SlideShare a Scribd company logo
1 of 32
Download to read offline
Институт народнохозяйственного прогнозирования РАН
Синяк Ю.В.
Система моделирования и анализа
прогнозов развития ТЭК России на
долгосрочную перспективу
Москва, ноябрь 2014 г.
Цели создания экспертной системы
прогнозирования ТЭК
• Сценарии перспективного развития ТЭК России и
крупных макрорегионов и разработка прогнозных
топливно-энергетических балансов страны и крупных
регионов
• Оценка влияния новых технологий и тенденций на
развитие ТЭК
• Изучение последствий введения ограничений на
выбросы СО2
• Спрос на инвестиции в отраслях ТЭК
• Расчет равновесных цен на энергоносители и рентных
платежей в ТЭК
• Приоритетность освоения новых инновационных
направлений в ТЭК
2
1. Динамическая линейная модель долгосрочного
прогнозирования развития ТЭК России
3
Особенности модели долгосрочного
прогнозирования развития ТЭК (ИНП РАН)
• формирования приходной и расходной частей ТЭБ и оптимизация его
структуры в разрезе страны и макрорегионов,
• метод решения задачи – оптимизация методом линейного програм-
мирования,
• критерии оптимизации – минимум затрат, максимум экономического
эффекта, минимум выбросов загрязнителей и т.п. (по выбору),
• временной интервал: до 2060 г. по 10-летним периодам,
• территориальный фактор: три макрорегиона – Европейская часть
России, Урал и западная Сибирь, Восточная Сибирь и дальний Восток,
• экспорт энергоресурсов (задан экзогенно, исходя из прогнозов и анализа
ситуаций на мировых рынках энергоресурсов),
• природные энергоресурсы: уголь, нефть, природный газ (по крупным
топливодобывающим районам), ядерная энергия, новые источники
энергии,
• переработанные и преобразованные энергоносители: моторные
топлива и мазуты, электро- и теплоэнергия, водород, жидкие
синтетические топлива из угля и природного газа и др. 4
5
Потребность в энергии и эффективности ее использования
• В основу описания спроса положены энергетические процессы, а не
отдельные продукты или валовые выпуски по отраслям.
• Верификация оценок спроса по 2000, 2005 и 2010 гг.
• Спрос задается в виде затрат полезной энергии (работы, тепла), что
позволяет встроить в модель выбор наиболее эффективных
технологий в соответствии с заданным критерием.
• Потребление энергии (по полезной энергии на единицу добавленной
стоимости или на душу населения):
- Промышленность (высокотемпературные процессы,
низкотемпературные процессы, освещение, электропривод и т.п.)
- Сельское хозяйство (мобильные процессы, низкотемпературные
процессы, освещение и пр.)
- Транспорт (рельсовый, дорожный, воздушный, водный,
трубопроводный, отопление)
- Население и социальные нужды (пищеприготовление, отопление и
ГВС, освещение и электробытовые приборы)
- Неэнергетические нужды.
6
• Топливные энергоресурсы представлены по стоимостным категориям и
описаны в виде аппроксимирующей функции отработки месторождений.
В моделирующей системе условно принято разделение всех ресурсов топлив
на три стоимостные категории:
категория I (дешевое топливо): для углеводородных топлив запасы этой
категории приняты равными 80% запасов А+В+С1, для угольного топлива
в эту категорию отнесены 50% запасов А+В+С1,
категория II (умеренно дорогое топливо): для углеводородных топлив –
20% от запасов А+В+С1 плюс 50% от величины запасов в неоткрытых
месторождений (по оценкам USGS), для угольных топлив – 50% от
величины запасов А+В+С1 плюс 50% от величины С2,
категория III (дорогое топливо): для углеводородных топлив – 50% от
величины запасов в неоткрытых месторождений (по оценкам USGS), для
угольных топлив – 50% от величины запасов С2 и 10% от запасов Р1.
Ресурсы топлив и оценка потенциальной добычи
• Природные запасы топлив (резервы и ресурсы) оценены по отечественным и
зарубежным источникам.
• Для расчета потенциальной добычи использованы упрощенные методы
математического моделирования освоения месторождений.
Введем следующие обозначения:
пусть A – располагаемые запасы топлива в месторожении; T – предполагаемый срок
эксплуатации месторождения, 𝒚(𝒕) = 𝒇(𝑨, 𝑻) – уравнение, описывающее
траекторию добычи топлива в момент t (0> t < T). Принимая уравнение добычи в
виде параболы: 𝒚(𝒕) = 𝒂𝒕 𝟐
+ 𝒃𝒕 + 𝒄, требуется построить такую траекторию
добычи, чтобы при достижении момента завершения разработки запасов T
суммарная добыча составила A. При этом предполагается, что в начальный точке
расчета добыча составляет y(0) (текущий уровень добычи).
Исходя из поставленных условий, можно составить систему уравнений:
𝑎 ∗ 0 + 𝑏 ∗ 0 + 𝑐 = 𝑦(0)
𝑎𝑇2
+ 𝑏𝑇 + 𝑐 = 0
𝑎𝜏2
+ 𝑏𝜏 + 𝑐 𝑑𝜏 = 𝐴
𝑇
0
⇔
𝑐 = 𝑦(0)
𝑎𝑇2 + 𝑏𝑇 + 𝑐 = 0
1
3
𝑎𝑇3 +
1
2
𝑏𝑇2 + 𝑐𝑇 = 𝐴
Решая эту систему, находим:
𝑎 =
3𝑦(0)
𝑇2 −
6𝐴
𝑇3
𝑏 = −
4𝑦(0)
𝑇
+
6𝐴
𝑇2
𝑐 = 𝑦(0)
8
Условная привязка стоимостных категорий к условиям
добычи топлив.
Стоимостные
категории
Углеводородные
топлива
Твердые топлива
Категория I Традиционные нефть и
газ в освоенных районах
Открытая добыча в
Кузбассе и в Канско-
Ачинском бассейне
Категория II Заполярье Западной
Сибири, Восточная
Сибирь, морская добыча
Подземная добыча в
Европейской части,
Сибири и на Дальнем
Востоке
Категория III Арктика, тяжелые нефти Заполярье, мелкие
месторождения
Для оценки стоимостных показателей добычи (операционные и
капитальные затраты) использованы материалы российских и зарубежных
компаний, публикации в профильных журналах, отчетности Росстат и др., а
также экспертные оценки.
9
Технологии в модели ТЭК
• Технологии энергопотребления (генерирования) состоят из двух групп:
традиционные и новые.
• Новые технологии в ТЭК появляются после 2020 г. (водород, топливные
элементы, тепловые насосы, синтетическое топливо из природного газа и
угля, безуглеродные энергоносители в электроэнергетике и теплоснабжении,
ядерная энергия в промышленности).
• Новые источники энергии (возобновляемые) условно пока объединены в одну
группу.
• Предполагается, что технико-экономические показатели технологий остаются
неизменными на протяжении всего срока службы.
• Для повышения достоверности результатов разработаны вспомогательные
модели для оценки технико-экономических показателей новых технологий :
- теплоснабжение (прогноз спроса на тепловую энергию в жилом секторе –
отопление и ГВС, прогноз аварийности и теплопотерь в тепловых сетях)
- дорожный транспорт (прогноз спроса на моторные топлива в автотрансп-
орте),
- прогнозы эффективности новых технологий в ТЭК (ТНУ, ГТУ-ТЭЦ, GTL, топливные
элементы, электромобили, солнечные электростанции, сверхпроводимые ЛЭП и
т.п.).
10
Учет в модели графиков нагрузки в электро- и теплоснабжении
Часы
Мощность
Кусочно-линейная аппроксимация графика
электрической нагрузки энергосистемы.
М3
М2
М1
Часы
Мощность
График электрической нагрузки
Часы
Мощность
Аппроксимация графика электрической нагрузки с
учетом аккумулирования
М3
М2
М1
М1'
OFF2
11
Модель в настоящее время насчитывает около 6000 урав-
нений и 8000 переменных. Для оптимизации используется
метод линейного программирования, обеспечивающий
целенаправленный поиск наилучшего решения из всех
возможных.
К числу наиболее известных зарубежных моделей
подобного типа относятся MARKAL, MESSAGE, NEMS, которые
широко используются во многих развитых и развивающихся
странах мира. В России похожий подход применен в
исследованиях Института энергетических исследований РАН,
которые положены в основу расчетов всех Энергетических
стратегий. Все модели, имея общие черты, различаются по
содержанию, структуре и описанию отельных элементов.
2. Организация расчетов
12
Схема модельно-вычислительного комплекса
База данных
Модель ТЭК
Выдача
результатов
14
Уголь Нефть
(природная
+ синтетич.)
Моторное
топливо
Мазут Природный
газ
Водород Ядерная
энергия
Гидроэне
ргия
Новые
источники
Электроэ
нергия
Теплоэне
ргия
центр.
ВСЕГО
Добыча (пр-во) 262205 425253 0 0 487512 0 37295 14841 41212 0 0 1268318
в т.ч. природный ЭР 0 395844 0 0 487512 0 0 0 0 0 0 0
Импорт всего 0 0 0 0 24300 0 0 0 0 0 0 24300
Экспорт всего 56000 195000 40000 0 255150 0 0 0 0 7654 0 553804
Изменение запасов 0 0 0 0 0 0 0 0 0 0 0 0
Внутреннее потребление 192570 226000 167900 14159 225699 0 37295 14841 41212 -10492 0 909184
Электростанции -68162 0 0 -12622 -71316 0 -36019 -14841 -27612 172618 85893 27939
Котельные центр. -16977 0 0 -1117 -30344 0 0 0 0 -4556 62787 9794
Трансф. угля -5500 0 0 0 0 0 0 0 0 0 0 -5500
Переработка в: -69235 -196592 207900 14159 -20141 11737 0 0 0 0 0 -52171
на НПЗ 0 -226000 207900 12800 0 0 0 0 0 0 0 -5300
в синтетическое МТ 0 0 0 0 0 0 0 0 0 0 0 0
в синтетическую нефть -65352 29408 0 0 0 0 0 0 0 0 0 -35944
в жидкое к.-п. топливо -3883 0 0 1359 0 0 0 0 0 0 0 -2524
в водород всего 0 0 0 0 -20141 11737 0 0 0 0 0 -8404
в водород централиз. 0 0 0 0 -3534 1687 0 0 0 0 0 -1847
в водород децентрал. 0 0 0 0 -16607 10051 0 0 0 0 0 -6557
Потери и с.н. 13635 4253 0 0 30743 4 0 0 0 17738 16042 82415
Конечное потребление всего 32697 0 167900 420 104118 11733 1276 0 13600 139832 132637 604214
Промышленность 24203 0 0 0 11586 0 1276 0 0 67089 54495 158650
Сельское хозяйство 0 0 6144 0 0 0 0 0 569 2793 2158 11663
Транспорт 1608 0 161756 0 16955 11733 0 0 0 36867 937 229856
Население и КБН 4637 0 0 0 36247 0 0 0 13031 33083 75048 162045
Неэнергетические нужды 2250 0 0 420 39330 0 0 0 0 0 0 42000
Пример выдачи результатов по ЕТЭБ страны на 2040 год
3. Результаты расчетов
15
16
Вариант 2 Вариант 3
1 Сценарий 2-2-1-А1 1 Сценарий 3-3-1-А1
2 Сценарий 2-2-1-А2 2 Сценарий 3-3-1-А2
3 Сценарий 2-2-2-А1 3 Сценарий 3-3-2-А1
4 Сценарий 2-2-2-А2 4 Сценарий 3-3-2-А2
Индексация сценариев:
«Темп ВВП"-"Энергоемкость"- "Экспорт газа"- "СО2"-"Экономика безуглеродных
технологий»
Например, сценарий 2-2-2-А2 следует понимать следующим образом:
"- Умеренные темпы роста ВВП и изменения его структуры,
- Умеренные темпы снижения энергоемкости по полезной энергии,
- При отсутствии добычи сланцевого газа в Западной Европе,
- Без ограничений на выбросы СО2,
