SlideShare a Scribd company logo
1 of 21
Download to read offline
Studocu is not sponsored or endorsed by any college or university
Lecture 2 - not
Materials 2 (National University of Ireland Galway)
Studocu is not sponsored or endorsed by any college or university
Lecture 2 - not
Materials 2 (National University of Ireland Galway)
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Getting started: CFD notation
PDE of p-th order f

u, x, t, ∂u
∂x1
, . . . , ∂u
∂xn
, ∂u
∂t , ∂2
u
∂x1∂x2
, . . . , ∂p
u
∂tp

= 0
scalar unknowns u = u(x, t), x ∈ Rn
, t ∈ R, n = 1, 2, 3
vector unknowns v = v(x, t), v ∈ Rm
, m = 1, 2, . . .
Nabla operator ∇ = i ∂
∂x + j ∂
∂y + k ∂
∂z x = (x, y, z), v = (vx, vy, vz)
∇u = i∂u
∂x + j∂u
∂y + k∂u
∂z =
h
∂u
∂x , ∂u
∂y , ∂u
∂z
iT
gradient
∇ · v = ∂vx
∂x +
∂vy
∂y + ∂vz
∂z divergence
∇ × v = det




i j k
∂
∂x
∂
∂y
∂
∂z
vx vy vz



 =




∂vz
∂y −
∂vy
∂z
∂vx
∂z − ∂vz
∂x
∂vy
∂x − ∂vx
∂y



 curl
∆u = ∇ · (∇u) = ∇2
u = ∂2
u
∂x2 + ∂2
u
∂y2 + ∂2
u
∂z2 Laplacian
x
y
z
k
i j
v
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Tensorial quantities in fluid dynamics
Velocity gradient
∇v = [∇vx, ∇vy, ∇vz] =




∂vx
∂x
∂vy
∂x
∂vz
∂x
∂vx
∂y
∂vy
∂y
∂vz
∂y
∂vx
∂z
∂vy
∂z
∂vz
∂z




0000000000000000
0000000000000000
1111111111111111
1111111111111111
0000000000000000
0000000000000000
1111111111111111
1111111111111111
v
Remark. The trace (sum of diagonal elements) of ∇v equals ∇ · v.
Deformation rate tensor (symmetric part of ∇v)
D(v) =
1
2
(∇v + ∇vT
) =





∂vx
∂x
1
2

∂vy
∂x + ∂vx
∂y

1
2
∂vz
∂x + ∂vx
∂z

1
2

∂vx
∂y +
∂vy
∂x

∂vy
∂y
1
2

∂vz
∂y +
∂vy
∂z

1
2
∂vx
∂z + ∂vz
∂x
 1
2

∂vy
∂z + ∂vz
∂y

∂vz
∂z





Spin tensor S(v) = ∇v − D(v) (skew-symmetric part of ∇v)
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Vector multiplication rules
Scalar product of two vectors
a, b ∈ R3
, a · b = aT
b = [a1 a2 a3]




b1
b2
b3



 = a1b1 + a2b2 + a3b3 ∈ R
Example. v · ∇u = vx
∂u
∂x
+ vy
∂u
∂y
+ vz
∂u
∂z
convective derivative
Dyadic product of two vectors
a, b ∈ R3
, a ⊗ b = abT
=




a1
a2
a3



 [b1 b2 b3] =




a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3



 ∈ R3×3
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Elementary tensor calculus
1. αT = {αtij}, T = {tij} ∈ R3×3
, α ∈ R
2. T 1
+ T 2
= {t1
ij + t2
ij}, T 1
, T 2
∈ R3×3
, a ∈ R3
3. a · T = [a1, a2, a3]



