SlideShare a Scribd company logo
1 of 18
2013

M2M Telematics &
Predictive Analytics

Gopalakrishna Palem

2/24/2013
C ONTENTS
Executive Summary .......................................................................................................................................................2
M2M Drivers ..........................................................................................................................................................4
Embedded Telematics Trends ...............................................................................................................................4
Mobile Device Telematics Trends ..........................................................................................................................5
Predictive Maintenance .................................................................................................................................................7
Solution Enablers .......................................................................................................................................................9
The Methodology ....................................................................................................................................................11
Best Practices Guidelines .........................................................................................................................................15
Concluding Remarks ....................................................................................................................................................16
References ...................................................................................................................................................................16
About Author ...............................................................................................................................................................17
E XECUTIVE S UMMARY
Number of machine-to-machine (M2M) device connections world-wide is expected to
grow from 130 million in 2012 to 2.14 billion by 2021, while the total world-wide M2M
management market is expected to grow from USD459 million in 2012 to USD1.1 billion
in 2016 at 23% CAGR (Figure 1).
1200

1118

Revenue (USD Million)

1000

895

800

724
574

600
459
397
400
200

0
2011
F IGURE 1 M2M

2012

2013

2014

2015

2016

MANAGEMENT MARKET FORECAST ( S O URCE : A NA LYSYS M ASON , 2012 )

CSPs are actively exploring opportunities for providing M2M solutions to industry
sectors such as automotive and transport, energy and utilities, security and surveillance,
public safety, financial services, retail, healthcare, and warehousing and distribution.









Automotive:
o Vehicle & Asset Tracking: Real-time GPS/GSM evaluation and tracking
o Fleet management: Real-time predictive maintenance, inventory
control, optimal work-schedules
o Eco-routing: Real-time traffic monitoring systems for vehicle efficiency
and passenger safety with cooperative M2M interactions
Healthcare:
o Telemedicine: Health monitoring and remote medicine administration
o Assisted Living: Supportive sensor aids and safety guides
Retail:
o Match sales: Real-time auctioning for buyer’s basket
o Supply chain monitoring: Real-time environment conditions of goods,
location tracking
o Connected cabinets: Real-time stock level display, revenue reports,
targeted advertising
Finance:
o Usage-based Insurance Services
Energy & Utilities:
o
o

Smart Grid: Real-time network optimization with demand based
generation, load-based distribution and smart metering capabilities
Monitoring & Control: Remote monitoring operational metrics, such as
pipeline pressure, temperature etc.

As the global energy usage continues to surge, the confluence of M2M telematics and
real-time analytics is the key for delivering green solutions.
Take an example of electric vehicle (EV) that you drive home and connect to the electric
grid, letting it figure out your next commute requirement from the calendar
appointments on your hand-held or mobile, and your grid’s active load usage and nonpeak hours from the energy provider, all summed up to auto-tune its own recharging
schedule to reduce the load on grid while taking into account any emergency commutes
that might be required based on your personal commute history and your associations –
computed all without the need for slightest manual intervention, that’s M2M Telematics
hand-in-hand with real-time analytics at work.
Intelligent devices, such as the EV presented above, are the promise of M2M. On a
broader note, the machine-to-machine (M2M) communication operations include both,
intelligent control of remote machine parts (telematics) and remote measurement of
various sensor readings (telemetry). A typical definition of M2M in mobile space is,
machines using network resources to communicate with remote application
infrastructure for monitoring and control, either of the machine itself or its surrounding
environment.
The possibility of having billions of devices being uniquely addressable with IPV6
(Internet Protocol version 6), the advent of seamless wireless communications with
improved standardization and broadband signal capabilities, and the onslaught of realtime analytics on commodity hardware with large data sets being processed in parallel –
all are contributing to the success of M2M telematics systems with real-time predictive
analytic capabilities. A typical architecture of such a system reads as shown in Figure 2.