- При росте стоимости АЭС и интенсивном сокращении затрат в другие
безуглеродные технологии".
Ниже на графиках применена следующая индексация вариантов и сценариев:
Сценарные условия (1)
Входные
параметры
Варианты 2010-2030 2031-2050
Темпы роста ВВП и
изменение
структуры
добавленной
стоимости
Вариант 2
Среднегодовой темп прироста
ВВП составляет 3%, умеренные
изменения в структуре
добавленной стоимости
Среднегодовой темп прироста ВВП
составляет 2%, умеренные
изменения в структуре добавленной
стоимости
Вариант 3
Среднегодовой темп прироста
ВВП составляет 5%,
интенсивные изменения в
структуре добавленной
стоимости
Среднегодовой темп прироста ВВП
составляет 4%, интенсивные
изменения в структуре добавленной
стоимости
Население Варианты 2
и 3
В обоих вариантах приняты одинаковые значения численности
населения
Темпы сокращения
энергоемкости ВВП
по полезной энергии
Вариант 2
Среднегодовой темп снижения
энергоемкости ВВП по
полезной энергии составляет
2,5-2,6%
Среднегодовой темп снижения
энергоемкости ВВП по полезной
энергии составляет 2-2,1%
Вариант 3
Среднегодовой темп снижения
энергоемкости ВВП по
полезной энергии составляет 3-
3,2%
Среднегодовой темп снижения
энергоемкости ВВП по полезной
энергии составляет 2,5-2,7%
17
Сценарные условия (2)
Входные параметры Варианты 2010-2030 2031-2050
Экспорт нефти и
нефтепродуктов
Варианты 2
и 3
Экспорт нефти снижается. в связи с ожидаемым истощением запасов
традиционной нефти и сокращением спроса
Экспорт природного
газа в Западную
Европу
Варианты 2
и 3, сцена-
рий 1
При возможном ухудшении
конъюнктуры для российского
газа в Западной Европе до 2030 г.
(сланцевый газ + конкуренты)
После 2030 г. возможно
восстановление благоприятного
климата для российского газа
Варианты 2
и 3 ,
сценарий 2
Благоприятная ситуация для российского газа сохраняется в течение
всего периода
Изменение
стоимости
безуглеродных
технологий (АЭС и
новых источников
энергии)
Варианты 2
и 3, сцена-
рий 1
Сохранение стоимости АЭС в течение всего периода на уровне 3000
долл./кВт. Для новых источников энергии (солнечная, ветровая,
геотермальная и др.) удельные затраты медленно сокращаются с 4000
долл./кВт до 2000 долл./кВт.
Варианты 2
и 3, сцена-
рий 2
В этом варианте исследуются две противоположные тенденции
изменения затрат. Стоимость АЭС возрастает к середине века до 6000
долл./кВт, а новых источников энергии интенсивно сокращается до
1000 долл./кВт.
Ограничения на
выбросы СО2
Варианты 2
и 3
Без ограничений на выбросы СО2
18
Прогнозы производства природных энергоресурсов, млн. т н.э.
0
200
400
600
800
1000
1200
1400
2010
2020(1)
2020(2)
2020(3)
2020(4)
2030(1)
2030(2)
2030(3)
2030(4)
2040(1)
2040(2)
2040(3)
2040(4)
2050(1)
2050(2)
2050(3)
2050(4)
2060(1)
2060(2)
2060(3)
2060(4)
НИСТ
Гидро
ЯЭ
Приролныйгаз
Нефть
Уголь
Прогнозыдобыяи (производства)первичных энергоресурсов
по варианту 2, млн. т н.э.*)
*) Безуглеродные энергоресрусы даны по физическому эквиваленту: 1 кВтч=0,086 кг н.э.
0
200
400
600
800
1000
1200
1400
1600
2010
2020(1)
2020(2)
2020(3)
2020(4)
2030(1)
2030(2)
2030(3)
2030(4)
2040(1)
2040(2)
2040(3)
2040(4)
2050(1)
2050(2)
2050(3)
2050(4)
2060(1)
2060(2)
2060(3)
2060(4)
НИСТ
Гидро
ЯЭ
Приролный газ
Нефть
Уголь
*) Безуглеродные энергоресрусы даны по физическому эквиваленту: 1 кВтч=0,086 кг н.э.
Прогнозы добыяи (производства)первичных энергоресурсов
по варианту 3, млн. т н.э.*)
19
- ожидается, что суммарная добыча первичных
энергоресурсов до 2060 г. может достигнуть
максимума к 2030 г. на уровне 1200-1400 млн. т
н.э. ;после 2030 г. вполне ожидаем медленный
спад добычи,
- добыча сырой нефти после 2030 г. начинает
медленной сокращаться в связи с исчерпанием
дешевых месторождений нефти, а дорогая нефть
будет встречать растущую конкуренцию со сторо-
ны электроэнергии (электромобили) и водорода,
получаемого на первых этапах из природного
газа,
- добыча природного газа скорее всего может
остаться стабильной после 2020 г. на уровне 600-
700 млрд. м3,
- большого прорыва в добыче угле не предвидит-
ся,
- после 2030 г. заметный вклад в энергоснабжение
страны начнут оказывать новые источники энерг-
ии в связи с ожидаемыми увеличениями их
эффективности и снижением затрат,
- большого прогресса в области атомной энергети-
ки не предвидится при ожидаемых стоимостях
этой технологии,
- снижение энергоемкости ВВП происходит со
среднегодовым темпом 3-3,3% до 2040 г. в вари-
анте 2 и 4-4,5% в варианте 3, далее темпы
снижаются – до 2% в варианте 2 и 3% в варианте 3.
0
100
200
300
400
500
600
2000 2010 2020 2030 2040
В. Сибирь и Д. Восток
Урал и З. Сибирь
Европ. часть
Прогноз добычи нефти в России, млн. т н.э.
(сценарий 2-2-1-А1)
0
50
100
150
2000 2010 2020 2030 2040
млн.т
Прогноз добычи нефти в Европейской
части
Прочие
Коми
Прикаспий
0
100
200
300
400
2000 2010 2020 2030 2040
млн.т
Прогноз добычи нефти
в регионе Урала и Западной Сибири
0
20
40
60
80
100
120
2000 2010 2020 2030 2040
млн.т
Прогноз добычи нефти в регионе В. Сибири
и Д. Востока
Прочие
Сахалин
Прогноз добычи сырой нефти до 2040 г.
(сценарий 2-2-1-А1)
Прогноз потребления конечной энергии, млн. т н.э.
21
0
100
200
300
400
500
600
2010
2020(1)
2020(2)
2020(3)
2020(4)
2030(1)
2030(2)
2030(3)
2030(4)
2040(1)
2040(2)
2040(3)
2040(4)
2050(1)
2050(2)
2050(3)
2050(4)
2060(1)
2060(2)
2060(3)
2060(4)
ТЭ
ЭЭ
НИСТ
ЯЭ
Н2
Газ
Мазут
МТ
Уголь
Прогнозыпотребления конечной энергии по сценариям
варианта 2, млн. т н.э.
0
100
200
300
400
500
600
700
800
900
1000
2010
2020(1)
2020(2)
2020(3)
2020(4)
2030(1)
2030(2)
2030(3)
2030(4)
2040(1)
2040(2)
2040(3)
2040(4)
2050(1)
205(2)
2050(3)
2050(4)
2060(1)
2060(2)
2060(3)
2060(4) ТЭ
ЭЭ
НИСТ
ЯЭ
Н2
Газ
Мазут
МТ
Уголь
Прогнозы потребления конечной энергии по сценариям
варианта 3, млн. т н.э.
- доля электроэнергии растет с
~18% до 40-45% к 2060 г. в связи с
снижением стоимости
электроэнергии,
- происходит заметное сокращение
потребления моторного топлива за
счет его замены электроэнергией и
водородом,
- в варианте с активным развитием
новых источников энергии доля
прямого использования топлива
сокращается с 60% в 2010 г. до 30%
и менее в 2060 г.
Прогнозы генерирования электроэнергии, млрд. кВтч
0
500
1000
1500
2000
2500
2010 2020 2030 2040 2050 2060
2-2-1-А1
2-2-1-А2
2-2-2-А1
2-2-2-А2
Прогнозывыработки электроэнергиипо сценариям варианта 2,
млрд. кВтч
0
500
1000
1500
2000
2500
3000
3500
4000
4500
2010 2020 2030 2040 2050 2060
3-3-1-А1
3-3-1-A2
3-3-2-A1
3-3-2-A2
Прогнозывыработки электроэнергиипо сценариям варианта 3,
млрд. кВтч
22
- ожидается систематический рост
производства электроэнергии до 2000-
4000 млрд. кВтч к 2060 г.;
- более высокие темпы роста следует
ожидать в сценариях со значительным
удешевлеием новых источников
энергии,
- рост потребления электроэнергии
обусловлен в значительной мере
интенсивным вытеснением прямого
использования топлива в
промышленности, заменой двига-
телей внутреннего сгорания на
электроэнергию и(или) водород,
широким использованием тепловых
насосов в системах централизованного
отопления.
Прогнозы выбросов СО2 объектами ТЭК, млрд. т СО2
0
500
1000
1500
2000
2500
2010 2020 2030 2040 2050 2060
2-2-1-А1
2-2-1-А2
2-2-2-А1
2-2-2-А2
Прогноз выбросов СО2по сценариям варианта 2, млрд. т
0
500
1000
1500
2000
2500
2010 2020 2030 2040 2050 2060
3-3-1-А1
3-3-1-A2
3-3-2-A1
3-3-2-A2
Прогноз выбросов СО2по сценариям варианта 3, млрд. т
23
- при принятых сценарных усло-
виях (темпы экономического
роста, энергосбережения, стои-
мости энергоресурсов и технолог-
ий) с большой вероятностью
можно ожидать сокращения
выбросов СО2 после 2020 г., осо-
бенно при развитии новых источ-
ников энергии,
- карбоноемкость энергобаланса
снижается к 2060 г. на 20% в
варианте 2 и 40% в варианте 3,
- еще более радикальным идет
снижение карбоноемкости ВВП –
на 80-85% к 2060 г.
Сопоставление прогнозов выбросов СО2 объектами ТЭК и
поглощающей способности территории России по углероду,
млрд. т СО2/год
24
Вывод: в течение всего 21 века поглощающая способность территории
России будет намного превышать выбросы энергетических объектов,
которые составляют не менее 70% от суммарных выбросов парниковых
газов. Это означает, что Россия будет оставаться крупным
поглотителем "чужого" углерода, что должно учитываться в
международных переговорах по сохранению климата.
0
0,5
1
1,5
2
2,5
3
3,5
4
2000 2010 2020 2030 2040 2050 2060
Диапазон
прогнозоа
выбросов СО2
Поглощающая
способность
территории
25
Постановка проблемы балансирования спроса и предложения
энергоресурсов в виде обобщенной задачи линейного
программирования:
требуется найти решение перспективного развития ТЭК, которое обеспечивает
выполнение заданного критерия оценки системы (в нашем случае – это минимум затрат
на развитие системы):
𝐌𝐈𝐍 𝑪𝒊𝒋
𝒓𝒕
∗ 𝑿𝒊𝒋
𝒓𝒕
(𝟏)𝒏
𝒋=𝟏
𝒎
𝒊=𝟏
𝟔
𝒕=𝟎
𝟑
𝒓=𝟏
при выполнении ограничивающих условий:
𝐺𝑖𝑗
𝑟𝑡
∗ 𝑋𝑖𝑗
𝑟𝑡
= 𝑄𝑗
𝑟𝑡
, 𝑗 = 1, 𝑛
𝑚
𝑖=1
(2)
𝑋𝑖𝑗
𝑟𝑡
≤ 𝐵𝑖
𝑟𝑡
, 𝑖 = 1, 𝑚 (3)
𝑛
𝑗=1
𝑋𝑖𝑗
𝑟𝑡
≥ 0 (4)
где 𝑪𝒊𝒋
𝒓𝒕
– полные удельные приведенные затраты на добычу, транспорт и использование ресурса вида i
у потребителя j в регионе r в период времени t;
𝑿𝒊𝒋
𝒓𝒕
– объем поставки энергетического ресурса вида i потребителю j в регионе r в период времени t;
𝑮𝒊𝒋
𝒓𝒕
– удельный выпуске продукции или услуг j в регионе r на единицу энергоресурса в период времени
t;
𝑸𝒋
𝒓𝒕
– спрос на продукцию или услуги вида j в регионе r в период времени t;
𝑩𝒊 𝒓𝒕– технически допустимые объемы добычи или производства ресурса i, ограничения на
пропускную способность транспортных магистралей в регионе r в период времени t.
26
Пример фрагмента модели с росписью уравнений для электроэнергетики:
Пусть i – регион, j – потребитель электроэнергии в регионе, f – виды энергоносителей, k – зона графика нагрузки
(базис, полупик, пик), l – тип электрогенераторов, s – виды топлива, g – потребители топлива в регионе, u –
категория стоимости ресурсов топлива
Уравнения модели:
1) Обеспечение спроса на полезную энергию: 𝑿𝒊𝒋𝒇 ∗ 𝜼𝒊𝒋𝒇 = 𝑸пол𝒊𝒋𝒇
2) Спрос на электроэнергию: X Y
ij ij

