyota ABS-braking-systems
Toyota ABS-braking-systemsToyota ABS-braking-systems
Toyota ABS-braking-systems
 
Abs
AbsAbs
Abs
 
ABS-Notes.ppt
ABS-Notes.pptABS-Notes.ppt
ABS-Notes.ppt
 
AntilockBrakingSystem.pdf
AntilockBrakingSystem.pdfAntilockBrakingSystem.pdf
AntilockBrakingSystem.pdf
 
ABS.ppt
ABS.pptABS.ppt
ABS.ppt
 
Anti-lock Braking System
Anti-lock Braking SystemAnti-lock Braking System
Anti-lock Braking System
 
Vehicle safety system in automobiles
Vehicle safety system in automobiles Vehicle safety system in automobiles
Vehicle safety system in automobiles
 
ABS.pptx
ABS.pptxABS.pptx
ABS.pptx
 
Linear Control Technique for Anti-Lock Braking System
Linear Control Technique for Anti-Lock Braking SystemLinear Control Technique for Anti-Lock Braking System
Linear Control Technique for Anti-Lock Braking System
 
ABS technology by akshat jain-2.pptx
ABS technology by akshat jain-2.pptxABS technology by akshat jain-2.pptx
ABS technology by akshat jain-2.pptx
 
ABS SYSTEM
ABS SYSTEMABS SYSTEM
ABS SYSTEM
 
Embedded
EmbeddedEmbedded
Embedded
 
ABS system
ABS systemABS system
ABS system
 
ANTILOCK BRAKE SYSTEM
ANTILOCK BRAKE SYSTEMANTILOCK BRAKE SYSTEM
ANTILOCK BRAKE SYSTEM
 
Anti lock braking system
Anti lock braking systemAnti lock braking system
Anti lock braking system
 
Abs (Anti-lock braking system )
Abs (Anti-lock braking system )Abs (Anti-lock braking system )
Abs (Anti-lock braking system )
 
Anti-Lock Braking System (ABS) - An Overview
Anti-Lock Braking System (ABS) - An OverviewAnti-Lock Braking System (ABS) - An Overview
Anti-Lock Braking System (ABS) - An Overview
 
ANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEMANTI LOCK BRAKING SYSTEM
ANTI LOCK BRAKING SYSTEM
 
Antilock braking system (ABS)
Antilock braking system (ABS)Antilock braking system (ABS)
Antilock braking system (ABS)
 

Recently uploaded

VDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive IndustriesVDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive IndustriesKannanDN
 
Digamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsDigamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsMihajloManjak
 
Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...
Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...
Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...kexey39068
 
Innovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC TechnologyInnovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC Technologyquickpartslimitlessm
 
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一fhhkjh
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证jjrehjwj11gg
 
Not Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsNot Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsFifth Gear Automotive
 
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一ypfy7p5ld
 
办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样
办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样
办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样umasea
 
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxDineshKumar4165
 
BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024AHOhOops1
 
GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024AHOhOops1
 
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一hnfusn
 
Hauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhi
Hauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhiHauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhi
Hauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhiHot Call Girls In Sector 58 (Noida)
 
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一mkfnjj
 
如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一
如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一
如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一mjyguplun
 
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样whjjkkk
 
VIP Kolkata Call Girl Kasba 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kasba 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kasba 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kasba 👉 8250192130 Available With Roomdivyansh0kumar0
 

Recently uploaded (20)

VDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive IndustriesVDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive Industries
 
Digamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsDigamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and Qualifications
 
Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...
Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...
Call Girl Service Global Village Dubai +971509430017 Independent Call Girls G...
 
Innovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC TechnologyInnovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC Technology
 
Indian Downtown Call Girls # 00971528903066 # Indian Call Girls In Downtown D...
Indian Downtown Call Girls # 00971528903066 # Indian Call Girls In Downtown D...Indian Downtown Call Girls # 00971528903066 # Indian Call Girls In Downtown D...
Indian Downtown Call Girls # 00971528903066 # Indian Call Girls In Downtown D...
 