Analytics
Processing
Stream Processing

Remote
Administration
External
Sensors

Asset with Internal
Sensors

Monitor & Control Center

F IGURE 2 M2M T ELEMATICS WITH P REDICTIVE A NALYTICS S YSTEM
M2M D R I V E R S
Key drivers for M2M initiatives are as below:











Telematics and telemetry are increasingly being perceived as sources of greater
operational efficiency and cost reduction.
o Automated monitoring of heating, ventilation and cooling are few
driving factors for smart buildings
o Street lights that operate based on traffic flow, alternate automatic
routing based on peak-hours etc. are driving factors for smart cities
o Predictive maintenance through improved system monitoring, remote
monitoring of farms and mining operations etc. are cost saving factors
Regulatory requirements for safety and energy efficiency are pushing the utility
sector and automotive industries to use innovative ways of M2M methods
o Emergency calling, accident alerts, cooperative driving etc. are
compelling factors for automotive industry
o Smart meters and energy demand response are driving factors for
Utilities industry
Standardization and adaptation of IPV6 across industry has opened the
possibility for billions of uniquely addressable IP devices
Wide rollout of 3G and LTE networks are providing devices with always on
connectivity and increased bandwidth enabling M2M segment applications
such as remote surveillance, asset tracker, health meters etc.
Smart application development is creating new opportunities for application
developers to build applications for every possible segment, right from smart
homes to smart amenities
Innovations in the retail and consumer electronics segment are pushing the
boundaries of connectivity, with applications such as wireless payments to
connected satellite navigation systems

The electronics and communications industry is rapidly moving towards intelligent,
addressable, embeddable devices enabling seamless communications between every
device. Following sections describe the embedded and mobile based telematics trends
and the potential revenue opportunities, followed by a sector-focus case study.

E MB E D D ED T EL E M AT I C S T RE N D S
2.5G GPRS

-

3G CDMA
3.5G HSPA

-

4G LTE

Key Information
Dominant embedded
technology in Europe
CDMA2000 is dominant in
USA
Europe is moving to WCDMA
New systems are evolving
rapidly on HSPA
Industry wide deployments
are expected to be available
by 2015

-

Remarks
New systems should be
using 3G
Also used in Japan, Korea
and China
eCall may use either GPRS
or WCDMA
Available in Europe for
Luxury cars
May be year earlier for
Luxury brands
In summary, embedded telematics are likely to continue using 3G and 3.5G technologies
until 2015 in the developed countries, and even longer in other areas. LTE is expected to
become mainstream 4G technology for mobile phone industry and auto-industry.
WiMax missed its opportunity to become mainstream technology, but will become a
niche player in most regions.

M O BI LE D EV I CE T EL E M AT I CS T R EN D S
Mobile device telematics leverage operator’s mobile phone to establish communication
between instrument and the monitoring station. Predominantly used in vehicles and
automobiles, driven by the need for hands-free interface (HFI). The trends are:
Key Information
Mobile
Phone HFI

Available for long time by OEMs

Telematics
Service

-

Evolving as a popular telematics
approach
Primarily for infotainment
services

-

-

Telematics
Service &
Smartphone
Apps

-

Leverage wealth of auto-related
smart Apps
Smart phone to H-U apps
integration emerging

-

Remarks
Initially wired, then
Bluetooth
Popularized by Ford
SYNC success
Lower reliability than
embedded link
Likely to become
necessity by 2015
timeframe
Need for technology
solutions to lower
driver distraction

Some of the prominent market implementations for automobile telematics in North
America segment are:
OEM

Service

GM

OnStar/MyLink/Inte
lliLink/CUE

BMW

ConnectDrive /
BMW Assist

Ford

Sync/ MyFord
Touch / MyFord
Mobile

Toyota

Safety Connect /
Entune

Audi

Audi Connect

Mercedes

mBrace

Nissan

Nissan CarWings

Hyundai

Blue Link

Features
eCall/bCall, SVR, Vehicle
Slow Down, Google, Mobile
App
eCall/bCall, Concierge,
Lock/Unlock, Diagnostics,
Google Services, Tracking,
Full Browsing, Mobile Apps,
Traffic
eCall/bCall, Navigation,
Weather, Traffic, Mobile
Apps, Live Operator
SOS/ACN, Roadside
Assistance, Stolen Vehicle
Location, Entune
Navigation, Weather, Gas
prices, Travel Info, News,
Wi-Fi Hotspot
eCall/bCall, SVR, Crisis Assist,
Google Send to Car, Traffic,
Weather, Concierge,
Lock/Unlock, Car Finder,
Diagnostics, Mobile App
Charge Levels, Charging
Stations, Comparison of
Drivers, Google Send to Car
Navi, eCall/bCall, Weather,

Launch
1996

2001

2007

2009

Technology
Embedded/
Mobile
Device
Embedded/
Mobile
Device
Embedded/
Mobile
Device
Embedded/
Mobile
Device

