SlideShare a Scribd company logo
1 of 60
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Learning outcomes
• Understand that physical quantities have
numerical magnitude and a unit
• Recall base quantities and use prefixes
• Show an understanding of orders of magnitude
• Understand scalar and vector quantities
• Determine resultant vector by graphical method
• Measure length with measuring instruments
• Measure short interval of time using stopwatches
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Quantitative Observations
What can be measured with the
instruments on an aeroplane?
Qualitative Observations
How do you measure
artistic beauty?
1.1 Physical Quantities
Quantitative versus qualitative
• Most observation in physics are quantitative
• Descriptive observations (or qualitative) are usually imprecise
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.1 Physical Quantities
• A physical quantity is one that can be measured
and consists of a magnitude and unit.
SI units
are
common
today
Measuring length
70
km/h

4.5 m

Vehicles
Not
Exceeding
1500 kg In
Unladen
Weight
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Are classified into two types:
• Base quantities
• Derived quantities
1.1 Physical Quantities
Base quantity
is like the brick – the
basic building block of
a house
Derived quantity is like
the house that was
build up from a collection
of bricks (basic quantity)
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.2 SI Units
• SI Units – International System of Units
Base Quantities Name of Unit Symbol of Unit
length metre m
mass kilogram kg
time second s
electric current ampere A
temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
This Platinum Iridium
cylinder is the standard
kilogram.
1.2 SI Units
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.2 SI Units
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.2 SI Units
• Example of derived quantity: area
Defining equation: area = length × width
In terms of units: Units of area = m × m = m2
Defining equation: volume = length × width × height
In terms of units: Units of volume = m × m × m = m2
Defining equation: density = mass ÷ volume
In terms of units: Units of density = kg / m3 = kg m−3
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.2 SI Units
• Work out the derived quantities for:
Defining equation: speed =
In terms of units: Units of speed =
Defining equation: acceleration =
In terms of units: Units of acceleration =
Defining equation: force = mass × acceleration
In terms of units: Units of force =
time
distance
time
velocity
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.2 SI Units
• Work out the derived quantities for:
Defining equation: Pressure =
In terms of units: Units of pressure =
Defining equation: Work = Force × Displacement
In terms of units: Units of work =
Defining equation: Power =
In terms of units: Units of power =
Area
Force
Time
done
Work
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Derived
Quantity
Relation with Base and
Derived Quantities
Unit
Special
Name
area length × width
volume length × width ×
height
density mass  volume
speed distance  time
acceleration change in velocity 
time
force mass × acceleration newton
(N)
pressure force  area pascal
(Pa)
work force × distance joule (J)
power work  time watt (W)
1.2 SI Units
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.3 Prefixes
• Prefixes simplify the writing of very large or very
small quantities
Prefix Abbreviation Power
nano n 10−9
micro  10−6
milli m 10−3
centi c 10−2
deci d 10−1
kilo k 103
mega M 106
giga G 109
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.3 Prefixes
• Alternative writing method
• Using standard form
• N × 10n where 1  N < 10 and n is an integer
This galaxy is about 2.5 × 106
light years from the Earth.
The diameter of this atom
is about 1 × 10−10 m.
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1. A physical quantity is a quantity that can be
measured and consists of a numerical magnitude
and a unit.
2. The physical quantities can be classified into
base quantities and derived quantities.
3. There are seven base quantities: length, mass,
time, current, temperature, amount of
substance and luminous intensity.
4. The SI units for length, mass and time are metre,
kilogram and second respectively.
5. Prefixes are used to denote very big or very small
numbers.
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
• Scalar quantities are quantities that have
magnitude only. Two examples are shown below:
Measuring Mass Measuring Temperature
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
• Scalar quantities are added or subtracted by using
simple arithmetic.
Example: 4 kg plus 6 kg gives the answer 10 kg
+ =
4 kg
6 kg
10 kg
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
• Vector quantities are quantities that have both
magnitude and direction
Magnitude = 100 N
Direction = Left
A Force
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
• Examples of scalars and vectors