3) Баланс электроэнергии:
i i i i
ir i
r
ir i
r
Y I E G
I I
E E
  




4) Генерирование электроэнергии по зонам графика нагрузки:
*
1,0
ik ik i
ik
k
G G



5) Обеспечение мощностями спроса по зонам графика нагрузки: *kils kils ik
s l
N G 
27
6) Расход топлива в мощностях графика нагрузки:
7) Спрос на топливо вида s в регионе: isg is
g
F F
8) Баланс топлива вида s в регионе i: is is is isP I E F   , isr is
r
I I , isr is
r
E E
9) Добыча топлива вида s в регионе i:
isu is
u
D P
*
isu isuD D , где
*
isuD - предельная оценка добычи топлива s в стоимостной категории u.
Функционал: минимизировать выражение суммарных годовых дисконтированных затрат за
заданный период времени:
1 1 1 1... * * * * ...isu isu isrr isrr isrr isrr kils kils
s u r s r s k l s
C D C I C E C N       
(добыча топлива) (межрегиональные и внешние (затраты на технологию без
перетоки топлива) топливной составляющей)
0,086*
*kiks
kils isg
k l kils
N F



Продолжение.
28
Основная входная информация для модели включает
следующие разделы:
1. Макроэкономическая информация: темпы роста ВВП и ВРП, структура
производства ВВП и ВРП, структура добавленной стоимости по отраслям
экономики, динамика численности населения и его расселение по
территории страны и по типам населенных пунктов (оценка ограничений
по потребности в энергии).
2. Ресурсная информация: природные запасы органических топлив,
экономика (затраты и инвестиции) разведки и добычи топлив (по
крупным добывающим районам и месторождениям с выделением
дешевых, умеренных и дорогих ресурсов) (оценка ограничений по
потенциальным возможностям добычи топлива).
3. Технологическая информация: технико-экономические показатели
энергетических технологий, их динамика в перспективном периоде,
условия выхода на рынок новых технологий (оценка технико-
экономических показателей энерготехнологий).
4. Экологическая информация: удельные выбросы загрязняющих
веществ (сейчас учитывается только СО2), ограничения на выбросы
(оценка ограничений по выбросам загрязнителей).
Прогнозы расходов топлива на выработку электроэнергии, млн. т н.э.
29
0
50
100
150
200
250
300
2010
2020(1)
2020(2)
2020(3)
2020(4)
2030(1)
2030(2)
2030(3)
2030(4)
2040(1)
2040(2)
2040(3)
2040(4)
2050(1)
2050(2)
2050(3)
2050(4)
2060(1)
2060(2)
2060(3)
2060(4)
НИСТ
Гидро
ЯЭ
Водород
Приролныйгаз
Мазут
Уголь
Прогнозы потребления энергоресурсов на выработку
электроэнергиив варианте 2, млн. т н.э.
*) Потребление безуглеродных топлив дано по физическому эквиваленту: 1 кВтч=0,086 кг н.э.
0
50
100
150
200
250
300
350
400
450
2010
2020(1)
2020(2)
2020(3)
2020(4)
2030(1)
2030(2)
2030(3)
2030(4)
2040(1)
2040(2)
2040(3)
2040(4)
2050(1)
2050(2)
2050(3)
2050(4)
2060(1)
2060(2)
2060(3)
2060(4)
НИСТ
Гидро
ЯЭ
Водород
Приролный газ
Мазут
Уголь
*) Потребление безуглеродных топлив дано по физическому эквиваленту: 1 кВтч=0,086 кг н.э.
Прогнозы потребления энергоресурсов на выработку
электроэнергии в варианте 3, млн. т н.э.
- потребление энергоресурсов на выработку
электроэнергии при низких темпах развития
(вариант 2) может сократиться с 275 млн. т
н.э. в 2010 г. до ~200 млн. т н.э. в 2060 г., при
высоких темпах (вариант 3) - будет следует
ожидать рост до 300-350 млн. т н.э.,
- новые источники энергии будут активно
вытеснять природный газ из топливного
баланса электростанций, особенно в
сценариях с повышенным экспортом газа,
- доля безуглеродных технологий будет
систематически расти до 35-45% к 2060 г. в
варианте 2 и 60-70% в варианте 3,
- масштабного развития ядерной энергетики
при принятых сценарных условиях не
предвидится.
30
Осьдобычи
Ось времени
0 T
y(0)
A
y(t) = f (A, T)
Примерная динамика отработки отдельного
месторождения
Расчетная модель для описания
динамики потенциальной добычи в
крупном добывающем районе
Аппроксимация динамики отработки месторождения
OECD Europe Gas Production and Conceptual Forecast