t11 t12 t13
t21 t22 t23
t31 t32 t33


 =
3
P
i=1
ai [ti1, ti2, ti3]
| {z }
i-th row
4. T · a =



t11 t12 t13
t21 t22 t23
t31 t32 t33






a1
a2
a3


 =
3
P
j=1



t1j
t2j
t3j


 aj (j-th column)
5. T 1
· T 2
=



t1
11 t1
12 t1
13
t1
21 t1
22 t1
23
t1
31 t1
32 t1
33






t2
11 t2
12 t2
13
t2
21 t2
22 t2
23
t2
31 t2
32 t2
33


 =
 3
P
k=1
t1
ikt2
kj

6. T 1
: T 2
= tr (T 1
· (T 2
)T
) =
3
P
i=1
3
P
k=1
t1
ikt2
ik
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Divergence theorem of Gauß
Let Ω ∈ R3
and n be the outward unit normal to the boundary Γ = Ω̄Ω.
Then
Z
Ω
∇ · f dx =
Z
Γ
f · n ds for any differentiable function f(x)
Example. A sphere: Ω = {x ∈ R3
: ||x||  1}, Γ = {x ∈ R3
: ||x|| = 1}
where ||x|| =
√
x · x =
p
x2 + y2 + z2 is the Euclidean norm of x
Consider f(x) = x so that ∇ · f ≡ 3 in Ω and n = x
||x|| on Γ
volume integral:
Z
Ω
∇ · f dx = 3
Z
Ω
dx = 3|Ω| = 3

4
3
π13

= 4π
surface integral:
Z
Γ
f · n ds =
Z
Γ
x · x
||x||
ds =
Z
Γ
||x|| ds =
Z
Γ
ds = 4π
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Governing equations of fluid dynamics
Physical principles
1. Mass is conserved
2. Newton’s second law
3. Energy is conserved
Mathematical equations
• continuity equation
• momentum equations
• energy equation
It is important to understand the meaning and significance of each equation
in order to develop a good numerical method and properly interpret the results
Description of fluid motion
Eulerian monitor the flow characteristics
in a fixed control volume
Lagrangian track individual fluid particles as
they move through the flow field x
y
z
k
i j
v
(x0; y0; z0)
(x1; y1; z1)
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Description of fluid motion
Trajectory of a fluid particle
x
y
z
k
i j
v
(x0; y0; z0)
(x1; y1; z1)
x = x(x0, t)
x = x(x0, y0, z0, t)
y = y(x0, y0, z0, t)
z = z(x0, y0, z0, t)
dx
dt
= vx(x, y, z, t), x|t0 = x0
dy
dt
= vy(x, y, z, t), y|t0 = y0
dz
dt
= vz(x, y, z, t), z|t0 = z0
Definition. A streamline is a curve which is tangent to the velocity vector
v = (vx, vy, vz) at every point. It is given by the relation
dx
vx
=
dy
vy
=
dz
vz
x
y
v
y(x)
dy
dx =
vy
vx
Streamlines can be visualized by injecting tracer particles into the flow field.
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Flow models and reference frames
Eulerian
V
S
fixed CV of a finite size
Lagrangian
V
S
moving CV of a finite size
integral
dS
dV
fixed infinitesimal CV
dS
dV
moving infinitesimal CV
differential
Good news: all flow models lead to the same equations
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Eulerian vs. Lagrangian viewpoint
Definition. Substantial time derivative d
dt is the rate of change for a moving
fluid particle. Local time derivative ∂
∂t is the rate of change at a fixed point.
Let u = u(x, t), where x = x(x0, t). The chain rule yields
du
dt
=
∂u
∂t
+
∂u
∂x
dx
dt
+
∂u
∂y
dy
dt
+
∂u
∂z
dz
dt
=
∂u
∂t
+ v · ∇u
substantial derivative = local derivative + convective derivative
Reynolds transport theorem
d
dt
Z
Vt
u(x, t) dV =
Z
V ≡Vt
∂u(x, t)
∂t
dV +
Z
S≡St
u(x, t)v · n dS
rate of change in
a moving volume
=
rate of change in
a fixed volume
+
convective transfer
through the surface
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Derivation of the governing equations
Modeling philosophy
1. Choose a physical principle
• conservation of mass
• conservation of momentum
• conservation of energy
2. Apply it to a suitable flow model
• Eulerian/Lagrangian approach
• for a finite/infinitesimal CV
3. Extract integral relations or PDEs
which embody the physical principle
Generic conservation law
∂
∂t
Z
V
u dV +
Z
S
f · n dS =
Z
V
q dV
f
n
V
S
dS
f = vu − d∇u
flux function
Divergence theorem yields
Z
V
∂u
∂t
dV +
Z
V
∇ · f dV =
Z
V
q dV
Partial differential equation
∂u
∂t
+ ∇ · f = q in V
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Derivation of the continuity equation
Physical principle: conservation of mass
dm
dt
=
d
dt
Z
Vt
ρ dV =
Z
V ≡Vt
∂ρ
∂t
dV +
Z
S≡St
ρv · n dS = 0
accumulation of mass inside CV = net influx through the surface
Divergence theorem yields Continuity equation
Z
V