Scalars Vectors
distance displacement
speed velocity
mass weight
time acceleration
pressure force
energy momentum
volume
density
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
Adding Vectors using Graphical Method
• Parallel vectors can be added arithmetically
2 N
4 N
6 N 4 N
2 N
2 N
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
Adding Vectors using Graphical Method
• Non-parallel vectors are added by graphical
means using the parallelogram law
– Vectors can be represented graphically by arrows
– The length of the arrow represents the magnitude of the
vector
– The direction of the arrow represents the direction of the
vector
– The magnitude and direction of the resultant vector can be
found using an accurate scale drawing
5.0 cm  20.0 N
Direction = right
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
• The parallelogram law of vector addition states
that if two vectors acting at a point are
represented by the sides of a parallelogram
drawn from that point, their resultant is
represented by the diagonal which passes through
that point of the parallelogram
1.4 Scalars and Vectors
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
Another method of Adding Vectors
• To add vectors A and B
– place the starting point of B at the ending point of A
– The vector sum or resultant R is the vector joining the
starting point of vector A to the ending point of B
– Conversely, R can also be obtained by placing the
starting point of A at the ending point of B
– Now the resultant is represented by the vector joining
the starting point of B to the ending point of A
• See next slide
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.4 Scalars and Vectors
A
B
A
B
A
B
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1. Scalar quantities are quantities that only have
magnitudes
2. Vector quantities are quantities that have both
magnitude and direction
3. Parallel vectors can be added arithmetically
4. Non-parallel vectors are added by graphical
means using the parallelogram law
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.5 Measurement of Length and Time
Accurate Measurement
• No measurement is perfectly accurate
• Some error is inevitable even with high precision
instruments
• Two main types of errors
– Random errors
– Systematic errors
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.5 Measurement of Length and Time
Accurate Measurement
• Random errors occur in all measurements.
• Arise when observers estimate the last figure of
an instrument reading
• Also contributed by background noise or
mechanical vibrations in the laboratory.
• Called random errors because they are
unpredictable
• Minimise such errors by averaging a large number
of readings
• Freak results discarded before averaging
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Accurate Measurement
• Systematic errors are not random but constant
• Cause an experimenter to consistently
underestimate or overestimate a reading
• They Due to the equipment being used – e.g. a
ruler with zero error
• may be due to environmental factors – e.g.
weather conditions on a particular day
• Cannot be reduced by averaging, but they can be
eliminated if the sources of the errors are known
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Length
• Measuring tape is used to measure relatively long
lengths
• For shorter length, a metre rule or a shorter rule
will be more accurate
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
• Correct way to read the scale on a ruler
• Position eye perpendicularly at the mark on the
scale to avoids parallax errors
• Another reason for error: object not align or
arranged parallel to the scale
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
• Many instruments do not read exactly zero when
nothing is being measured
• Happen because they are out of adjustment or
some minor fault in the instrument
• Add or subtract the zero error from the reading
shown on the scale to obtain accurate readings
• Vernier calipers or micrometer screw gauge give
more accurate measurements
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
• Table 1.6 shows the range and precision of some
measuring instruments
Instrument Range of
measurement
Accuracy
Measuring tape 0 − 5 m 0.1 cm
Metre rule 0 − 1 m 0.1 cm
Vernier calipers 0 − 15 cm 0.01 cm
Micrometer screw gauge 0 − 2.5 cm 0.01 mm
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Vernier Calipers
• Allows measurements up to 0.01 cm
• Consists of a 9 mm long scale divided into 10
divisions
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Vernier Calipers
• The object being measured is between 2.4 cm
and 2.5 cm long.
• The second decimal number is the marking on the
vernier scale which coincides with a marking on
the main scale.
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.5 Measurement of Length and Time
• Here the eighth marking on the vernier scale
coincides with the marking at C on the main scale
• Therefore the distance AB is 0.08 cm, i.e. the