More Related Content

Viewers also liked

Henderson Group (HGG) - initiation report
Henderson Group (HGG) - initiation report   Henderson Group (HGG) - initiation report
Henderson Group (HGG) - initiation report George Gabriel
 
Credit Corp - turnaround in performance
Credit Corp - turnaround in performance Credit Corp - turnaround in performance
Credit Corp - turnaround in performance George Gabriel
 
Citadel Group (CGL) - initiation report - latent value in a trusted it servic...
Citadel Group (CGL) - initiation report - latent value in a trusted it servic...Citadel Group (CGL) - initiation report - latent value in a trusted it servic...
Citadel Group (CGL) - initiation report - latent value in a trusted it servic...George Gabriel
 
Credit Corp (CCP) - corporate turnaround road map
Credit Corp (CCP) - corporate turnaround road mapCredit Corp (CCP) - corporate turnaround road map
Credit Corp (CCP) - corporate turnaround road mapGeorge Gabriel
 
Credit Corp (CCP) - leading indicators in consumer debt recovery sector
Credit Corp (CCP) - leading indicators in consumer debt recovery sector Credit Corp (CCP) - leading indicators in consumer debt recovery sector
Credit Corp (CCP) - leading indicators in consumer debt recovery sector George Gabriel
 
ASX Limited (ASX) - initiation report
ASX Limited (ASX) - initiation reportASX Limited (ASX) - initiation report
ASX Limited (ASX) - initiation reportGeorge Gabriel
 
Bitconnect coin
Bitconnect coinBitconnect coin
Bitconnect coinNurul Huda
 
Computershare (CPU) initiation report - well-priced quality franchise with fr...
Computershare (CPU) initiation report - well-priced quality franchise with fr...Computershare (CPU) initiation report - well-priced quality franchise with fr...
Computershare (CPU) initiation report - well-priced quality franchise with fr...George Gabriel
 
Aula de Engenharia Genética sobre Enzimas de restrição
Aula de Engenharia Genética sobre Enzimas de restriçãoAula de Engenharia Genética sobre Enzimas de restrição
Aula de Engenharia Genética sobre Enzimas de restriçãoJaqueline Almeida
 
3P Learning (3PL) - Earning from Learning - equity research initiation report
3P Learning (3PL) - Earning from Learning - equity research initiation report3P Learning (3PL) - Earning from Learning - equity research initiation report
3P Learning (3PL) - Earning from Learning - equity research initiation reportGeorge Gabriel
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShareSlideShare
 

Viewers also liked (17)

Henderson Group (HGG) - initiation report
Henderson Group (HGG) - initiation report   Henderson Group (HGG) - initiation report
Henderson Group (HGG) - initiation report
 
Credit Corp - turnaround in performance
Credit Corp - turnaround in performance Credit Corp - turnaround in performance
Credit Corp - turnaround in performance
 
Citadel Group (CGL) - initiation report - latent value in a trusted it servic...
Citadel Group (CGL) - initiation report - latent value in a trusted it servic...Citadel Group (CGL) - initiation report - latent value in a trusted it servic...
Citadel Group (CGL) - initiation report - latent value in a trusted it servic...
 
Redes industriales
Redes industrialesRedes industriales
Redes industriales
 
Credit Corp (CCP) - corporate turnaround road map
Credit Corp (CCP) - corporate turnaround road mapCredit Corp (CCP) - corporate turnaround road map
Credit Corp (CCP) - corporate turnaround road map
 
Credit Corp (CCP) - leading indicators in consumer debt recovery sector
Credit Corp (CCP) - leading indicators in consumer debt recovery sector Credit Corp (CCP) - leading indicators in consumer debt recovery sector
Credit Corp (CCP) - leading indicators in consumer debt recovery sector
 
ASX Limited (ASX) - initiation report
ASX Limited (ASX) - initiation reportASX Limited (ASX) - initiation report
ASX Limited (ASX) - initiation report
 
Negocios electronicos
Negocios electronicosNegocios electronicos
Negocios electronicos
 
Hugo folgado doutorado
Hugo folgado doutoradoHugo folgado doutorado
Hugo folgado doutorado
 
Bitconnect coin
Bitconnect coinBitconnect coin
Bitconnect coin
 
Ethernet tutorial
Ethernet tutorialEthernet tutorial
Ethernet tutorial
 
Computershare (CPU) initiation report - well-priced quality franchise with fr...
Computershare (CPU) initiation report - well-priced quality franchise with fr...Computershare (CPU) initiation report - well-priced quality franchise with fr...
Computershare (CPU) initiation report - well-priced quality franchise with fr...
 
Aula de Engenharia Genética sobre Enzimas de restrição
Aula de Engenharia Genética sobre Enzimas de restriçãoAula de Engenharia Genética sobre Enzimas de restrição
Aula de Engenharia Genética sobre Enzimas de restrição
 
3P Learning (3PL) - Earning from Learning - equity research initiation report
3P Learning (3PL) - Earning from Learning - equity research initiation report3P Learning (3PL) - Earning from Learning - equity research initiation report
3P Learning (3PL) - Earning from Learning - equity research initiation report
 
Boarding
BoardingBoarding
Boarding
 
Asthma Treatment
Asthma TreatmentAsthma Treatment
Asthma Treatment
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 

Similar to Синяк Ю.В. Система прогнозирования и анализа сценариев долгосрочного развития ТЭК в ИНП РАН

презентация спектралазер 2 июня 2014 сколково окончат
презентация спектралазер 2 июня 2014 сколково окончатпрезентация спектралазер 2 июня 2014 сколково окончат
презентация спектралазер 2 июня 2014 сколково окончатDmitry Tseitlin
 
«Опыт УрФУ в исследовании вопросов малой и распределенной генерации
«Опыт УрФУ в исследовании вопросов малой и распределенной генерации«Опыт УрФУ в исследовании вопросов малой и распределенной генерации
«Опыт УрФУ в исследовании вопросов малой и распределенной генерацииBDA
 
On Energy Strategy
On Energy StrategyOn Energy Strategy
On Energy Strategymyatom
 
Проект комплекса по производству жидкого топлива и электричества методом глуб...
Проект комплекса по производству жидкого топлива и электричества методом глуб...Проект комплекса по производству жидкого топлива и электричества методом глуб...
Проект комплекса по производству жидкого топлива и электричества методом глуб...Ivan Bozhko
 
Aacca34b13
Aacca34b13Aacca34b13
Aacca34b13Rosteplo
 
Развитие РАО ЕЭС на территории СФО до 2030г.
Развитие РАО ЕЭС на территории СФО до 2030г.Развитие РАО ЕЭС на территории СФО до 2030г.
Развитие РАО ЕЭС на территории СФО до 2030г.Максим Марков
 
Moos prezentatsiya 19.09.2013g
Moos prezentatsiya 19.09.2013gMoos prezentatsiya 19.09.2013g
Moos prezentatsiya 19.09.2013gGreen_Academy
 
Компания Schneider Electric и университеты
Компания Schneider Electric и университетыКомпания Schneider Electric и университеты
Компания Schneider Electric и университетыForumRosatom
 
О компании ЭНЕРГОАУДИТКОНТРОЛЬ
О компании ЭНЕРГОАУДИТКОНТРОЛЬО компании ЭНЕРГОАУДИТКОНТРОЛЬ
О компании ЭНЕРГОАУДИТКОНТРОЛЬDaria Pepelzhi
 
Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...
Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...
Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...Rosteplo
 
Презентация мини-ТЭЦ на 6МВт
Презентация мини-ТЭЦ на 6МВтПрезентация мини-ТЭЦ на 6МВт
Презентация мини-ТЭЦ на 6МВтgram2002
 
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...forecologist
 
Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...
Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...
Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...bioeconmsu
 
RST2014_Yaroslavl_ElectricityGeneratingSystems
RST2014_Yaroslavl_ElectricityGeneratingSystemsRST2014_Yaroslavl_ElectricityGeneratingSystems
RST2014_Yaroslavl_ElectricityGeneratingSystemsRussianStartupTour
 
3 politika_v_teplosnabzhenii_10_04_2014_kratko
3  politika_v_teplosnabzhenii_10_04_2014_kratko3  politika_v_teplosnabzhenii_10_04_2014_kratko
3 politika_v_teplosnabzhenii_10_04_2014_kratkoRosteplo
 
Ю.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК России
Ю.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК РоссииЮ.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК России
Ю.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК РоссииMoscow School of Economics (MSE MSU)
 

Similar to Синяк Ю.В. Система прогнозирования и анализа сценариев долгосрочного развития ТЭК в ИНП РАН (20)

презентация спектралазер 2 июня 2014 сколково окончат
презентация спектралазер 2 июня 2014 сколково окончатпрезентация спектралазер 2 июня 2014 сколково окончат
презентация спектралазер 2 июня 2014 сколково окончат
 
«Опыт УрФУ в исследовании вопросов малой и распределенной генерации
«Опыт УрФУ в исследовании вопросов малой и распределенной генерации«Опыт УрФУ в исследовании вопросов малой и распределенной генерации
«Опыт УрФУ в исследовании вопросов малой и распределенной генерации
 
On Energy Strategy
On Energy StrategyOn Energy Strategy
On Energy Strategy
 
Проект комплекса по производству жидкого топлива и электричества методом глуб...
Проект комплекса по производству жидкого топлива и электричества методом глуб...Проект комплекса по производству жидкого топлива и электричества методом глуб...
Проект комплекса по производству жидкого топлива и электричества методом глуб...
 