∂ρ
∂t
+ ∇ · (ρv)

dV = 0 ⇒
∂ρ
∂t
+ ∇ · (ρv) = 0
Lagrangian representation
∇ · (ρv) = v · ∇ρ + ρ∇ · v ⇒
dρ
dt
+ ρ∇ · v = 0
Incompressible flows: dρ
dt = ∇ · v = 0 (constant density)
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Conservation of momentum
Physical principle: f = ma (Newton’s second law)
dV n
g
h
dS
total force f = ρg dV + h dS, where h = σ · n
body forces g gravitational, electromagnetic,. . .
surface forces h pressure + viscous stress
Stress tensor σ = −pI + τ momentum flux
For a newtonian fluid viscous stress is proportional to velocity gradients:
τ = (λ∇ · v)I + 2µD(v), where D(v) =
1
2
(∇v + ∇vT
), λ ≈ −
2
3
µ
Normal stress: stretching
τxx = λ∇ · v + 2µ∂vx
∂x
τyy = λ∇ · v + 2µ
∂vy
∂y
τzz = λ∇ · v + 2µ∂vz
∂z
xx
x
y
Shear stress: deformation
τxy = τyx = µ
“
∂vy
∂x
+ ∂vx
∂y
”
τxz = τzx = µ
`∂vx
∂z
+ ∂vz
∂x
´
τyz = τzy = µ
“
∂vz
∂y
+
∂vy
∂z
”
x
y
yx
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Derivation of the momentum equations
Newton’s law for a moving volume
d
dt
Z
Vt
ρv dV =
Z
V ≡Vt
∂(ρv)
∂t
dV +
Z
S≡St
(ρv ⊗ v) · n dS
=
Z
V ≡Vt
ρg dV +
Z
S≡St
σ · n dS
Transformation of surface integrals
Z
V

∂(ρv)
∂t
+ ∇ · (ρv ⊗ v)

dV =
Z
V
[∇ · σ + ρg] dV, σ = −pI + τ
Momentum equations
∂(ρv)
∂t
+ ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρg
∂(ρv)
∂t
+ ∇ · (ρv ⊗ v) = ρ

∂v
∂t
+ v · ∇v

| {z }
substantial derivative
+ v

∂ρ
∂t
+ ∇ · (ρv)

| {z }
continuity equation
= ρ
dv
dt
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Conservation of energy
Physical principle: δe = s + w (first law of thermodynamics)
dV n
g
h
dS δe accumulation of internal energy
s heat transmitted to the fluid particle
w rate of work done by external forces
Heating: s = ρq dV − fq dS
q internal heat sources
fq diffusive heat transfer
T absolute temperature
κ thermal conductivity
Fourier’s law of heat conduction
fq = −κ∇T
the heat flux is proportional to the
local temperature gradient
Work done per unit time = total force × velocity
w = f · v = ρg · v dV + v · (σ · n) dS, σ = −pI + τ
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Derivation of the energy equation
Total energy per unit mass: E = e + |v|2
2
e specific internal energy due to random molecular motion
|v|2
2 specific kinetic energy due to translational motion
Integral conservation law for a moving volume
d
dt
Z
Vt
ρE dV =
Z
V ≡Vt
∂(ρE)
∂t
dV +
Z
S≡St
ρE v · n dS accumulation
=
Z
V ≡Vt
ρq dV +
Z
S≡St
κ∇T · n dS heating
+
Z
V ≡Vt
ρg · v dV +
Z
S≡St
v · (σ · n) dS work done
Transformation of surface integrals
Z
V

∂(ρE)
∂t
+ ∇ · (ρEv)

dV =
Z
V
[∇ · (κ∇T) + ρq + ∇ · (σ · v) + ρg · v] dV,
where ∇ · (σ · v) = −∇ · (pv) + ∇ · (τ · v) = −∇ · (pv) + v · (∇ · τ) + ∇v : τ
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Different forms of the energy equation
Total energy equation
∂(ρE)
∂t
+ ∇ · (ρEv) = ∇ · (κ∇T) + ρq − ∇ · (pv) + v · (∇ · τ) + ∇v : τ + ρg · v
∂(ρE)
∂t
+ ∇ · (ρEv) = ρ