length of the object is 2.48 cm
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.5 Measurement of Length and Time
• The reading shown is 3.15 cm.
• The instrument also has inside jaws for measuring internal
diameters of tubes and containers.
• The rod at the end is used to measure depth of containers.
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Micrometer Screw Gauge
• To measure diameter of fine wires, thickness of
paper and small lengths, a micrometer screw
gauge is used
• The micrometer has two scales:
• Main scale on the sleeve
• Circular scale on the thimble
• There are 50 divisions on the thimble
• One complete turn of the thimble moves the
spindle by 0.50 mm
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Micrometer Screw Gauge
• Two scales: main scale and circular scale
• One complete turn moves the spindle by 0.50 mm.
• Each division on the circular scale = 0.01 mm
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Precautions when using a micrometer
1. Never tighten thimble too much
– Modern micrometers have a ratchet to avoid this
2. Clean the ends of the anvil and spindle before
making a measurement
– Any dirt on either of surfaces could affect the reading
3. Check for zero error by closing the micrometer
when there is nothing between the anvil and
spindle
– The reading should be zero, but it is common to find a
small zero error
–Correct zero error by adjusting the final measurement
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1.5 Measurement of Length and Time
Time
• Measured in years, months, days, hours, minutes
and seconds
• SI unit for time is the second (s).
• Clocks use a process which depends on a
regularly repeating motion termed oscillations.
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Caesium atomic clock
• 1999 - NIST-F1 begins operation with an
uncertainty of 1.7 × 10−15, or accuracy to about one
second in 20 million years
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Time
• The oscillation of a simple pendulum is an
example of a regularly repeating motion.
• The time for 1 complete oscillation is referred to
as the period of the oscillation.
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Pendulum Clock
• Measures long intervals of time
• Hours, minutes and seconds
• Mass at the end of the chain attached
to the clock is allowed to fall
• Gravitational potential energy from
descending mass is used to keep the
pendulum swinging
• In clocks that are wound up, this
energy is stored in coiled springs as
elastic potential energy.
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Watch
• also used to measure long intervals of time
• most depend on the vibration of quartz crystals
to keep accurate time
• energy from a battery keeps quartz crystals
vibrating
• some watches also make use of coiled springs to
supply the needed energy
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Stopwatch
• Measure short intervals of time
• Two types: digital stopwatch, analogue stopwatch
• Digital stopwatch more accurate as it can measure
time in intervals of 0.01 seconds.
• Analogue stopwatch measures time in intervals of
0.1 seconds.
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Errors occur in measuring time
• If digital stopwatch is used to time a race,
should not record time to the nearest 0.01 s.
• reaction time in starting and stopping the watch
will be more than a few hundredths of a second
• an analogue stopwatch would be just as useful
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Ticker-tape Timer
• electrical device making use of the oscillations of a
steel strip to mark short intervals of time
• steel strip vibrates 50 times a second and makes 50
dots a second on a paper tape being pulled past it
• used only in certain physics experiments
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Ticker-tape Timer
• Time interval between two consecutive dots is
0.02 s
• If there are 10 spaces on a pieces of tape, time
taken is 10 × 0.02 s = 0.20 s.
• Counting of the dots starts from zero
• A 10-dot tape is shown below.
1.5 Measurement of Length and Time
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
1. The metre rule and half-metre rule are used to
measure lengths accurately to 0.1 cm.
2. Vernier calipers are used to measure lengths to a
precision of 0.01 cm.
3. Micrometer are used to measure length to a
precision of 0.01 mm.
4. Parallax error is due to:
(a) incorrect positioning of the eye
(b) object not being at the same level as the
marking on the scale
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
5. Zero error is due to instruments that do not read
exactly zero when there is nothing being
measured.
6. The time for one complete swing of a pendulum is
called its period of oscillation.
7. As the length of the pendulum increases, the
period of oscillation increases as well.
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1
Physical Quantities, Units and Measurement
T H E M E O N E : M E A S U R E M E N T
C h a p t e r 1