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
 
Not Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsNot Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These Symptoms
 
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
如何办理(Flinders毕业证)查理斯特大学毕业证毕业证成绩单原版一比一
 
办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样
办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样
办理学位证(MLU文凭证书)哈勒 维滕贝格大学毕业证成绩单原版一模一样
 
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
 
BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024
 
GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024GREEN VEHICLES the kids picture show 2024
GREEN VEHICLES the kids picture show 2024
 
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
 
Hauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhi
Hauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhiHauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhi
Hauz Khas Call Girls ☎ 7042364481 independent Escorts Service in delhi
 
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一
 
如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一
如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一
如何办理爱尔兰都柏林大学毕业证(UCD毕业证) 成绩单原版一比一
 
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
 
VIP Kolkata Call Girl Kasba 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kasba 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kasba 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kasba 👉 8250192130 Available With Room
 

AbS PpT-2.pptx

  • 1. INTRODUCTION ANTILOCK BRAKING SYSTEM 1 • Anti-lock braking system (ABS) is an automobile safety system that allows the wheels on a motor vehicle to maintain tractive contact with the road surface according to driver inputs while braking, preventing the wheels from locking up and avoiding uncontrolled skidding. • ABS generally offers improved vehicle control and decreases stopping distances on dry and slippery surfaces. • ABS modulates the brake line pressure independent of the pedal force, to bring the wheel speed back to the slip level range that is necessary for optimal braking performance.
  • 2. PROJECT OUTLINE ANTILOCK BRAKING SYSTEM 2 • Objectives of ABS • Components of ABS • Working of ABS • Mathematical model • System model • Results • Conclusion • References
  • 3. OBJECTIVES OF ABS ANTILOCK BRAKING SYSTEM 3 • To reduce stopping distance 1. The road surface type and conditions can be inferred from the vehicle's braking pressure, wheel slip measurements, and deceleration rate comparisons. 2. The wheel slip is regulated so that the road adhesion coefficient is maximized. By keeping all of the wheels of a vehicle near the maximum friction coefficient, an antilock system can attain maximum fictional force 3. In turn, this strategy leads to the minimization of the vehicle stopping distance.
  • 4. ANTILOCK BRAKING SYSTEM 4 • Stability 1. A locked-up wheel generates a reduced braking force, smaller than the peak value of the available adhesion between tires and road. A locked-up wheel will also lose its capability to sustain any lateral force. This may result in the loss of vehicle stability. 2. The basic purpose of a conventional ABS system is thus to prevent any wheel from locking and to keep the longitudinal slip in an operational range by cycling the braking pressure.
  • 5. ANTILOCK BRAKING SYSTEM 5 • Steerability 1. Good peak frictional force control is necessary in order to achieve satisfactory lateral forces and, therefore, satisfactory steer-ability. 2. If an obstacle appears without warning, emergency braking may not be sufficient. When the wheels are locked, car no longer respond to the driver’s steering intention. 3. With ABS car remains steerable even during emergency braking, and thus the obstacle can be safely avoided.
  • 6. COMPONENTS OF ABS ANTILOCK BRAKING SYSTEM 6 The primary components of the ABS braking system are: • Electronic control unit (ECU) 1. It receives signals from the sensors in the circuit and controls the brake pressure at the road wheels according to the data analysed by the Unit. 2. ECU assists the vehicle operator to prevent wheel lockup by regulating the wheel slip. • Hydraulic control unit or modulator 1. It receives operating signals from the ECU to apply or release the brakes under ABS conditions. 2. It executes the commands using three solenoid valves connected in series with the master cylinder and the brake circuits- one valve for each front wheel hydraulic circuit, and one for both of the rear wheels. Thus brakes can be actuated by controlling hydraulic pressure.