∂E
∂t
+ v · ∇E

| {z }
substantial derivative
+ E

∂ρ
∂t
+ ∇ · (ρv)

| {z }
continuity equation
= ρ
dE
dt
Momentum equations ρ
dv
dt
= −∇p + ∇ · τ + ρg (Lagrangian form)
ρ
dE
dt
= ρ
de
dt
+ v · ρ
dv
dt
=
∂(ρe)
∂t
+ ∇ · (ρev) + v · [−∇p + ∇ · τ + ρg]
Internal energy equation
∂(ρe)
∂t
+ ∇ · (ρev) = ∇ · (κ∇T) + ρq − p∇ · v + ∇v : τ
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Summary of the governing equations
1. Continuity equation / conservation of mass
∂ρ
∂t
+ ∇ · (ρv) = 0
2. Momentum equations / Newton’s second law
∂(ρv)
∂t
+ ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρg
3. Energy equation / first law of thermodynamics
∂(ρE)
∂t
+ ∇ · (ρEv) = ∇ · (κ∇T) + ρq − ∇ · (pv) + v · (∇ · τ) + ∇v : τ + ρg · v
E = e +
|v|2
2
,
∂(ρe)
∂t
+ ∇ · (ρev) = ∇ · (κ∇T) + ρq − p∇ · v + ∇v : τ
This PDE system is referred to as the compressible Navier-Stokes equations
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Conservation form of the governing equations
Generic conservation law for a scalar quantity
∂u
∂t
+ ∇ · f = q, where f = f(u, x, t) is the flux function
Conservative variables, fluxes and sources
U =




ρ
ρv
ρE



 , F =




ρv
ρv ⊗ v + pI − τ
(ρE + p)v − κ∇T − τ · v



 , Q =




0
ρg
ρ(q + g · v)




Navier-Stokes equations in divergence form
∂U
∂t
+ ∇ · F = Q U ∈ R5
, F ∈ R3×5
, Q ∈ R5
• representing all equations in the same generic form simplifies the programming
• it suffices to develop discretization techniques for the generic conservation law
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Constitutive relations
Variables: ρ, v, e, p, τ, T Equations: continuity, momentum, energy
The number of unknowns exceeds the number of equations.
1. Newtonian stress tensor
τ = (λ∇ · v)I + 2µD(v), D(v) =
1
2
(∇v + ∇vT
), λ ≈ −
2
3
µ
2. Thermodynamic relations, e.g.
p = ρRT ideal gas law
e = cvT caloric equation of state
R specific gas constant
cv specific heat at constant volume
Now the system is closed: it contains five PDEs for five independent variables
ρ, v, e and algebraic formulae for the computation of p, τ and T. It remains to
specify appropriate initial and boundary conditions.
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206
Initial and boundary conditions
Initial conditions ρ|t=0 = ρ0(x), v|t=0 = v0(x), e|t=0 = e0(x) in Ω
Boundary conditions
Inlet Γin = {x ∈ Γ : v · n  0}
ρ = ρin, v = vin, e = ein
prescribed density, energy and velocity
Let Γ = Γin ∪ Γw ∪ Γout
out
w
w
in
Solid wall Γw = {x ∈ Γ : v · n = 0}
v = 0 no-slip condition
T = Tw given temperature or
∂T
∂n

= −
fq
κ prescribed heat flux
Outlet Γout = {x ∈ Γ : v · n  0}
v · n = vn or −p + n · τ · n = 0
v · s = vs or s · τ · n = 0
prescribed velocity vanishing stress
The problem is well-posed if the solution exists, is unique and depends continuously
on IC and BC. Insufficient or incorrect IC/BC may lead to wrong results (if any).
Downloaded by Profesional Formulation (profesionalformulation@gmail.com)
lOMoARcPSD|32669206

More Related Content

Similar to lecture-2-not.pdf

Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Qualitative measurement of Klauder coherent states using Bohmian machanics, C...
Qualitative measurement of Klauder coherent states using Bohmian machanics, C...Qualitative measurement of Klauder coherent states using Bohmian machanics, C...
Qualitative measurement of Klauder coherent states using Bohmian machanics, C...Sanjib Dey
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsPantelis Sopasakis
 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptxbsabjdsv
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solutionMOHANRAJ PHYSICS
 