Промышленный журнал Вестснаб №7 (298) 2016
Промышленный журнал Вестснаб №7 (298) 2016Промышленный журнал Вестснаб №7 (298) 2016
Промышленный журнал Вестснаб №7 (298) 2016
 
Aacca34b13
Aacca34b13Aacca34b13
Aacca34b13
 
Развитие РАО ЕЭС на территории СФО до 2030г.
Развитие РАО ЕЭС на территории СФО до 2030г.Развитие РАО ЕЭС на территории СФО до 2030г.
Развитие РАО ЕЭС на территории СФО до 2030г.
 
Moos prezentatsiya 19.09.2013g
Moos prezentatsiya 19.09.2013gMoos prezentatsiya 19.09.2013g
Moos prezentatsiya 19.09.2013g
 
Компания Schneider Electric и университеты
Компания Schneider Electric и университетыКомпания Schneider Electric и университеты
Компания Schneider Electric и университеты
 
О компании ЭНЕРГОАУДИТКОНТРОЛЬ
О компании ЭНЕРГОАУДИТКОНТРОЛЬО компании ЭНЕРГОАУДИТКОНТРОЛЬ
О компании ЭНЕРГОАУДИТКОНТРОЛЬ
 
Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...
Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...
Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 20...
 
Презентация мини-ТЭЦ на 6МВт
Презентация мини-ТЭЦ на 6МВтПрезентация мини-ТЭЦ на 6МВт
Презентация мини-ТЭЦ на 6МВт
 
Промышленный журнал «Вестснаб» №3 (270) 2015
Промышленный журнал «Вестснаб» №3 (270) 2015Промышленный журнал «Вестснаб» №3 (270) 2015
Промышленный журнал «Вестснаб» №3 (270) 2015
 
Роль Немецкого энергетического агенства ("Дена") в качестве делового партнера...
Роль Немецкого энергетического агенства ("Дена") в качестве делового партнера...Роль Немецкого энергетического агенства ("Дена") в качестве делового партнера...
Роль Немецкого энергетического агенства ("Дена") в качестве делового партнера...
 
Красноярский строительный журнал "Вестснаб" №6, март 2014
Красноярский строительный журнал "Вестснаб" №6, март 2014 Красноярский строительный журнал "Вестснаб" №6, март 2014
Красноярский строительный журнал "Вестснаб" №6, март 2014
 
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ ОРГАНИЗАЦИИ УЧЁТА ПОПУТНОГО НЕФТЯНОГО ГАЗА В Р...
 
Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...
Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...
Лекция Евгения Гашо "Энергетика России: приоритеты перехода к новому энергети...
 
RST2014_Yaroslavl_ElectricityGeneratingSystems
RST2014_Yaroslavl_ElectricityGeneratingSystemsRST2014_Yaroslavl_ElectricityGeneratingSystems
RST2014_Yaroslavl_ElectricityGeneratingSystems
 
3 politika_v_teplosnabzhenii_10_04_2014_kratko
3  politika_v_teplosnabzhenii_10_04_2014_kratko3  politika_v_teplosnabzhenii_10_04_2014_kratko
3 politika_v_teplosnabzhenii_10_04_2014_kratko
 
Ю.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК России
Ю.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК РоссииЮ.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК России
Ю.В. Синяк - Новые явления в мировой энергетике и их влияние на ТЭК России
 

More from Moscow School of Economics (MSE MSU)

А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...
А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...
А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...Moscow School of Economics (MSE MSU)
 
А. В. Котов - Концепция стратегии пространственного развития России в европей...
А. В. Котов - Концепция стратегии пространственного развития России в европей...А. В. Котов - Концепция стратегии пространственного развития России в европей...
А. В. Котов - Концепция стратегии пространственного развития России в европей...Moscow School of Economics (MSE MSU)
 
Магистерская программа по направлению «Финансовая экономика» МШЭ МГУ
Магистерская программа по направлению «Финансовая экономика» МШЭ МГУМагистерская программа по направлению «Финансовая экономика» МШЭ МГУ
Магистерская программа по направлению «Финансовая экономика» МШЭ МГУMoscow School of Economics (MSE MSU)
 
Магистерская программа «Экономическая теория и проблемы современной России» М...
Магистерская программа «Экономическая теория и проблемы современной России» М...Магистерская программа «Экономическая теория и проблемы современной России» М...
Магистерская программа «Экономическая теория и проблемы современной России» М...Moscow School of Economics (MSE MSU)
 
Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ...
 Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ... Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ...
Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ...Moscow School of Economics (MSE MSU)
 
Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...
Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...
Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...Moscow School of Economics (MSE MSU)
 
Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...
Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...
Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...Moscow School of Economics (MSE MSU)
 
О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...
О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...
О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...Moscow School of Economics (MSE MSU)
 
Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...
Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...
Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...Moscow School of Economics (MSE MSU)
 
Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...
Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...
Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...Moscow School of Economics (MSE MSU)
 
Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...
Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...
Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...Moscow School of Economics (MSE MSU)
 
В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...
В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...
В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...Moscow School of Economics (MSE MSU)
 
А.Н. Швецов - Роль государства в преобразовании социоэкономического пространства
А.Н. Швецов - Роль государства в преобразовании социоэкономического пространстваА.Н. Швецов - Роль государства в преобразовании социоэкономического пространства
А.Н. Швецов - Роль государства в преобразовании социоэкономического пространстваMoscow School of Economics (MSE MSU)
 
Г.И. Гладкевич - Оценка ресурсоемкости промышленности России в сравнении с з...
Г.И. Гладкевич - Оценка ресурсоемкости промышленности  России в сравнении с з...Г.И. Гладкевич - Оценка ресурсоемкости промышленности  России в сравнении с з...
Г.И. Гладкевич - Оценка ресурсоемкости промышленности России в сравнении с з...Moscow School of Economics (MSE MSU)
 
А. В. Котов - Современный опыт региональной промышленной политики Германии: в...
А. В. Котов - Современный опыт региональной промышленной политики Германии: в...А. В. Котов - Современный опыт региональной промышленной политики Германии: в...
А. В. Котов - Современный опыт региональной промышленной политики Германии: в...Moscow School of Economics (MSE MSU)
 
А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...
А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...
А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...Moscow School of Economics (MSE MSU)
 
В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...
В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...
В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...Moscow School of Economics (MSE MSU)
 
Л.Б. Вардомский - О трансформации экономического пространства России
 Л.Б. Вардомский - О трансформации экономического пространства России Л.Б. Вардомский - О трансформации экономического пространства России
Л.Б. Вардомский - О трансформации экономического пространства РоссииMoscow School of Economics (MSE MSU)
 
И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...
И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...
И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...Moscow School of Economics (MSE MSU)
 
А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...
А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...
А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...Moscow School of Economics (MSE MSU)
 

More from Moscow School of Economics (MSE MSU) (20)

А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...
А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...
А.Н. Пилясов - Микромарксизм в действии: противоречия активов и институтов в ...
 
А. В. Котов - Концепция стратегии пространственного развития России в европей...
А. В. Котов - Концепция стратегии пространственного развития России в европей...А. В. Котов - Концепция стратегии пространственного развития России в европей...
А. В. Котов - Концепция стратегии пространственного развития России в европей...
 
Магистерская программа по направлению «Финансовая экономика» МШЭ МГУ
Магистерская программа по направлению «Финансовая экономика» МШЭ МГУМагистерская программа по направлению «Финансовая экономика» МШЭ МГУ
Магистерская программа по направлению «Финансовая экономика» МШЭ МГУ
 
Магистерская программа «Экономическая теория и проблемы современной России» М...
Магистерская программа «Экономическая теория и проблемы современной России» М...Магистерская программа «Экономическая теория и проблемы современной России» М...
Магистерская программа «Экономическая теория и проблемы современной России» М...
 
Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ...
 Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ... Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ...
Т.А. Митрова - Прогнозирование развития мировых энергетических рынков. Роль ...
 
Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...
Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...
Н.К. Куричев - Пространственная трансформация Московской агломерации и межрег...
 
Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...
Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...
Alexander Vasin, Marina Dolmatova - Optimization problems for energy markets'...
 
О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...
О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...
О.В. Кузнецова - Иностранные инвестиции в российских регионах: возможности и ...
 
Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...
Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...
Л.Б. Вардомский - Трансформация постсоветского пространства: итоги, идеи, инс...
 
Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...
Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...
Е.С. Орлова - Американская сланцевая революция и ее влияние на мировые энерге...
 
Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...
Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...
Н.А. Иванов - Американская сланцевая революция и ее влияние на мировые энерге...
 
В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...
В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...
В.М. Полтерович - Институты догоняющего развития. К проекту новой модели экон...
 
А.Н. Швецов - Роль государства в преобразовании социоэкономического пространства
А.Н. Швецов - Роль государства в преобразовании социоэкономического пространстваА.Н. Швецов - Роль государства в преобразовании социоэкономического пространства
А.Н. Швецов - Роль государства в преобразовании социоэкономического пространства
 
Г.И. Гладкевич - Оценка ресурсоемкости промышленности России в сравнении с з...
Г.И. Гладкевич - Оценка ресурсоемкости промышленности  России в сравнении с з...Г.И. Гладкевич - Оценка ресурсоемкости промышленности  России в сравнении с з...
Г.И. Гладкевич - Оценка ресурсоемкости промышленности России в сравнении с з...
 
А. В. Котов - Современный опыт региональной промышленной политики Германии: в...
А. В. Котов - Современный опыт региональной промышленной политики Германии: в...А. В. Котов - Современный опыт региональной промышленной политики Германии: в...
А. В. Котов - Современный опыт региональной промышленной политики Германии: в...
 
А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...
А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...
А.Н. Пилясов - Новая промышленная политика: сущность и потенциал применения в...
 
В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...
В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...
В.И. Нефедкин - Концентрация экономической власти: подход к измерению и оценк...
 