2011

Embedded

2011

Embedded

2011

Embedded

2011

Embedded
Traffic, POI Voice Rec, Geo
Fence, SVR, Diagnostics,
Mobile App

Despite the present and emerging mobile connectivity trend, embedded wireless
modules are expected to grow significantly, mainly due to the stringent quality
requirements and reliability standards that hand-held devices fail to meet adequately.
Tight automotive requirements are also expected to be in place to sustain the growth of
safety and security critical equipment that will be mandated by government regulations,
such as eCall in Europe. The European eCall regulations will in fact force all new vehicles
by 2015 to adapt a connectivity link for emergency call.
The reality is that regulations such as eCall will give raise to further significant demand
for telematics, enabling several additional services to be layered on top of basic
emergency call. Some of the potential applications on those lines are:










Remote Diagnostics
Remote Vehicle Control
Vehicle Software Upgrade
Electronic Toll Collection
Eco-Driving
Off-Board Navigation
Smart Traffic Control
Usage-based Insurance Services
Condition-based Maintenance etc.

It is the combination of Telematics with Predictive Analytics on Real-time Big Data that
makes many of these innovations, such as smart traffic control, usage-based insurance,
condition-based maintenance etc… possible, and smart players are already reaping
enormous benefits by employing these in their strategic offerings.
The following sections present an in-depth review on a sector-focus case-study, namely
Condition-based maintenance, describing how predictive analytics and telematics are
working together to reduce maintenance costs.
P REDICTIVE M AINTENANCE

M

aintenance, considered as a non-value add function, is ever more requested
to contribute higher and higher for costs reduction, keeping the machines in
excellent working condition, while satisfying the stringent safety and
operational requirements. Manufacturers and operators employ array of maintenance
strategies to address that, all of which and can be broadly categorized as below:




Corrective Maintenance
Preventive Maintenance
Predictive Maintenance

Corrective maintenance is the classic Run-to-Failure reactive maintenance that has no
special maintenance plan in place. The machine is assumed to be fit unless proven
otherwise.


“… In many cases,
scheduled overhaul
increases the overall
failure rate by
introducing a high
infant mortality rate
into an otherwise
stable system…”
-

RCM Guide, NASA



Cons:
o
o
o
Pros:
o
o

High risk of collateral damage and secondary failure
High production downtime
Overtime labor and high cost of spare parts
Machines are not over-maintained
No overhead of condition monitoring or planning costs

Preventive maintenance (PM) is the popular periodic maintenance strategy that is
actively employed by all manufacturers and operators in the industry today. An optimal
breakdown window is pre-calculated (at the time of component design or installation,
based on a wide range of models describing the degradation process of equipment, cost
structure and admissible maintenance etc.), and a preventive maintenance schedule is
laid out. Maintenance is carried-out on those periodic intervals, assuming that the
machine is going to break otherwise.




Cons:
o
o
Pros:
o
o
o

Calendar-based maintenance: Machines are repaired when there are
no faults
There will still be unscheduled breakdowns
Fewer catastrophic failures and lesser collateral damage
Greater control over spare-parts and inventory
Maintenance is performed in controlled manner, with a rough
estimate of costs well-known ahead of time

Predictive Maintenance (PdM) is an emerging alternative to the above two that employs
predictive analytics over real-time data collected (streamed) from parts of the machine
to a centralized processor that detects variations in the functional parameters and
detects anomalies that can potentially lead to breakdowns. The real-time nature of the
analytics helps identify the functional breakdowns long before they happen but soon
after their potential cause arises.


“… Preventive
maintenance is how
fleets attempt to
avoid breakdowns
today. But new
thinking is moving
towards predictive
repairs, transforming
time-or mileagebased model with one
that is based on
evidence of need…”



Pros:
o
o
o
Cons:
o
o

Unexpected breakdown is reduced or even completely eliminated
Parts are ordered when needed and maintenance performed when
convenient
Equipment life is maximized
High investment costs
Additional skills might be required

Predictive maintenance, also known as Condition Based Maintenance (CBM) differs
from preventive maintenance by basing maintenance need on the actual condition of
the machine rather than on some preset schedule.
For example, a typical preventive maintenance strategy demands automobile operators
to change the engine oil after every 3,000 to 5,000 Miles traveled. No concern is given
to the actual condition of vehicle or performance capability of the oil.
If on the other hand, the operator has some way of knowing or somehow measuring the
actual condition of the vehicle and the oil lubrication properties, he/she gains the
potential to extend the vehicle usage and postpone oil change until the vehicle has
traveled 10,000 Miles, or perhaps pre-pone the oil change in case of any abnormality.
Predictive analytics with M2M telematics provides such deep insights into the machine
operations and full functionality status – giving rise to optimal maintenance schedules
with improved machine availability.
Underlying preventive maintenance is the popular belief that machine failures are
directly related to machine operating age, which studies indicate not to be true always.
Failures are not always linear in nature. Studies indicate that 89% of the problems are
random with no direct relation to the age. Table 1 showcases some of these well-known
failure patterns and their conditional probability (Y-axis) with respect to Time (X-axis).
T ABLE 1 F AILURE C ONDITIONAL P ROBABILITY C URVES ( SOUR CE : J OHN M OUBRAY , N OWLAN & H EAP )
Age-Related = 11%