Ignations Antoniadis "Inflation from supersymmetry breaking"
Ignations Antoniadis "Inflation from supersymmetry breaking"Ignations Antoniadis "Inflation from supersymmetry breaking"
Ignations Antoniadis "Inflation from supersymmetry breaking"SEENET-MTP
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
1 hofstad
1 hofstad1 hofstad
1 hofstadYandex
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
LES from first principles
LES from first principlesLES from first principles
LES from first principlesMichael Munroe
 
25 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-26325 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-263Alexander Decker
 
The lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditionsThe lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditionsTim Reis
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus OlooPundit
 

Similar to lecture-2-not.pdf (20)

Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Qualitative measurement of Klauder coherent states using Bohmian machanics, C...
Qualitative measurement of Klauder coherent states using Bohmian machanics, C...Qualitative measurement of Klauder coherent states using Bohmian machanics, C...
Qualitative measurement of Klauder coherent states using Bohmian machanics, C...
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
ep ppt of it .pptx
ep ppt of it .pptxep ppt of it .pptx
ep ppt of it .pptx
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Ignations Antoniadis "Inflation from supersymmetry breaking"
Ignations Antoniadis "Inflation from supersymmetry breaking"Ignations Antoniadis "Inflation from supersymmetry breaking"
Ignations Antoniadis "Inflation from supersymmetry breaking"
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
wave_equation
wave_equationwave_equation
wave_equation
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
1 hofstad
1 hofstad1 hofstad
1 hofstad
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
LES from first principles
LES from first principlesLES from first principles
LES from first principles
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
25 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-26325 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-263
 
Lecture 9 f17
Lecture 9 f17Lecture 9 f17
Lecture 9 f17
 
The lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditionsThe lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditions
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 