More Related Content

Similar to Units and Measurement 2.ppt

AP Physics 1 - Introduction
AP Physics 1 - IntroductionAP Physics 1 - Introduction
AP Physics 1 - Introductionmlong24
 
General-Physics-1-Week-1-ppt.pptx
General-Physics-1-Week-1-ppt.pptxGeneral-Physics-1-Week-1-ppt.pptx
General-Physics-1-Week-1-ppt.pptxAliceRivera13
 
General Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxxGeneral Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxxAliceRivera13
 
Chapter 8_Scientific Measurement
Chapter 8_Scientific MeasurementChapter 8_Scientific Measurement
Chapter 8_Scientific MeasurementNandjebo Phellep
 
1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt
1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt
1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.pptChenKahPin
 
Measurements and dimensional analysis
Measurements and dimensional analysisMeasurements and dimensional analysis
Measurements and dimensional analysisantonettealbina
 
1-2 Physics & Measurement
1-2 Physics & Measurement1-2 Physics & Measurement
1-2 Physics & Measurementrkelch
 
Physical quantities, units & measurements complete
Physical quantities, units & measurements completePhysical quantities, units & measurements complete
Physical quantities, units & measurements completeMak Dawoodi
 
Cmcchapter02 100613132406-phpapp02
Cmcchapter02 100613132406-phpapp02Cmcchapter02 100613132406-phpapp02
Cmcchapter02 100613132406-phpapp02Cleophas Rwemera
 
NS 6141 - Physical quantities.pptx
NS 6141 - Physical quantities.pptxNS 6141 - Physical quantities.pptx
NS 6141 - Physical quantities.pptxcharleskadala21
 
Mechanical measurement basics
Mechanical measurement basicsMechanical measurement basics
Mechanical measurement basicsChetan Mahatme
 
Chemunit1presentation 110830201747-phpapp01
Chemunit1presentation 110830201747-phpapp01Chemunit1presentation 110830201747-phpapp01
Chemunit1presentation 110830201747-phpapp01Cleophas Rwemera
 
Physical quantities, units and measurement
Physical quantities, units and measurementPhysical quantities, units and measurement
Physical quantities, units and measurementBasecamp Learning Centre
 

Similar to Units and Measurement 2.ppt (20)

AP Physics 1 - Introduction
AP Physics 1 - IntroductionAP Physics 1 - Introduction
AP Physics 1 - Introduction
 
General-Physics-1-Week-1-ppt.pptx
General-Physics-1-Week-1-ppt.pptxGeneral-Physics-1-Week-1-ppt.pptx
General-Physics-1-Week-1-ppt.pptx
 
General Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxxGeneral Physics 1 Week 1 ppt.pptxxxxxxxx
General Physics 1 Week 1 ppt.pptxxxxxxxx
 
Chapter 1.pptx
Chapter 1.pptxChapter 1.pptx
Chapter 1.pptx
 
Chapter 8_Scientific Measurement
Chapter 8_Scientific MeasurementChapter 8_Scientific Measurement
Chapter 8_Scientific Measurement
 
1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt
1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt
1-PHYSICAL QUANTITIES, UNITS & MEASUREMENT131029195248-phpapp01.ppt
 
Measurements and dimensional analysis
Measurements and dimensional analysisMeasurements and dimensional analysis
Measurements and dimensional analysis
 
Units And Measurement
Units And MeasurementUnits And Measurement
Units And Measurement
 
1-2 Physics & Measurement
1-2 Physics & Measurement1-2 Physics & Measurement
1-2 Physics & Measurement
 
6570550.ppt
6570550.ppt6570550.ppt
6570550.ppt
 
Physical quantities, units & measurements complete
Physical quantities, units & measurements completePhysical quantities, units & measurements complete
Physical quantities, units & measurements complete
 
01 physical quantities
01 physical quantities01 physical quantities
01 physical quantities
 
Cmcchapter02 100613132406-phpapp02
Cmcchapter02 100613132406-phpapp02Cmcchapter02 100613132406-phpapp02
Cmcchapter02 100613132406-phpapp02
 
NS 6141 - Physical quantities.pptx
NS 6141 - Physical quantities.pptxNS 6141 - Physical quantities.pptx
NS 6141 - Physical quantities.pptx
 
unit-1.ppt
unit-1.pptunit-1.ppt
unit-1.ppt
 
Mechanical measurement basics
Mechanical measurement basicsMechanical measurement basics
Mechanical measurement basics
 
Chemunit1presentation 110830201747-phpapp01
Chemunit1presentation 110830201747-phpapp01Chemunit1presentation 110830201747-phpapp01
Chemunit1presentation 110830201747-phpapp01
 
PPT-PMN-UNIT-1.pdf
PPT-PMN-UNIT-1.pdfPPT-PMN-UNIT-1.pdf
PPT-PMN-UNIT-1.pdf
 
Physics.pptx
Physics.pptxPhysics.pptx
Physics.pptx
 
Physical quantities, units and measurement
Physical quantities, units and measurementPhysical quantities, units and measurement
Physical quantities, units and measurement
 