Random = 89%

Wear out

Infant Mortality

Type A = 2%

Type B = 68%

Bathtub

Type E = 4%

Initial Break-in Period

Type C = 7%

Fatigue

Relatively Constant

Type F = 5%

Type D = 14%
“Predictive analytics
help reduce overmaintenance,
decrease operational
costs and maximize
equipment
availability”

Complex items frequently demonstrate some infant mortality, after which their failure
probability either increases gradually or remains constant, and a marked wear-out age is
not common. Considering this fact, the chance of a preventive maintenance avoiding a
potential failure is low, as there is every possibility that the system can fail right after a
scheduled maintenance. Thus, preventive maintenance imposes additional costs of
repair. Predictive Maintenance reduces such additional costs by scheduling
maintenance if and only when a potential breakdown symptom is identified.
Preventive Maintenance

Predictive Maintenance

F IGURE 3 P REDICTIVE MAINTENANC E S CHEDULES ARE SMARTER

AND CONVENIENT

However, the costs of monitoring equipment and monitoring operations should not
exceed the original asset replacement costs; lest the whole point of Predictive
Maintenance becomes moot. Studies have estimated that a properly functioning CBM
program can provide savings of 8% to 12% over the traditional maintenance schemes.
Independent surveys indicate the following industrial average savings resultant from
initiation of a functional predictive maintenance program:





Reduction in maintenance costs: 25% to 30%
Elimination of breakdowns: 70% to 75%
Reduction in equipment or process downtime: 35% to 45%
Increase in production: 20% to 25%

Apart from the above, improved worker and environment safety, increased component
availability, better product quality etc. are making more and more manufacturers and
operators embrace CBM based management solutions.

S OLUTION E N ABLERS
Predictive Maintenance or Condition-Based-Maintenance Management (CBMM) solution
is enabled by three major technology enhancements over a traditional maintenance
schedule:
1.
2.
3.

Remote Sensor Monitoring & Data Capturing
Real-time Stream Processing of Sensor Data
Predictive Analytics
“…Predictive
technology does not
avoid failures – rather
what it avoids is the
high-costs associated
with the failures, by
providing early
warnings of the
failures so that
operators can decide
when and where to
address them before
they actually happen”

CBMM solutions essentially operate by having sensors attached to remote assets
(mobile or stationary) that send continuous streams of data about the assets’
operational conditions to a monitoring station that then analyzes them in real-time
using predictive analytic models and detects any problems in the behavior or state of
the asset. Once a problem is detected, appropriate pre-configured action is taken to
notify the operator or manufacture for corrective action. The monitoring station in
question can be on the same network as that of the sensors or it could be in a remote
location far away from them, connected through wide area networks or satellite
networks.
Nature of the sensors being monitored, frequency of the data getting collected and
precision of the analytic models being used – all affect the quality of the prediction
results. Thus, it is imperative that manufacturers and operators define all these
parameters with utmost care while deploying a condition-based-maintenance
management system. This, however, entails a thorough understanding of the system
under operation and expects a clear-cut answer as to what is being monitored and what
is expected out of such monitoring. Some of the questions that can help manufacturers
and operators along those lines are:
For monitoring:





Which parts of the system or asset are expected to be monitored?
What type of data is expected to be collected and which type of sensors give
such data? For example, visual data, thermal data etc.
What is the expected frequency for the data collection?
How should any failures in the sensors be handled?

For real-time stream collection and processing at the monitoring station:




What is the acceptable data processing latency?
How to deal with imperfections in the received data? For example, a faulty
sensor sending incorrect data
What should be done with the collected data after processing?

For Analytics sub-system:






Which analysis technique accurately models the asset/system behavior?
What is the definition of acceptable behavior and anomaly?
What should be the response in case of any anomaly detection?
What should be the reasonable timeframe between anomaly detection and
corrective action?
How to deal with situations where there are multiple anomalies detected at the
same time?

Generic and security related questions:


Who should be allowed to access the collected data and analysis results?


What is the change management process required in case one wants to tune
the tracking and analysis parameters?

The following section briefly summarizes some of the industry standard methods used
in CBMM systems and can help in answering the above questions.