Recently uploaded

Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 

lecture-2-not.pdf

  • 1. Studocu is not sponsored or endorsed by any college or university Lecture 2 - not Materials 2 (National University of Ireland Galway) Studocu is not sponsored or endorsed by any college or university Lecture 2 - not Materials 2 (National University of Ireland Galway) Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 2. Getting started: CFD notation PDE of p-th order f u, x, t, ∂u ∂x1 , . . . , ∂u ∂xn , ∂u ∂t , ∂2 u ∂x1∂x2 , . . . , ∂p u ∂tp = 0 scalar unknowns u = u(x, t), x ∈ Rn , t ∈ R, n = 1, 2, 3 vector unknowns v = v(x, t), v ∈ Rm , m = 1, 2, . . . Nabla operator ∇ = i ∂ ∂x + j ∂ ∂y + k ∂ ∂z x = (x, y, z), v = (vx, vy, vz) ∇u = i∂u ∂x + j∂u ∂y + k∂u ∂z = h ∂u ∂x , ∂u ∂y , ∂u ∂z iT gradient ∇ · v = ∂vx ∂x + ∂vy ∂y + ∂vz ∂z divergence ∇ × v = det     i j k ∂ ∂x ∂ ∂y ∂ ∂z vx vy vz     =     ∂vz ∂y − ∂vy ∂z ∂vx ∂z − ∂vz ∂x ∂vy ∂x − ∂vx ∂y     curl ∆u = ∇ · (∇u) = ∇2 u = ∂2 u ∂x2 + ∂2 u ∂y2 + ∂2 u ∂z2 Laplacian x y z k i j v Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 3. Tensorial quantities in fluid dynamics Velocity gradient ∇v = [∇vx, ∇vy, ∇vz] =     ∂vx ∂x ∂vy ∂x ∂vz ∂x ∂vx ∂y ∂vy ∂y ∂vz ∂y ∂vx ∂z ∂vy ∂z ∂vz ∂z     0000000000000000 0000000000000000 1111111111111111 1111111111111111 0000000000000000 0000000000000000 1111111111111111 1111111111111111 v Remark. The trace (sum of diagonal elements) of ∇v equals ∇ · v. Deformation rate tensor (symmetric part of ∇v) D(v) = 1 2 (∇v + ∇vT ) =      ∂vx ∂x 1 2 ∂vy ∂x + ∂vx ∂y 1 2 ∂vz ∂x + ∂vx ∂z 1 2 ∂vx ∂y + ∂vy ∂x ∂vy ∂y 1 2 ∂vz ∂y + ∂vy ∂z 1 2 ∂vx ∂z + ∂vz ∂x 1 2 ∂vy ∂z + ∂vz ∂y ∂vz ∂z      Spin tensor S(v) = ∇v − D(v) (skew-symmetric part of ∇v) Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 4. Vector multiplication rules Scalar product of two vectors a, b ∈ R3 , a · b = aT b = [a1 a2 a3]     b1 b2 b3     = a1b1 + a2b2 + a3b3 ∈ R Example. v · ∇u = vx ∂u ∂x + vy ∂u ∂y + vz ∂u ∂z convective derivative Dyadic product of two vectors a, b ∈ R3 , a ⊗ b = abT =     a1 a2 a3     [b1 b2 b3] =     a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 a3b1 a3b2 a3b3     ∈ R3×3 Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 5. Elementary tensor calculus 1. αT = {αtij}, T = {tij} ∈ R3×3 , α ∈ R 2. T 1 + T 2 = {t1 ij + t2 ij}, T 1 , T 2 ∈ R3×3 , a ∈ R3 3. a · T = [a1, a2, a3]    t11 t12 t13 t21 t22 t23 t31 t32 t33    = 3 P i=1 ai [ti1, ti2, ti3] | {z } i-th row 4. T · a =    t11 t12 t13 t21 t22 t23 t31 t32 t33       a1 a2 a3    = 3 P j=1    t1j t2j t3j    aj (j-th column) 5. T 1 · T 2 =    t1 11 t1 12 t1 13 t1 21 t1 22 t1 23 t1 31 t1 32 t1 33       t2 11 t2 12 t2 13 t2 21 t2 22 t2 23 t2 31 t2 32 t2 33    = 3 P k=1 t1 ikt2 kj 6. T 1 : T 2 = tr (T 1 · (T 2 )T ) = 3 P i=1 3 P k=1 t1 ikt2 ik Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 6. Divergence theorem of Gauß Let Ω ∈ R3 and n be the outward unit normal to the boundary Γ = Ω̄Ω. Then Z Ω ∇ · f dx = Z Γ f · n ds for any differentiable function f(x) Example. A sphere: Ω = {x ∈ R3 : ||x|| 1}, Γ = {x ∈ R3 : ||x|| = 1} where ||x|| = √ x · x = p x2 + y2 + z2 is the Euclidean norm of x Consider f(x) = x so that ∇ · f ≡ 3 in Ω and n = x ||x|| on Γ volume integral: Z Ω ∇ · f dx = 3 Z Ω dx = 3|Ω| = 3 4 3 π13 = 4π surface integral: Z Γ f · n ds = Z Γ x · x ||x|| ds = Z Γ ||x|| ds = Z Γ ds = 4π Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 7. Governing equations of fluid dynamics Physical principles 1. Mass is conserved 2. Newton’s second law 3. Energy is conserved Mathematical equations • continuity equation • momentum equations • energy equation It is important to understand the meaning and significance of each equation in order to develop a good numerical method and properly interpret the results Description of fluid motion Eulerian monitor the flow characteristics in a fixed control volume Lagrangian track individual fluid particles as they move through the flow field x y z k i j v (x0; y0; z0) (x1; y1; z1) Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 8. Description of fluid motion Trajectory of a fluid particle x y z k i j v (x0; y0; z0) (x1; y1; z1) x = x(x0, t) x = x(x0, y0, z0, t) y = y(x0, y0, z0, t) z = z(x0, y0, z0, t) dx dt = vx(x, y, z, t), x|t0 = x0 dy dt = vy(x, y, z, t), y|t0 = y0 dz dt = vz(x, y, z, t), z|t0 = z0 Definition. A streamline is a curve which is tangent to the velocity vector v = (vx, vy, vz) at every point. It is given by the relation dx vx = dy vy = dz vz x y v y(x) dy dx = vy vx Streamlines can be visualized by injecting tracer particles into the flow field. Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 9. Flow models and reference frames Eulerian V S fixed CV of a finite size Lagrangian V S moving CV of a finite size integral dS dV fixed infinitesimal CV dS dV moving infinitesimal CV differential Good news: all flow models lead to the same equations Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 10. Eulerian vs. Lagrangian viewpoint Definition. Substantial time derivative d dt is the rate of change for a moving fluid particle. Local time derivative ∂ ∂t is the rate of change at a fixed point. Let u = u(x, t), where x = x(x0, t). The chain rule yields du dt = ∂u ∂t + ∂u ∂x dx dt + ∂u ∂y dy dt + ∂u ∂z dz dt = ∂u ∂t + v · ∇u substantial derivative = local derivative + convective derivative Reynolds transport theorem d dt Z Vt u(x, t) dV = Z V ≡Vt ∂u(x, t) ∂t dV + Z S≡St u(x, t)v · n dS rate of change in a moving volume = rate of change in a fixed volume + convective transfer through the surface Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 11. Derivation of the governing equations Modeling philosophy 1. Choose a physical principle • conservation of mass • conservation of momentum • conservation of energy 2. Apply it to a suitable flow model • Eulerian/Lagrangian approach • for a finite/infinitesimal CV 3. Extract integral relations or PDEs which embody the physical principle Generic conservation law ∂ ∂t Z V u dV + Z S f · n dS = Z V q dV f n V S dS f = vu − d∇u flux function Divergence theorem yields Z V ∂u ∂t dV + Z V ∇ · f dV = Z V q dV Partial differential equation ∂u ∂t + ∇ · f = q in V Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 12. Derivation of the continuity equation Physical principle: conservation of mass dm dt = d dt Z Vt ρ dV = Z V ≡Vt ∂ρ ∂t dV + Z S≡St ρv · n dS = 0 accumulation of mass inside CV = net influx through the surface Divergence theorem yields Continuity equation Z V ∂ρ ∂t + ∇ · (ρv) dV = 0 ⇒ ∂ρ ∂t + ∇ · (ρv) = 0 Lagrangian representation ∇ · (ρv) = v · ∇ρ + ρ∇ · v ⇒ dρ dt + ρ∇ · v = 0 Incompressible flows: dρ dt = ∇ · v = 0 (constant density) Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 13. Conservation of momentum Physical principle: f = ma (Newton’s second law) dV n g h dS total force f = ρg dV + h dS, where h = σ · n body forces g gravitational, electromagnetic,. . . surface forces h pressure + viscous stress Stress tensor σ = −pI + τ momentum flux For a newtonian fluid viscous stress is proportional to velocity gradients: τ = (λ∇ · v)I + 2µD(v), where D(v) = 1 2 (∇v + ∇vT ), λ ≈ − 2 3 µ Normal stress: stretching τxx = λ∇ · v + 2µ∂vx ∂x τyy = λ∇ · v + 2µ ∂vy ∂y τzz = λ∇ · v + 2µ∂vz ∂z xx x y Shear stress: deformation τxy = τyx = µ “ ∂vy ∂x + ∂vx ∂y ” τxz = τzx = µ `∂vx ∂z + ∂vz ∂x ´ τyz = τzy = µ “ ∂vz ∂y + ∂vy ∂z ” x y yx Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 14. Derivation of the momentum equations Newton’s law for a moving volume d dt Z Vt ρv dV = Z V ≡Vt ∂(ρv) ∂t dV + Z S≡St (ρv ⊗ v) · n dS = Z V ≡Vt ρg dV + Z S≡St σ · n dS Transformation of surface integrals Z V ∂(ρv) ∂t + ∇ · (ρv ⊗ v) dV = Z V [∇ · σ + ρg] dV, σ = −pI + τ Momentum equations ∂(ρv) ∂t + ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρg ∂(ρv) ∂t + ∇ · (ρv ⊗ v) = ρ ∂v ∂t + v · ∇v | {z } substantial derivative + v ∂ρ ∂t + ∇ · (ρv) | {z } continuity equation = ρ dv dt Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 15. Conservation of energy Physical principle: δe = s + w (first law of thermodynamics) dV n g h dS δe accumulation of internal energy s heat transmitted to the fluid particle w rate of work done by external forces Heating: s = ρq dV − fq dS q internal heat sources fq diffusive