Л.Б. Вардомский - О трансформации экономического пространства России
 Л.Б. Вардомский - О трансформации экономического пространства России Л.Б. Вардомский - О трансформации экономического пространства России
Л.Б. Вардомский - О трансформации экономического пространства России
 
И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...
И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...
И.А. Герасимова - Сравнительный анализ уровня и динамики Валового регионально...
 
А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...
А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...
А.А. Фомкина - Межрайонные центры социальной инфраструктуры: новый подход к в...
 

Синяк Ю.В. Система прогнозирования и анализа сценариев долгосрочного развития ТЭК в ИНП РАН

  • 1. Институт народнохозяйственного прогнозирования РАН Синяк Ю.В. Система моделирования и анализа прогнозов развития ТЭК России на долгосрочную перспективу Москва, ноябрь 2014 г.
  • 2. Цели создания экспертной системы прогнозирования ТЭК • Сценарии перспективного развития ТЭК России и крупных макрорегионов и разработка прогнозных топливно-энергетических балансов страны и крупных регионов • Оценка влияния новых технологий и тенденций на развитие ТЭК • Изучение последствий введения ограничений на выбросы СО2 • Спрос на инвестиции в отраслях ТЭК • Расчет равновесных цен на энергоносители и рентных платежей в ТЭК • Приоритетность освоения новых инновационных направлений в ТЭК 2
  • 3. 1. Динамическая линейная модель долгосрочного прогнозирования развития ТЭК России 3
  • 4. Особенности модели долгосрочного прогнозирования развития ТЭК (ИНП РАН) • формирования приходной и расходной частей ТЭБ и оптимизация его структуры в разрезе страны и макрорегионов, • метод решения задачи – оптимизация методом линейного програм- мирования, • критерии оптимизации – минимум затрат, максимум экономического эффекта, минимум выбросов загрязнителей и т.п. (по выбору), • временной интервал: до 2060 г. по 10-летним периодам, • территориальный фактор: три макрорегиона – Европейская часть России, Урал и западная Сибирь, Восточная Сибирь и дальний Восток, • экспорт энергоресурсов (задан экзогенно, исходя из прогнозов и анализа ситуаций на мировых рынках энергоресурсов), • природные энергоресурсы: уголь, нефть, природный газ (по крупным топливодобывающим районам), ядерная энергия, новые источники энергии, • переработанные и преобразованные энергоносители: моторные топлива и мазуты, электро- и теплоэнергия, водород, жидкие синтетические топлива из угля и природного газа и др. 4
  • 5. 5 Потребность в энергии и эффективности ее использования • В основу описания спроса положены энергетические процессы, а не отдельные продукты или валовые выпуски по отраслям. • Верификация оценок спроса по 2000, 2005 и 2010 гг. • Спрос задается в виде затрат полезной энергии (работы, тепла), что позволяет встроить в модель выбор наиболее эффективных технологий в соответствии с заданным критерием. • Потребление энергии (по полезной энергии на единицу добавленной стоимости или на душу населения): - Промышленность (высокотемпературные процессы, низкотемпературные процессы, освещение, электропривод и т.п.) - Сельское хозяйство (мобильные процессы, низкотемпературные процессы, освещение и пр.) - Транспорт (рельсовый, дорожный, воздушный, водный, трубопроводный, отопление) - Население и социальные нужды (пищеприготовление, отопление и ГВС, освещение и электробытовые приборы) - Неэнергетические нужды.
  • 6. 6 • Топливные энергоресурсы представлены по стоимостным категориям и описаны в виде аппроксимирующей функции отработки месторождений. В моделирующей системе условно принято разделение всех ресурсов топлив на три стоимостные категории: категория I (дешевое топливо): для углеводородных топлив запасы этой категории приняты равными 80% запасов А+В+С1, для угольного топлива в эту категорию отнесены 50% запасов А+В+С1, категория II (умеренно дорогое топливо): для углеводородных топлив – 20% от запасов А+В+С1 плюс 50% от величины запасов в неоткрытых месторождений (по оценкам USGS), для угольных топлив – 50% от величины запасов А+В+С1 плюс 50% от величины С2, категория III (дорогое топливо): для углеводородных топлив – 50% от величины запасов в неоткрытых месторождений (по оценкам USGS), для угольных топлив – 50% от величины запасов С2 и 10% от запасов Р1. Ресурсы топлив и оценка потенциальной добычи • Природные запасы топлив (резервы и ресурсы) оценены по отечественным и зарубежным источникам. • Для расчета потенциальной добычи использованы упрощенные методы математического моделирования освоения месторождений.
  • 7. Введем следующие обозначения: пусть A – располагаемые запасы топлива в месторожении; T – предполагаемый срок эксплуатации месторождения, 𝒚(𝒕) = 𝒇(𝑨, 𝑻) – уравнение, описывающее траекторию добычи топлива в момент t (0> t < T). Принимая уравнение добычи в виде параболы: 𝒚(𝒕) = 𝒂𝒕 𝟐 + 𝒃𝒕 + 𝒄, требуется построить такую траекторию добычи, чтобы при достижении момента завершения разработки запасов T суммарная добыча составила A. При этом предполагается, что в начальный точке расчета добыча составляет y(0) (текущий уровень добычи). Исходя из поставленных условий, можно составить систему уравнений: 𝑎 ∗ 0 + 𝑏 ∗ 0 + 𝑐 = 𝑦(0) 𝑎𝑇2 + 𝑏𝑇 + 𝑐 = 0 𝑎𝜏2 + 𝑏𝜏 + 𝑐 𝑑𝜏 = 𝐴 𝑇 0 ⇔ 𝑐 = 𝑦(0) 𝑎𝑇2 + 𝑏𝑇 + 𝑐 = 0 1 3 𝑎𝑇3 + 1 2 𝑏𝑇2 + 𝑐𝑇 = 𝐴 Решая эту систему, находим: 𝑎 = 3𝑦(0) 𝑇2 − 6𝐴 𝑇3 𝑏 = − 4𝑦(0) 𝑇 + 6𝐴 𝑇2 𝑐 = 𝑦(0)
  • 8. 8 Условная привязка стоимостных категорий к условиям добычи топлив. Стоимостные категории Углеводородные топлива Твердые топлива Категория I Традиционные нефть и газ в освоенных районах Открытая добыча в Кузбассе и в Канско- Ачинском бассейне Категория II Заполярье Западной Сибири, Восточная Сибирь, морская добыча Подземная добыча в Европейской части, Сибири и на Дальнем Востоке Категория III Арктика, тяжелые нефти Заполярье, мелкие месторождения Для оценки стоимостных показателей добычи (операционные и капитальные затраты) использованы материалы российских и зарубежных компаний, публикации в профильных журналах, отчетности Росстат и др., а также экспертные оценки.
  • 9. 9 Технологии в модели ТЭК • Технологии энергопотребления (генерирования) состоят из двух групп: традиционные и новые. • Новые технологии в ТЭК появляются после 2020 г. (водород, топливные элементы, тепловые насосы, синтетическое топливо из природного газа и угля, безуглеродные энергоносители в электроэнергетике и теплоснабжении, ядерная энергия в промышленности). • Новые источники энергии (возобновляемые) условно пока объединены в одну группу. • Предполагается, что технико-экономические показатели технологий остаются неизменными на протяжении всего срока службы. • Для повышения достоверности результатов разработаны вспомогательные модели для оценки технико-экономических показателей новых технологий : - теплоснабжение (прогноз спроса на тепловую энергию в жилом секторе – отопление и ГВС, прогноз аварийности и теплопотерь в тепловых сетях) - дорожный транспорт (прогноз спроса на моторные топлива в автотрансп- орте), - прогнозы эффективности новых технологий в ТЭК (ТНУ, ГТУ-ТЭЦ, GTL, топливные элементы, электромобили, солнечные электростанции, сверхпроводимые ЛЭП и т.п.).
  • 10. 10 Учет в модели графиков нагрузки в электро- и теплоснабжении Часы Мощность Кусочно-линейная аппроксимация графика электрической нагрузки энергосистемы. М3 М2 М1 Часы Мощность График электрической нагрузки Часы Мощность Аппроксимация графика электрической нагрузки с учетом аккумулирования М3 М2 М1 М1' OFF2
  • 11. 11 Модель в настоящее время насчитывает около 6000 урав- нений и 8000 переменных. Для оптимизации используется метод линейного программирования, обеспечивающий целенаправленный поиск наилучшего решения из всех возможных. К числу наиболее известных зарубежных моделей подобного типа относятся MARKAL, MESSAGE, NEMS, которые широко используются во многих развитых и развивающихся странах мира. В России похожий подход применен в исследованиях Института энергетических исследований РАН, которые положены в основу расчетов всех Энергетических стратегий. Все модели, имея общие черты, различаются по содержанию, структуре и описанию отельных элементов.