T HE M ETHODOLOGY
The primary component in a condition-based-monitoring management solution is a
sensor array and the measurements it provide. Some of the widely used measurement
techniques in the industry are:


Temperature Measurement: Thermal indicators, such as temperature-sensitive
paint, thermography etc., help detect potential failures arising out of
temperature changes in the equipment. Excessive mechanical friction,
degraded heat transfer, poor electrical connections are some of the problems
that can be detected with this type of measurement.
Method
Point Temperature

Description
A thermocouple or RTD

Area Pyrometer

IR radiation measured from a
surface, often with laser sight

Temperature Paint

Chemical indicators calibrated to
change colors at specified
temperature
Handheld still or video camera
sensitive to emitted IR

Thermography



Applications
Can be used on all accessible
surfaces
Good for walk around
temperature checks on
machines and panels
Works great for inspection
rounds
Best for remote monitoring.
Requires good training

Dynamic Monitoring: Spectrum analysis, shock pulse analysis are some of the
dynamic monitoring methods that measure and analyze energy emitted from
mechanical equipment in the form of waves, vibration, pulses and acoustic
effects. Wear and tear, imbalance, misalignment and internal surface damage
are some of the problems that can be detected with this type of measurement.
Method

Description

Applications

ISO Filtered velocity

2Hz-1kHz filtered velocity

A general condition indicator

SPM

Carpet and Peak related to
demodulation
of
sensor
resonance around 30kHz

Single
value
indicator method

Acoustic Emission

Distress & dB, demodulates a
100kHz carrier sensitive to
stress waves

Better indicator than ISO
velocity, without the ISO
comfort zone

Vibration Meters

Combine velocity, bearing and
acceleration techniques

ISO Velocity, envelope and
high frequency acceleration
give best performance

4-20mA sensors

Filter data converted
DCS/PLC compatible signal

Useful to home-in on specific
problems by special order

to

bearing










Fluid Analysis: Ferrography, particle counter testing are some of the fluid
analysis methods performed on different types of oils, such as lubrication,
hydraulic, insulation oil etc., to identify any potential problems of wear and
tear in the machines. Machine degradation, oil contamination, improper oil
consistency, oil deterioration are some of the problems that can be detected
with this method. The main areas of analysis in this are:
o Fluid physical properties: Viscosity, appearance
o Fluid chemical properties: TBN, TAN, additives, contamination, % water
o Fluid contamination: ISO cleanliness, Ferrography, Spectroscopy,
dissolved gases
o Machine health: Wear metals associated with plant components
Corrosion Monitoring: Methods such as Coupon testing, Corrometer testing
help identify the extent of corrosion, corrosion rate and state (active/passive
corrosion) for the materials used in the asset.
Non-destructive Testing: Involves using non-destructive methods, such as XRays, ultrasonic etc., to detect any potential anomalies arising internal to the
asset structure. Most of these tests can be performed while the asset is online
and being used
Electrical testing and Monitoring: High potential testing, power signal analysis
are some of the prominent electrical condition monitoring mechanisms that try
to identify any changes in the system properties, such as resistance,
conductivity, dielectric strength and potential. Electrical insulation
deterioration, broken motor rotor bars and shorted motor stator lamination
etc. are some of the problems that can be detected with this type of
mechanism
Observation and Surveillance: Visual, audio and touch inspection criteria are
some of the surveillance condition monitoring techniques based on the human
sensory capabilities. They act as supplement to other condition-monitoring
techniques and help detect problems such as loose/worn parts, leaking
equipment, poor electrical and pipe connections, stream leaks, pressure relief
valve leaks and surface roughness changes etc.

Once the appropriate measurement mechanisms are in place, the next step is the event
definition phase: to define what constitutes an acceptable system behavior and what is
to be considered as anomaly. It is useless to put costly monitoring equipment in place,
without knowing what to expect out of it. Expert opinion and judgment (such as
manufacturer’s recommendations), published information (such as case studies),
historical data etc. are some of the good sources that can help in this task. The
definition of anomaly should be unambiguous and easy to detect. If the cost of anomaly
detection far exceeds the costs of consequences of that anomaly, then it is not a valid
scenario for implementing CBM.
The next step that follows the event definition phase is, determining event inspection
frequency. Frequency of any of form of condition-based-maintenance is based on the
fact that most failures do not occur instantaneously, and that it is often possible to
detect them during their final stages of deterioration. If evidence can be found that
something is in the final stages of failure, it is possible to take action for preventing it
from failing completely and/or avoid the consequences.
The failure behavior typically exhibited by
majority of the systems in operation is as
showcased in Figure 4. During operation,
over a period of time, the systems enter a
phase of potential failure (P), and start
displaying few early signs of wear & tear and
other stressful behaviors that if neglected
finally lead to full functional failure (F). For
most of the systems the time interval
between the potential failure point (P) and
full function failure (F) is large enough to
allow detection and prevention of the
failure.
This time gap between P and F is what is
popularly known as the P-F Interval in the
literature, and any cost-effective maintenance strategy should try to maximize on it. The
P-F Interval could be in hours or days, or even weeks or months, based on the
complexity of the system and the unit of measurement - for it is not uncommon to see
the P-F Interval being measured in non-time units, such as stop-start cycles or units of
output etc. Based on the failure mode and the unit of measurement, the P-F Interval can
end up varying from fractions of a second to several decades (on temporal scale).