Recently uploaded

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Recently uploaded (20)

ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 

Units and Measurement 2.ppt

  • 1. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Learning outcomes • Understand that physical quantities have numerical magnitude and a unit • Recall base quantities and use prefixes • Show an understanding of orders of magnitude • Understand scalar and vector quantities • Determine resultant vector by graphical method • Measure length with measuring instruments • Measure short interval of time using stopwatches
  • 2. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Quantitative Observations What can be measured with the instruments on an aeroplane? Qualitative Observations How do you measure artistic beauty? 1.1 Physical Quantities Quantitative versus qualitative • Most observation in physics are quantitative • Descriptive observations (or qualitative) are usually imprecise
  • 3. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.1 Physical Quantities • A physical quantity is one that can be measured and consists of a magnitude and unit. SI units are common today Measuring length 70 km/h  4.5 m  Vehicles Not Exceeding 1500 kg In Unladen Weight
  • 4. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Are classified into two types: • Base quantities • Derived quantities 1.1 Physical Quantities Base quantity is like the brick – the basic building block of a house Derived quantity is like the house that was build up from a collection of bricks (basic quantity)
  • 5. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.2 SI Units • SI Units – International System of Units Base Quantities Name of Unit Symbol of Unit length metre m mass kilogram kg time second s electric current ampere A temperature kelvin K amount of substance mole mol luminous intensity candela cd
  • 6. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 This Platinum Iridium cylinder is the standard kilogram. 1.2 SI Units
  • 7. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.2 SI Units
  • 8. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.2 SI Units • Example of derived quantity: area Defining equation: area = length × width In terms of units: Units of area = m × m = m2 Defining equation: volume = length × width × height In terms of units: Units of volume = m × m × m = m2 Defining equation: density = mass ÷ volume In terms of units: Units of density = kg / m3 = kg m−3
  • 9. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.2 SI Units • Work out the derived quantities for: Defining equation: speed = In terms of units: Units of speed = Defining equation: acceleration = In terms of units: Units of acceleration = Defining equation: force = mass × acceleration In terms of units: Units of force = time distance time velocity
  • 10. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.2 SI Units • Work out the derived quantities for: Defining equation: Pressure = In terms of units: Units of pressure = Defining equation: Work = Force × Displacement In terms of units: Units of work = Defining equation: Power = In terms of units: Units of power = Area Force Time done Work
  • 11. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Derived Quantity Relation with Base and Derived Quantities Unit Special Name area length × width volume length × width × height density mass  volume speed distance  time acceleration change in velocity  time force mass × acceleration newton (N) pressure force  area pascal (Pa) work force × distance joule (J) power work  time watt (W) 1.2 SI Units
  • 12. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.3 Prefixes • Prefixes simplify the writing of very large or very small quantities Prefix Abbreviation Power nano n 10−9 micro  10−6 milli m 10−3 centi c 10−2 deci d 10−1 kilo k 103 mega M 106 giga G 109
  • 13. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.3 Prefixes • Alternative writing method • Using standard form • N × 10n where 1  N < 10 and n is an integer This galaxy is about 2.5 × 106 light years from the Earth. The diameter of this atom is about 1 × 10−10 m.
  • 14. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1. A physical quantity is a quantity that can be measured and consists of a numerical magnitude and a unit. 2. The physical quantities can be classified into base quantities and derived quantities. 3. There are seven base quantities: length, mass, time, current, temperature, amount of substance and luminous intensity. 4. The SI units for length, mass and time are metre, kilogram and second respectively. 5. Prefixes are used to denote very big or very small numbers.
  • 15. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 16. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors • Scalar quantities are quantities that have magnitude only. Two examples are shown below: Measuring Mass Measuring Temperature
  • 17. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors • Scalar quantities are added or subtracted by using simple arithmetic. Example: 4 kg plus 6 kg gives the answer 10 kg + = 4 kg 6 kg 10 kg
  • 18. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors • Vector quantities are quantities that have both magnitude and direction Magnitude = 100 N Direction = Left A Force
  • 19. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors • Examples of scalars and vectors Scalars Vectors distance displacement speed velocity mass weight time acceleration pressure force energy momentum volume density