  • 13. Схема модельно-вычислительного комплекса База данных Модель ТЭК Выдача результатов
  • 14. 14 Уголь Нефть (природная + синтетич.) Моторное топливо Мазут Природный газ Водород Ядерная энергия Гидроэне ргия Новые источники Электроэ нергия Теплоэне ргия центр. ВСЕГО Добыча (пр-во) 262205 425253 0 0 487512 0 37295 14841 41212 0 0 1268318 в т.ч. природный ЭР 0 395844 0 0 487512 0 0 0 0 0 0 0 Импорт всего 0 0 0 0 24300 0 0 0 0 0 0 24300 Экспорт всего 56000 195000 40000 0 255150 0 0 0 0 7654 0 553804 Изменение запасов 0 0 0 0 0 0 0 0 0 0 0 0 Внутреннее потребление 192570 226000 167900 14159 225699 0 37295 14841 41212 -10492 0 909184 Электростанции -68162 0 0 -12622 -71316 0 -36019 -14841 -27612 172618 85893 27939 Котельные центр. -16977 0 0 -1117 -30344 0 0 0 0 -4556 62787 9794 Трансф. угля -5500 0 0 0 0 0 0 0 0 0 0 -5500 Переработка в: -69235 -196592 207900 14159 -20141 11737 0 0 0 0 0 -52171 на НПЗ 0 -226000 207900 12800 0 0 0 0 0 0 0 -5300 в синтетическое МТ 0 0 0 0 0 0 0 0 0 0 0 0 в синтетическую нефть -65352 29408 0 0 0 0 0 0 0 0 0 -35944 в жидкое к.-п. топливо -3883 0 0 1359 0 0 0 0 0 0 0 -2524 в водород всего 0 0 0 0 -20141 11737 0 0 0 0 0 -8404 в водород централиз. 0 0 0 0 -3534 1687 0 0 0 0 0 -1847 в водород децентрал. 0 0 0 0 -16607 10051 0 0 0 0 0 -6557 Потери и с.н. 13635 4253 0 0 30743 4 0 0 0 17738 16042 82415 Конечное потребление всего 32697 0 167900 420 104118 11733 1276 0 13600 139832 132637 604214 Промышленность 24203 0 0 0 11586 0 1276 0 0 67089 54495 158650 Сельское хозяйство 0 0 6144 0 0 0 0 0 569 2793 2158 11663 Транспорт 1608 0 161756 0 16955 11733 0 0 0 36867 937 229856 Население и КБН 4637 0 0 0 36247 0 0 0 13031 33083 75048 162045 Неэнергетические нужды 2250 0 0 420 39330 0 0 0 0 0 0 42000 Пример выдачи результатов по ЕТЭБ страны на 2040 год
  • 16. 16 Вариант 2 Вариант 3 1 Сценарий 2-2-1-А1 1 Сценарий 3-3-1-А1 2 Сценарий 2-2-1-А2 2 Сценарий 3-3-1-А2 3 Сценарий 2-2-2-А1 3 Сценарий 3-3-2-А1 4 Сценарий 2-2-2-А2 4 Сценарий 3-3-2-А2 Индексация сценариев: «Темп ВВП"-"Энергоемкость"- "Экспорт газа"- "СО2"-"Экономика безуглеродных технологий» Например, сценарий 2-2-2-А2 следует понимать следующим образом: "- Умеренные темпы роста ВВП и изменения его структуры, - Умеренные темпы снижения энергоемкости по полезной энергии, - При отсутствии добычи сланцевого газа в Западной Европе, - Без ограничений на выбросы СО2, - При росте стоимости АЭС и интенсивном сокращении затрат в другие безуглеродные технологии". Ниже на графиках применена следующая индексация вариантов и сценариев:
  • 17. Сценарные условия (1) Входные параметры Варианты 2010-2030 2031-2050 Темпы роста ВВП и изменение структуры добавленной стоимости Вариант 2 Среднегодовой темп прироста ВВП составляет 3%, умеренные изменения в структуре добавленной стоимости Среднегодовой темп прироста ВВП составляет 2%, умеренные изменения в структуре добавленной стоимости Вариант 3 Среднегодовой темп прироста ВВП составляет 5%, интенсивные изменения в структуре добавленной стоимости Среднегодовой темп прироста ВВП составляет 4%, интенсивные изменения в структуре добавленной стоимости Население Варианты 2 и 3 В обоих вариантах приняты одинаковые значения численности населения Темпы сокращения энергоемкости ВВП по полезной энергии Вариант 2 Среднегодовой темп снижения энергоемкости ВВП по полезной энергии составляет 2,5-2,6% Среднегодовой темп снижения энергоемкости ВВП по полезной энергии составляет 2-2,1% Вариант 3 Среднегодовой темп снижения энергоемкости ВВП по полезной энергии составляет 3- 3,2% Среднегодовой темп снижения энергоемкости ВВП по полезной энергии составляет 2,5-2,7% 17
  • 18. Сценарные условия (2) Входные параметры Варианты 2010-2030 2031-2050 Экспорт нефти и нефтепродуктов Варианты 2 и 3 Экспорт нефти снижается. в связи с ожидаемым истощением запасов традиционной нефти и сокращением спроса Экспорт природного газа в Западную Европу Варианты 2 и 3, сцена- рий 1 При возможном ухудшении конъюнктуры для российского газа в Западной Европе до 2030 г. (сланцевый газ + конкуренты) После 2030 г. возможно восстановление благоприятного климата для российского газа Варианты 2 и 3 , сценарий 2 Благоприятная ситуация для российского газа сохраняется в течение всего периода Изменение стоимости безуглеродных технологий (АЭС и новых источников энергии) Варианты 2 и 3, сцена- рий 1 Сохранение стоимости АЭС в течение всего периода на уровне 3000 долл./кВт. Для новых источников энергии (солнечная, ветровая, геотермальная и др.) удельные затраты медленно сокращаются с 4000 долл./кВт до 2000 долл./кВт. Варианты 2 и 3, сцена- рий 2 В этом варианте исследуются две противоположные тенденции изменения затрат. Стоимость АЭС возрастает к середине века до 6000 долл./кВт, а новых источников энергии интенсивно сокращается до 1000 долл./кВт. Ограничения на выбросы СО2 Варианты 2 и 3 Без ограничений на выбросы СО2 18
  • 19. Прогнозы производства природных энергоресурсов, млн. т н.э. 0 200 400 600 800 1000 1200 1400 2010 2020(1) 2020(2) 2020(3) 2020(4) 2030(1) 2030(2) 2030(3) 2030(4) 2040(1) 2040(2) 2040(3) 2040(4) 2050(1) 2050(2) 2050(3) 2050(4) 2060(1) 2060(2) 2060(3) 2060(4) НИСТ Гидро ЯЭ Приролныйгаз Нефть Уголь Прогнозыдобыяи (производства)первичных энергоресурсов по варианту 2, млн. т н.э.*) *) Безуглеродные энергоресрусы даны по физическому эквиваленту: 1 кВтч=0,086 кг н.э. 0 200 400 600 800 1000 1200 1400 1600 2010 2020(1) 2020(2) 2020(3) 2020(4) 2030(1) 2030(2) 2030(3) 2030(4) 2040(1) 2040(2) 2040(3) 2040(4) 2050(1) 2050(2) 2050(3) 2050(4) 2060(1) 2060(2) 2060(3) 2060(4) НИСТ Гидро ЯЭ Приролный газ Нефть Уголь *) Безуглеродные энергоресрусы даны по физическому эквиваленту: 1 кВтч=0,086 кг н.э. Прогнозы добыяи (производства)первичных энергоресурсов по варианту 3, млн. т н.э.*) 19 - ожидается, что суммарная добыча первичных энергоресурсов до 2060 г. может достигнуть максимума к 2030 г. на уровне 1200-1400 млн. т н.э. ;после 2030 г. вполне ожидаем медленный спад добычи, - добыча сырой нефти после 2030 г. начинает медленной сокращаться в связи с исчерпанием дешевых месторождений нефти, а дорогая нефть будет встречать растущую конкуренцию со сторо- ны электроэнергии (электромобили) и водорода, получаемого на первых этапах из природного газа, - добыча природного газа скорее всего может остаться стабильной после 2020 г. на уровне 600- 700 млрд. м3, - большого прорыва в добыче угле не предвидит- ся, - после 2030 г. заметный вклад в энергоснабжение страны начнут оказывать новые источники энерг- ии в связи с ожидаемыми увеличениями их эффективности и снижением затрат, - большого прогресса в области атомной энергети- ки не предвидится при ожидаемых стоимостях этой технологии, - снижение энергоемкости ВВП происходит со среднегодовым темпом 3-3,3% до 2040 г. в вари- анте 2 и 4-4,5% в варианте 3, далее темпы снижаются – до 2% в варианте 2 и 3% в варианте 3.
  • 20. 0 100 200 300 400 500 600 2000 2010 2020 2030 2040 В. Сибирь и Д. Восток Урал и З. Сибирь Европ. часть Прогноз добычи нефти в России, млн. т н.э. (сценарий 2-2-1-А1) 0 50 100 150 2000 2010 2020 2030 2040 млн.т Прогноз добычи нефти в Европейской части Прочие Коми Прикаспий 0 100 200 300 400 2000 2010 2020 2030 2040 млн.т Прогноз добычи нефти в регионе Урала и Западной Сибири 0 20 40 60 80 100 120 2000 2010 2020 2030 2040 млн.т Прогноз добычи нефти в регионе В. Сибири и Д. Востока Прочие Сахалин Прогноз добычи сырой нефти до 2040 г. (сценарий 2-2-1-А1)
  • 21. Прогноз потребления конечной энергии, млн. т н.э. 21 0 100 200 300 400 500 600 2010 2020(1) 2020(2) 2020(3) 2020(4) 2030(1) 2030(2) 2030(3) 2030(4) 2040(1) 2040(2) 2040(3) 2040(4) 2050(1) 2050(2) 2050(3) 2050(4) 2060(1) 2060(2) 2060(3) 2060(4) ТЭ ЭЭ НИСТ ЯЭ Н2 Газ Мазут МТ Уголь Прогнозыпотребления конечной энергии по сценариям варианта 2, млн. т н.э. 0 100 200 300 400 500 600 700 800 900 1000 2010 2020(1) 2020(2) 2020(3) 2020(4) 2030(1) 2030(2) 2030(3) 2030(4) 2040(1) 2040(2) 2040(3) 2040(4) 2050(1) 205(2) 2050(3) 2050(4) 2060(1) 2060(2) 2060(3) 2060(4) ТЭ ЭЭ НИСТ ЯЭ Н2 Газ Мазут МТ Уголь Прогнозы потребления конечной энергии по сценариям варианта 3, млн. т н.э. - доля электроэнергии растет с ~18% до 40-45% к 2060 г. в связи с снижением стоимости электроэнергии, - происходит заметное сокращение потребления моторного топлива за счет его замены электроэнергией и водородом, - в варианте с активным развитием новых источников энергии доля прямого использования топлива сокращается с 60% в 2010 г. до 30% и менее в 2060 г.