F IGURE 4 M EASUREMENT F REQUENCIES CAN BE DETERMINED WITH P-F INTERVAL

Be whatever the unit of measurement and the P-F interval, a successful CBMM system
should be capable of detecting the early signals after P and respond to them long before
F. The response action typically consists of multiple steps (as laid out below) and should
all be accompanied within the P-F interval.
1.
2.
3.
4.

Analyzing the root-cause based on detected early signals
Planning corrective action based on the analyzed root-cause
Organizing the resources to implement the laid out plan
Actual implementation of the corrective action plan

The amount of time needed for these response actions usually vary, from a matter of
hours (e.g. until the end of operating cycle or end of shift), minutes (e.g. to clear people
from a failing building), to weeks or even months (e.g. until a major shutdown).
Thus, it is a common practice to use the inspection interval to be half the P-F interval.
This will ensure that there is at-least half the P-F interval remaining after the potentialfailure detection for corrective action plan. However, it should be noted that most of
the times earlier the corrective action plans are implemented, lower the cost – in which
cases, some other smaller fraction of P-F interval can be used as the inspection interval,
so that potential problems can be detected as early as possible and rectified.
However, an important point to be remembered is P-F interval is not an easy metric to
be computed. It varies from asset type to asset type, environment to environment and
even from one asset to another with in the same asset type (based on its previous fault
history and working conditions). Understanding the failure patterns, and identifying the
class of pattern to which the asset belongs, its past fault history, manufacturer’s
recommendations, operating conditions, expert judgment etc. are some of the sources
that can help in arriving at an accurate P-F interval for any given asset/system.
At each inspection interval, the CBMM system collects data from sensors and uses one
of the following methods to determine the condition of the asset being monitored:







Trend Analysis: Reviews the data to find if the asset being monitored is on an
obvious and immediate downward slide toward failure. Typically a minimum of
three monitoring points are recommended for arriving at a trend accurately as
a reliable measure to find if the condition is deprecating linearly.
Pattern recognition: Decodes the causal relations between certain type of
events and machine failures. For example, after being used for a certain
product run, one of the components used in the asset fails due to stresses that
are unique to that run
Critical range and limits: Tests to verify if the data is within a critical range limit
(set by professional intuition)
Statistical process analysis: Existing failure record data (retrieved from
warranty claims, data archives and case-study histories) is driven through
analytical procedures to find an accurate model for the failure curves and the
new data is compared against those models to identify any potential failures.

Based on the failure mode and asset class the right method for the prediction can vary.
For example, assets that fall into type E class (bathtub pattern) usually benefit from
Weibull distribution, while split system approach is used for complex systems with
multiple sub-systems.
Stream processing the arriving data can help build the trend analysis and critical range
limits, but to accurately process pattern recognition and statistical model building
methods, past history data is as important as the new arriving data. Thus, typically CBM
management systems should keep record of old data for some reasonable amount of
time before they are archived or destroyed. This time period varies from domain to
domain and may even be regulated by local country laws. For example, financial fraud
records may need to be kept active for longer time, in the range of 7 to 15 years per se,
while flight records generated from airplane internal sensors are typically discarded
after the journey completion (primarily due to it being voluminous, though this trend
could soon change as the big data warehousing gets more prominent).
Another reason the old data streams become important is to identify any potential
outliers in the streamed-in data from the sensors. While monitoring for the faults in the
assets, it is possible that the sensor that is taking the readings, being a machine itself,
could fail and start sending faulty records. Intelligent CBM management systems
capable of detecting such outliers will try to isolate these faulty sensors and notify the
appropriate personal for corrective action, or substitute it with proper estimated data
based on previous records. In either case, human inspection is as much necessary as a
completely automated monitoring system – for automation only complements the
human surveillance efforts, not replace them. Thus, many automated monitoring
systems provide a way for manual
override for configurable parts of
their functionality.
Typically a CBM management
solution will have an administrative
console that lets the operators define
and update various parameters, such
as the critical limits, response
notifications,
default
corrective
actions etc. Advanced management
systems also allow the administrators
to access the monitoring solution
functionality remotely through web
UI and mobile UI, capable of sending
periodic digests weekly or monthly
for pre-configured stake-holders
reporting the status of the asset
being monitored on a regular basis.
F IGURE 5 CBM M ANAGEMENT S YSTEM A RCHITECTURE
With architectures like the one
shown in Figure 5 and common
interface standards such as IEEE 1451, IEEE 1232, MIMOSA and OSA-CBM, advanced
management systems integrations become possible among disparate software and
hardware components from different vendors, all working hard together just for one
single purpose – to provide the operators maximum usage out of their assets.