  • 20. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors Adding Vectors using Graphical Method • Parallel vectors can be added arithmetically 2 N 4 N 6 N 4 N 2 N 2 N
  • 21. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors Adding Vectors using Graphical Method • Non-parallel vectors are added by graphical means using the parallelogram law – Vectors can be represented graphically by arrows – The length of the arrow represents the magnitude of the vector – The direction of the arrow represents the direction of the vector – The magnitude and direction of the resultant vector can be found using an accurate scale drawing 5.0 cm  20.0 N Direction = right
  • 22. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 • The parallelogram law of vector addition states that if two vectors acting at a point are represented by the sides of a parallelogram drawn from that point, their resultant is represented by the diagonal which passes through that point of the parallelogram 1.4 Scalars and Vectors
  • 23. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors Another method of Adding Vectors • To add vectors A and B – place the starting point of B at the ending point of A – The vector sum or resultant R is the vector joining the starting point of vector A to the ending point of B – Conversely, R can also be obtained by placing the starting point of A at the ending point of B – Now the resultant is represented by the vector joining the starting point of B to the ending point of A • See next slide
  • 24. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.4 Scalars and Vectors A B A B A B
  • 25. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1. Scalar quantities are quantities that only have magnitudes 2. Vector quantities are quantities that have both magnitude and direction 3. Parallel vectors can be added arithmetically 4. Non-parallel vectors are added by graphical means using the parallelogram law
  • 26. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 27. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.5 Measurement of Length and Time Accurate Measurement • No measurement is perfectly accurate • Some error is inevitable even with high precision instruments • Two main types of errors – Random errors – Systematic errors
  • 28. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.5 Measurement of Length and Time Accurate Measurement • Random errors occur in all measurements. • Arise when observers estimate the last figure of an instrument reading • Also contributed by background noise or mechanical vibrations in the laboratory. • Called random errors because they are unpredictable • Minimise such errors by averaging a large number of readings • Freak results discarded before averaging
  • 29. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Accurate Measurement • Systematic errors are not random but constant • Cause an experimenter to consistently underestimate or overestimate a reading • They Due to the equipment being used – e.g. a ruler with zero error • may be due to environmental factors – e.g. weather conditions on a particular day • Cannot be reduced by averaging, but they can be eliminated if the sources of the errors are known 1.5 Measurement of Length and Time
  • 30. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Length • Measuring tape is used to measure relatively long lengths • For shorter length, a metre rule or a shorter rule will be more accurate 1.5 Measurement of Length and Time
  • 31. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 • Correct way to read the scale on a ruler • Position eye perpendicularly at the mark on the scale to avoids parallax errors • Another reason for error: object not align or arranged parallel to the scale 1.5 Measurement of Length and Time
  • 32. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 • Many instruments do not read exactly zero when nothing is being measured • Happen because they are out of adjustment or some minor fault in the instrument • Add or subtract the zero error from the reading shown on the scale to obtain accurate readings • Vernier calipers or micrometer screw gauge give more accurate measurements 1.5 Measurement of Length and Time
  • 33. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 • Table 1.6 shows the range and precision of some measuring instruments Instrument Range of measurement Accuracy Measuring tape 0 − 5 m 0.1 cm Metre rule 0 − 1 m 0.1 cm Vernier calipers 0 − 15 cm 0.01 cm Micrometer screw gauge 0 − 2.5 cm 0.01 mm 1.5 Measurement of Length and Time
  • 34. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Vernier Calipers • Allows measurements up to 0.01 cm • Consists of a 9 mm long scale divided into 10 divisions 1.5 Measurement of Length and Time
  • 35. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Vernier Calipers • The object being measured is between 2.4 cm and 2.5 cm long. • The second decimal number is the marking on the vernier scale which coincides with a marking on the main scale. 1.5 Measurement of Length and Time
  • 36. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.5 Measurement of Length and Time • Here the eighth marking on the vernier scale coincides with the marking at C on the main scale • Therefore the distance AB is 0.08 cm, i.e. the length of the object is 2.48 cm
  • 37. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.5 Measurement of Length and Time • The reading shown is 3.15 cm. • The instrument also has inside jaws for measuring internal diameters of tubes and containers. • The rod at the end is used to measure depth of containers.