  • 7. ANTILOCK BRAKING SYSTEM 7 • Power booster and master cylinder assembly 1. It is activated when the driver pushes down on the brake pedal. The master cylinder transforms the applied pedal force into hydraulic pressure which is transmitted simultaneously to all four wheels. 2. It provides the power assistance required during braking. • Wheel sensor unit 1. Speed sensors are comprised of a magnet wrapped in a coil and a toothed sensor ring. An electrical field given off by the contact between the magnet and the toothed ring creates a AC voltage. 2. The voltage frequency is directly proportional to the wheel's rotational speed. 3. It monitors the rotational speed of the wheel and transmits this data to the ABS control module.
  • 8. WORKING OF ABS ANTILOCK BRAKING SYSTEM 8 • If a wheel-speed sensor signals a lock up - the ECU sends a current to the hydraulic unit. This energizes the solenoid valve. The action of the valve isolates the brake circuit from the master cylinder. This stops the braking pressure at that wheel from rising, and keeps it constant. It allows wheel velocity to increase and slip to decrease. • When the velocity increases, ECU re-applies the brake pressure to restrict the wheel slip to a particular value. • Hydraulic control unit controls the brake pressure in each wheel cylinder based on the inputs from the system sensor. This in result controls the wheel speed.
  • 9. MATHEMATICAL MODEL ANTILOCK BRAKING SYSTEM 9 • Wheel slip: When the braking action is initiated, a slippage between the tire and the contacted road surface will occur, which make the speed of the vehicle to be different from that of the tire. • The longitudinal slip is defined as 𝑆 = 𝑉𝑐𝑜𝑠𝛼 − 𝜔𝑅𝑤 𝑉𝑐𝑜𝑠𝛼 The side slip angle is 𝛼 = 𝑡𝑎𝑛−1 𝑉𝑠𝑦 𝑉𝑥 Force and velocity components on tyre
  • 10. ANTILOCK BRAKING SYSTEM 10 • Vehicle Dynamics According to Newton's second law, the equation of motion of the simplified vehicle can be expressed by, 𝑚𝑡𝑉 = −𝐹𝑡 − 𝐹𝑎 The road friction force is given by Coulomb law 𝐹𝑡 = 𝜇𝑁 The total mass of the quarter vehicle can be written as 𝑚𝑡 = 𝑚𝑡𝑖𝑟𝑒 + 𝑚𝑐 4 Thus, the total normal load cm be expressed by 𝑁 = 𝑚𝑡𝑔 − 𝐹𝑙 𝐹𝑙 is the longitudinal weight transfer load due to braking
  • 11. ANTILOCK BRAKING SYSTEM 11 Simulink model for vehicle dynamics
  • 12. ANTILOCK BRAKING SYSTEM 12 • Wheel dynamics According to Newton's second law, the equation of motion at wheel level for the rotational DOF is given by, 𝐽𝑤𝜔 = −𝑇𝑏 + 𝐹𝑡𝑅𝑤
  • 13. ANTILOCK BRAKING SYSTEM 13 Simulink model for wheel dynamics
  • 14. SYSTEM MODEL ANTILOCK BRAKING SYSTEM 14 Assumption: Only a linear model was considered and does not include actual road conditions. The system here is modelled only for straight line braking.
  • 15. INPUT PARAMETERS FOR SIMULINK MODEL ANTILOCK BRAKING SYSTEM 15 Gravitational constant 𝑔 = 32.18 𝑓𝑡/𝑠2 Initial velocity of vehicle 𝑣0 = 88 𝑓𝑡/𝑠 Wheel Radius 𝑅𝑟 = 1.25 𝑓𝑡 Mass of vehicle 𝑚 = 50 lbs Maximum Braking Torque 𝑇𝑏𝑚𝑎𝑥 = 1500 𝑙𝑏𝑓 ∗ 𝑓𝑡 Hydraulic Lag 𝑇𝐵 = 0.01 𝑠 Moment of Inertia 𝐽𝑤 = 5 𝑓𝑡4
  • 17. VEHICLE SPEED AND WHEEL SPEED (WITHOUT ABS) ANTILOCK BRAKING SYSTEM 17
  • 18. ANTILOCK BRAKING SYSTEM 18 VEHICLE SPEED AND WHEEL SPEED (WITH ABS)
  • 19. SLIP (WITH ABS) ANTILOCK BRAKING SYSTEM 19
  • 20. STOPPING DISTANCE (WITHOUT ABS) ANTILOCK BRAKING SYSTEM 20
  • 21. STOPPING DISTANCE (WITH ABS) ANTILOCK BRAKING SYSTEM 21
  • 22. CONCLUSION ANTILOCK BRAKING SYSTEM 22 • It is inferred that ABS improves the braking performance. • The stopping distance after using ABS system has considerably reduced. • The error in slip and desired slip is used to manipulate brake pressure in brake cylinder.
  • 23. REFERENCES ANTILOCK BRAKING SYSTEM 23 • Tianku Fu,“Modelling and performance analysis of ABS system with non-linear control”, 2000. • Tobias Eriksson,“Co-simulation of full vehicle model in Adams and anti-lock brake system model in Simulink”, 2014.
  • 24. ANTILOCK BRAKING SYSTEM 24 THANK YOU!