B EST P RACTICES G UIDELINES
Here are few guidelines that can help in formulating the best practices for maintenance
strategies:








Try organizing and reviewing repair tasks in cost descending order.
Since planned component replacement is less costly than unscheduled repair
visits, review maintenance costs by apparatus class and repair task for
improvement.
In case of fleet management, read work order comments for specifics regarding
repairs and note the mileage. Take into consideration the environment where
the vehicle works as the terrain or weather may affect maintenance.
Review current component brands’ performance. A different brand or a higher
quality of the same brand may last longer.
Investigate each repair task in detail before taking action. Ensure that every
action taken will further reduce maintenance costs and downtime.








After instituting changes, track repairs to validate anticipated results and
document the cost savings. Share the cost savings with all involved personnel
to improve relationships and foster a team approach for a good management
practice.
Look for similarities on specific components that may indicate design flaws or
the need for additional technician training. Frequent breakdowns on specific
units can indicate abuse or poor operator practices. Look for opportunities to
lower maintenance costs and at the same time improve repair practices and
operator care.
One of the highest maintenance costs for fleets is tires; therefore, take time
researching this expense. The right quality tire for the job function will make a
difference. Make sure tire ratings are correct for the weight of the vehicle fully
loaded. Consider the tread design, ply rating, composition, and heat rating.
Review service calls, breakdowns, and towing expenses for possible predictive
maintenance by unit and cause by month. Note that it incurs additional costs to
dispatch a vendor or an employee to perform on-site repairs or towing units to
a repair facility. As instances are reviewed and appropriate action is taken, the
number of such instances should decrease, thereby reducing maintenance
costs.

C ONCLUDING R EMARKS
Emergence of uniquely addressable embeddable devices has raised the bar on M2M
capabilities. Though the technology itself is not new, its application has been quite
limited until now. M2M technologies generate volumes of data that are orders of
magnitude larger than what operators have dealt with previously. Real-time big data
computation capabilities have opened the flood gates for creating new predictive
analytics capabilities into an otherwise simple data log systems, enabling real-time
control and monitoring to take preventive action in case of any anomalies. Conditionbased-maintenance, usage-based-insurance, smart metering and demand-based load
generation etc. are some of the predictive analytics use cases for M2M. The possibilities
are rich and early players are reaping the benefits through cost-savings and innovative
service offerings.

R EFERENCES





Moubray, John. Reliability-Centered Maintenance. Industrial Press. New York,
NY. 1997
Nowlan, F. Stanley, and Howard F. Heap. Reliability-Centered Maintenance.
Department of Defense, Washington, D.C. 1978. Report Number AD-A066579
NFPA 1911, Standard for the Inspection, Maintenance, Testing, and Retirement
of In-Service Automotive Fire Apparatus, 2007 Edition, 6.1.5.1, p1911-14
Weibull, W. "A statistical distribution function of wide applicability", Journal of
Applied Mechanics-Trans. ASME 18 (3): 293–297. 1951
A BOUT A UTHOR
Gopalakrishna Palem is a Corporate Technology Strategist specialized in Distributed Computing systems
and Cloud operations. During his 12+ year tenure at Microsoft and Oracle, he helped many customers
build their high volume transactional systems, distributed render pipelines, advanced visualization &
modeling tools, real-time dataflow dependency-graph architectures, and Single-sign-on implementations
for M2M telematics.
When he is not busy working, he is actively engaged in driving open-source efforts and guiding
researchers on Algorithmic Information Theory, Systems Control and Automata, Poincare recurrences for
finite-state machines, Knowledge modeling in data-dependent systems and Natural Language Processing.