  • 38. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Micrometer Screw Gauge • To measure diameter of fine wires, thickness of paper and small lengths, a micrometer screw gauge is used • The micrometer has two scales: • Main scale on the sleeve • Circular scale on the thimble • There are 50 divisions on the thimble • One complete turn of the thimble moves the spindle by 0.50 mm 1.5 Measurement of Length and Time
  • 39. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Micrometer Screw Gauge • Two scales: main scale and circular scale • One complete turn moves the spindle by 0.50 mm. • Each division on the circular scale = 0.01 mm 1.5 Measurement of Length and Time
  • 40. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Precautions when using a micrometer 1. Never tighten thimble too much – Modern micrometers have a ratchet to avoid this 2. Clean the ends of the anvil and spindle before making a measurement – Any dirt on either of surfaces could affect the reading 3. Check for zero error by closing the micrometer when there is nothing between the anvil and spindle – The reading should be zero, but it is common to find a small zero error –Correct zero error by adjusting the final measurement 1.5 Measurement of Length and Time
  • 41. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1.5 Measurement of Length and Time Time • Measured in years, months, days, hours, minutes and seconds • SI unit for time is the second (s). • Clocks use a process which depends on a regularly repeating motion termed oscillations.
  • 42. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Caesium atomic clock • 1999 - NIST-F1 begins operation with an uncertainty of 1.7 × 10−15, or accuracy to about one second in 20 million years 1.5 Measurement of Length and Time
  • 43. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Time • The oscillation of a simple pendulum is an example of a regularly repeating motion. • The time for 1 complete oscillation is referred to as the period of the oscillation. 1.5 Measurement of Length and Time
  • 44. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Pendulum Clock • Measures long intervals of time • Hours, minutes and seconds • Mass at the end of the chain attached to the clock is allowed to fall • Gravitational potential energy from descending mass is used to keep the pendulum swinging • In clocks that are wound up, this energy is stored in coiled springs as elastic potential energy. 1.5 Measurement of Length and Time
  • 45. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Watch • also used to measure long intervals of time • most depend on the vibration of quartz crystals to keep accurate time • energy from a battery keeps quartz crystals vibrating • some watches also make use of coiled springs to supply the needed energy 1.5 Measurement of Length and Time
  • 46. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Stopwatch • Measure short intervals of time • Two types: digital stopwatch, analogue stopwatch • Digital stopwatch more accurate as it can measure time in intervals of 0.01 seconds. • Analogue stopwatch measures time in intervals of 0.1 seconds. 1.5 Measurement of Length and Time
  • 47. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Errors occur in measuring time • If digital stopwatch is used to time a race, should not record time to the nearest 0.01 s. • reaction time in starting and stopping the watch will be more than a few hundredths of a second • an analogue stopwatch would be just as useful 1.5 Measurement of Length and Time
  • 48. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Ticker-tape Timer • electrical device making use of the oscillations of a steel strip to mark short intervals of time • steel strip vibrates 50 times a second and makes 50 dots a second on a paper tape being pulled past it • used only in certain physics experiments 1.5 Measurement of Length and Time
  • 49. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 Ticker-tape Timer • Time interval between two consecutive dots is 0.02 s • If there are 10 spaces on a pieces of tape, time taken is 10 × 0.02 s = 0.20 s. • Counting of the dots starts from zero • A 10-dot tape is shown below. 1.5 Measurement of Length and Time
  • 50. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 1. The metre rule and half-metre rule are used to measure lengths accurately to 0.1 cm. 2. Vernier calipers are used to measure lengths to a precision of 0.01 cm. 3. Micrometer are used to measure length to a precision of 0.01 mm. 4. Parallax error is due to: (a) incorrect positioning of the eye (b) object not being at the same level as the marking on the scale
  • 51. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1 5. Zero error is due to instruments that do not read exactly zero when there is nothing being measured. 6. The time for one complete swing of a pendulum is called its period of oscillation. 7. As the length of the pendulum increases, the period of oscillation increases as well.
  • 52. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 53. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 54. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 55. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 56. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 57. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 58. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 59. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1
  • 60. Physical Quantities, Units and Measurement T H E M E O N E : M E A S U R E M E N T C h a p t e r 1