  • 22. Прогнозы генерирования электроэнергии, млрд. кВтч 0 500 1000 1500 2000 2500 2010 2020 2030 2040 2050 2060 2-2-1-А1 2-2-1-А2 2-2-2-А1 2-2-2-А2 Прогнозывыработки электроэнергиипо сценариям варианта 2, млрд. кВтч 0 500 1000 1500 2000 2500 3000 3500 4000 4500 2010 2020 2030 2040 2050 2060 3-3-1-А1 3-3-1-A2 3-3-2-A1 3-3-2-A2 Прогнозывыработки электроэнергиипо сценариям варианта 3, млрд. кВтч 22 - ожидается систематический рост производства электроэнергии до 2000- 4000 млрд. кВтч к 2060 г.; - более высокие темпы роста следует ожидать в сценариях со значительным удешевлеием новых источников энергии, - рост потребления электроэнергии обусловлен в значительной мере интенсивным вытеснением прямого использования топлива в промышленности, заменой двига- телей внутреннего сгорания на электроэнергию и(или) водород, широким использованием тепловых насосов в системах централизованного отопления.
  • 23. Прогнозы выбросов СО2 объектами ТЭК, млрд. т СО2 0 500 1000 1500 2000 2500 2010 2020 2030 2040 2050 2060 2-2-1-А1 2-2-1-А2 2-2-2-А1 2-2-2-А2 Прогноз выбросов СО2по сценариям варианта 2, млрд. т 0 500 1000 1500 2000 2500 2010 2020 2030 2040 2050 2060 3-3-1-А1 3-3-1-A2 3-3-2-A1 3-3-2-A2 Прогноз выбросов СО2по сценариям варианта 3, млрд. т 23 - при принятых сценарных усло- виях (темпы экономического роста, энергосбережения, стои- мости энергоресурсов и технолог- ий) с большой вероятностью можно ожидать сокращения выбросов СО2 после 2020 г., осо- бенно при развитии новых источ- ников энергии, - карбоноемкость энергобаланса снижается к 2060 г. на 20% в варианте 2 и 40% в варианте 3, - еще более радикальным идет снижение карбоноемкости ВВП – на 80-85% к 2060 г.
  • 24. Сопоставление прогнозов выбросов СО2 объектами ТЭК и поглощающей способности территории России по углероду, млрд. т СО2/год 24 Вывод: в течение всего 21 века поглощающая способность территории России будет намного превышать выбросы энергетических объектов, которые составляют не менее 70% от суммарных выбросов парниковых газов. Это означает, что Россия будет оставаться крупным поглотителем "чужого" углерода, что должно учитываться в международных переговорах по сохранению климата. 0 0,5 1 1,5 2 2,5 3 3,5 4 2000 2010 2020 2030 2040 2050 2060 Диапазон прогнозоа выбросов СО2 Поглощающая способность территории
  • 25. 25 Постановка проблемы балансирования спроса и предложения энергоресурсов в виде обобщенной задачи линейного программирования: требуется найти решение перспективного развития ТЭК, которое обеспечивает выполнение заданного критерия оценки системы (в нашем случае – это минимум затрат на развитие системы): 𝐌𝐈𝐍 𝑪𝒊𝒋 𝒓𝒕 ∗ 𝑿𝒊𝒋 𝒓𝒕 (𝟏)𝒏 𝒋=𝟏 𝒎 𝒊=𝟏 𝟔 𝒕=𝟎 𝟑 𝒓=𝟏 при выполнении ограничивающих условий: 𝐺𝑖𝑗 𝑟𝑡 ∗ 𝑋𝑖𝑗 𝑟𝑡 = 𝑄𝑗 𝑟𝑡 , 𝑗 = 1, 𝑛 𝑚 𝑖=1 (2) 𝑋𝑖𝑗 𝑟𝑡 ≤ 𝐵𝑖 𝑟𝑡 , 𝑖 = 1, 𝑚 (3) 𝑛 𝑗=1 𝑋𝑖𝑗 𝑟𝑡 ≥ 0 (4) где 𝑪𝒊𝒋 𝒓𝒕 – полные удельные приведенные затраты на добычу, транспорт и использование ресурса вида i у потребителя j в регионе r в период времени t; 𝑿𝒊𝒋 𝒓𝒕 – объем поставки энергетического ресурса вида i потребителю j в регионе r в период времени t; 𝑮𝒊𝒋 𝒓𝒕 – удельный выпуске продукции или услуг j в регионе r на единицу энергоресурса в период времени t; 𝑸𝒋 𝒓𝒕 – спрос на продукцию или услуги вида j в регионе r в период времени t; 𝑩𝒊 𝒓𝒕– технически допустимые объемы добычи или производства ресурса i, ограничения на пропускную способность транспортных магистралей в регионе r в период времени t.
  • 26. 26 Пример фрагмента модели с росписью уравнений для электроэнергетики: Пусть i – регион, j – потребитель электроэнергии в регионе, f – виды энергоносителей, k – зона графика нагрузки (базис, полупик, пик), l – тип электрогенераторов, s – виды топлива, g – потребители топлива в регионе, u – категория стоимости ресурсов топлива Уравнения модели: 1) Обеспечение спроса на полезную энергию: 𝑿𝒊𝒋𝒇 ∗ 𝜼𝒊𝒋𝒇 = 𝑸пол𝒊𝒋𝒇 2) Спрос на электроэнергию: X Y ij ij  3) Баланс электроэнергии: i i i i ir i r ir i r Y I E G I I E E        4) Генерирование электроэнергии по зонам графика нагрузки: * 1,0 ik ik i ik k G G    5) Обеспечение мощностями спроса по зонам графика нагрузки: *kils kils ik s l N G 
  • 27. 27 6) Расход топлива в мощностях графика нагрузки: 7) Спрос на топливо вида s в регионе: isg is g F F 8) Баланс топлива вида s в регионе i: is is is isP I E F   , isr is r I I , isr is r E E 9) Добыча топлива вида s в регионе i: isu is u D P * isu isuD D , где * isuD - предельная оценка добычи топлива s в стоимостной категории u. Функционал: минимизировать выражение суммарных годовых дисконтированных затрат за заданный период времени: 1 1 1 1... * * * * ...isu isu isrr isrr isrr isrr kils kils s u r s r s k l s C D C I C E C N        (добыча топлива) (межрегиональные и внешние (затраты на технологию без перетоки топлива) топливной составляющей) 0,086* *kiks kils isg k l kils N F    Продолжение.
  • 28. 28 Основная входная информация для модели включает следующие разделы: 1. Макроэкономическая информация: темпы роста ВВП и ВРП, структура производства ВВП и ВРП, структура добавленной стоимости по отраслям экономики, динамика численности населения и его расселение по территории страны и по типам населенных пунктов (оценка ограничений по потребности в энергии). 2. Ресурсная информация: природные запасы органических топлив, экономика (затраты и инвестиции) разведки и добычи топлив (по крупным добывающим районам и месторождениям с выделением дешевых, умеренных и дорогих ресурсов) (оценка ограничений по потенциальным возможностям добычи топлива). 3. Технологическая информация: технико-экономические показатели энергетических технологий, их динамика в перспективном периоде, условия выхода на рынок новых технологий (оценка технико- экономических показателей энерготехнологий). 4. Экологическая информация: удельные выбросы загрязняющих веществ (сейчас учитывается только СО2), ограничения на выбросы (оценка ограничений по выбросам загрязнителей).
  • 29. Прогнозы расходов топлива на выработку электроэнергии, млн. т н.э. 29 0 50 100 150 200 250 300 2010 2020(1) 2020(2) 2020(3) 2020(4) 2030(1) 2030(2) 2030(3) 2030(4) 2040(1) 2040(2) 2040(3) 2040(4) 2050(1) 2050(2) 2050(3) 2050(4) 2060(1) 2060(2) 2060(3) 2060(4) НИСТ Гидро ЯЭ Водород Приролныйгаз Мазут Уголь Прогнозы потребления энергоресурсов на выработку электроэнергиив варианте 2, млн. т н.э. *) Потребление безуглеродных топлив дано по физическому эквиваленту: 1 кВтч=0,086 кг н.э. 0 50 100 150 200 250 300 350 400 450 2010 2020(1) 2020(2) 2020(3) 2020(4) 2030(1) 2030(2) 2030(3) 2030(4) 2040(1) 2040(2) 2040(3) 2040(4) 2050(1) 2050(2) 2050(3) 2050(4) 2060(1) 2060(2) 2060(3) 2060(4) НИСТ Гидро ЯЭ Водород Приролный газ Мазут Уголь *) Потребление безуглеродных топлив дано по физическому эквиваленту: 1 кВтч=0,086 кг н.э. Прогнозы потребления энергоресурсов на выработку электроэнергии в варианте 3, млн. т н.э. - потребление энергоресурсов на выработку электроэнергии при низких темпах развития (вариант 2) может сократиться с 275 млн. т н.э. в 2010 г. до ~200 млн. т н.э. в 2060 г., при высоких темпах (вариант 3) - будет следует ожидать рост до 300-350 млн. т н.э., - новые источники энергии будут активно вытеснять природный газ из топливного баланса электростанций, особенно в сценариях с повышенным экспортом газа, - доля безуглеродных технологий будет систематически расти до 35-45% к 2060 г. в варианте 2 и 60-70% в варианте 3, - масштабного развития ядерной энергетики при принятых сценарных условиях не предвидится.
  • 30. 30
  • 31. Осьдобычи Ось времени 0 T y(0) A y(t) = f (A, T) Примерная динамика отработки отдельного месторождения Расчетная модель для описания динамики потенциальной добычи в крупном добывающем районе Аппроксимация динамики отработки месторождения
  • 32. OECD Europe Gas Production and Conceptual Forecast