heat transfer T absolute temperature κ thermal conductivity Fourier’s law of heat conduction fq = −κ∇T the heat flux is proportional to the local temperature gradient Work done per unit time = total force × velocity w = f · v = ρg · v dV + v · (σ · n) dS, σ = −pI + τ Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 16. Derivation of the energy equation Total energy per unit mass: E = e + |v|2 2 e specific internal energy due to random molecular motion |v|2 2 specific kinetic energy due to translational motion Integral conservation law for a moving volume d dt Z Vt ρE dV = Z V ≡Vt ∂(ρE) ∂t dV + Z S≡St ρE v · n dS accumulation = Z V ≡Vt ρq dV + Z S≡St κ∇T · n dS heating + Z V ≡Vt ρg · v dV + Z S≡St v · (σ · n) dS work done Transformation of surface integrals Z V ∂(ρE) ∂t + ∇ · (ρEv) dV = Z V [∇ · (κ∇T) + ρq + ∇ · (σ · v) + ρg · v] dV, where ∇ · (σ · v) = −∇ · (pv) + ∇ · (τ · v) = −∇ · (pv) + v · (∇ · τ) + ∇v : τ Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 17. Different forms of the energy equation Total energy equation ∂(ρE) ∂t + ∇ · (ρEv) = ∇ · (κ∇T) + ρq − ∇ · (pv) + v · (∇ · τ) + ∇v : τ + ρg · v ∂(ρE) ∂t + ∇ · (ρEv) = ρ ∂E ∂t + v · ∇E | {z } substantial derivative + E ∂ρ ∂t + ∇ · (ρv) | {z } continuity equation = ρ dE dt Momentum equations ρ dv dt = −∇p + ∇ · τ + ρg (Lagrangian form) ρ dE dt = ρ de dt + v · ρ dv dt = ∂(ρe) ∂t + ∇ · (ρev) + v · [−∇p + ∇ · τ + ρg] Internal energy equation ∂(ρe) ∂t + ∇ · (ρev) = ∇ · (κ∇T) + ρq − p∇ · v + ∇v : τ Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 18. Summary of the governing equations 1. Continuity equation / conservation of mass ∂ρ ∂t + ∇ · (ρv) = 0 2. Momentum equations / Newton’s second law ∂(ρv) ∂t + ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρg 3. Energy equation / first law of thermodynamics ∂(ρE) ∂t + ∇ · (ρEv) = ∇ · (κ∇T) + ρq − ∇ · (pv) + v · (∇ · τ) + ∇v : τ + ρg · v E = e + |v|2 2 , ∂(ρe) ∂t + ∇ · (ρev) = ∇ · (κ∇T) + ρq − p∇ · v + ∇v : τ This PDE system is referred to as the compressible Navier-Stokes equations Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 19. Conservation form of the governing equations Generic conservation law for a scalar quantity ∂u ∂t + ∇ · f = q, where f = f(u, x, t) is the flux function Conservative variables, fluxes and sources U =     ρ ρv ρE     , F =     ρv ρv ⊗ v + pI − τ (ρE + p)v − κ∇T − τ · v     , Q =     0 ρg ρ(q + g · v)     Navier-Stokes equations in divergence form ∂U ∂t + ∇ · F = Q U ∈ R5 , F ∈ R3×5 , Q ∈ R5 • representing all equations in the same generic form simplifies the programming • it suffices to develop discretization techniques for the generic conservation law Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 20. Constitutive relations Variables: ρ, v, e, p, τ, T Equations: continuity, momentum, energy The number of unknowns exceeds the number of equations. 1. Newtonian stress tensor τ = (λ∇ · v)I + 2µD(v), D(v) = 1 2 (∇v + ∇vT ), λ ≈ − 2 3 µ 2. Thermodynamic relations, e.g. p = ρRT ideal gas law e = cvT caloric equation of state R specific gas constant cv specific heat at constant volume Now the system is closed: it contains five PDEs for five independent variables ρ, v, e and algebraic formulae for the computation of p, τ and T. It remains to specify appropriate initial and boundary conditions. Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206
  • 21. Initial and boundary conditions Initial conditions ρ|t=0 = ρ0(x), v|t=0 = v0(x), e|t=0 = e0(x) in Ω Boundary conditions Inlet Γin = {x ∈ Γ : v · n 0} ρ = ρin, v = vin, e = ein prescribed density, energy and velocity Let Γ = Γin ∪ Γw ∪ Γout out w w in Solid wall Γw = {x ∈ Γ : v · n = 0} v = 0 no-slip condition T = Tw given temperature or ∂T ∂n = − fq κ prescribed heat flux Outlet Γout = {x ∈ Γ : v · n 0} v · n = vn or −p + n · τ · n = 0 v · s = vs or s · τ · n = 0 prescribed velocity vanishing stress The problem is well-posed if the solution exists, is unique and depends continuously on IC and BC. Insufficient or incorrect IC/BC may lead to wrong results (if any). Downloaded by Profesional Formulation (profesionalformulation@gmail.com) lOMoARcPSD|32669206