He can be reached at Gopalakrishna.Palem@Yahoo.com

More Related Content

What's hot

Response time analysis of mixed messages in CAN
Response time analysis of mixed messages in CANResponse time analysis of mixed messages in CAN
Response time analysis of mixed messages in CANIJERA Editor
 
IRJET- Automatic Traffic Control System based on the Vehicular Density
IRJET- Automatic Traffic Control System based on the Vehicular DensityIRJET- Automatic Traffic Control System based on the Vehicular Density
IRJET- Automatic Traffic Control System based on the Vehicular DensityIRJET Journal
 
IRJET- Smart Helmet an Intelligent Bike System
IRJET- 	  Smart Helmet an Intelligent Bike SystemIRJET- 	  Smart Helmet an Intelligent Bike System
IRJET- Smart Helmet an Intelligent Bike SystemIRJET Journal
 
M2M Perspective of New World Health Paradigm at Bio-IT World Asia 2013
M2M Perspective of  New World Health Paradigm at Bio-IT World Asia 2013M2M Perspective of  New World Health Paradigm at Bio-IT World Asia 2013
M2M Perspective of New World Health Paradigm at Bio-IT World Asia 2013Narendra K Saini
 
Oozi cats (Capri 2013)
Oozi cats (Capri 2013)Oozi cats (Capri 2013)
Oozi cats (Capri 2013)smartdoxa
 
IRJET-Intelligent Control of Electronic Appliances using Remote GSM
IRJET-Intelligent Control of Electronic Appliances using Remote GSMIRJET-Intelligent Control of Electronic Appliances using Remote GSM
IRJET-Intelligent Control of Electronic Appliances using Remote GSMIRJET Journal
 
E notice board project report
E notice board project reportE notice board project report
E notice board project reportamit chaudhary
 
IRJET - Vehicle Parking Management System using Load Cell Sensor
IRJET - Vehicle Parking Management System using Load Cell SensorIRJET - Vehicle Parking Management System using Load Cell Sensor
IRJET - Vehicle Parking Management System using Load Cell SensorIRJET Journal
 
IRJET - Accident Monitoring and Rescue System
IRJET - Accident Monitoring and Rescue SystemIRJET - Accident Monitoring and Rescue System
IRJET - Accident Monitoring and Rescue SystemIRJET Journal
 
Wireless Electronic Notice Board
Wireless Electronic Notice BoardWireless Electronic Notice Board
Wireless Electronic Notice BoardSajan CK
 
IRJET- Automotive Safety System using Controller Area Network(CAN) Protocol
IRJET- Automotive Safety System using Controller Area Network(CAN) ProtocolIRJET- Automotive Safety System using Controller Area Network(CAN) Protocol
IRJET- Automotive Safety System using Controller Area Network(CAN) ProtocolIRJET Journal
 
Automatic fire prevteing system in train and buses
Automatic fire prevteing system in train and busesAutomatic fire prevteing system in train and buses
Automatic fire prevteing system in train and busesVasu Manikandan
 
Vehicle Monitoring and Tracking System based on ARM7 and Android Application
Vehicle Monitoring and Tracking System based on ARM7 and Android ApplicationVehicle Monitoring and Tracking System based on ARM7 and Android Application
Vehicle Monitoring and Tracking System based on ARM7 and Android ApplicationIJMTST Journal
 
IRJET- Passenger Indicator for Driver
IRJET- Passenger Indicator for DriverIRJET- Passenger Indicator for Driver
IRJET- Passenger Indicator for DriverIRJET Journal
 
A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...
A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...
A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...csandit
 
IRJET- ATM Security using GSM and MEMS Sensor
IRJET- ATM Security using GSM and MEMS SensorIRJET- ATM Security using GSM and MEMS Sensor
IRJET- ATM Security using GSM and MEMS SensorIRJET Journal
 
Ieeepro techno solutions 2013 ieee embedded project zigbee based intelligen...
Ieeepro techno solutions   2013 ieee embedded project zigbee based intelligen...Ieeepro techno solutions   2013 ieee embedded project zigbee based intelligen...
Ieeepro techno solutions 2013 ieee embedded project zigbee based intelligen...srinivasanece7
 
Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...
Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...
Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...Associate Professor in VSB Coimbatore
 

What's hot (20)

Response time analysis of mixed messages in CAN
Response time analysis of mixed messages in CANResponse time analysis of mixed messages in CAN
Response time analysis of mixed messages in CAN
 
IRJET- Automatic Traffic Control System based on the Vehicular Density
IRJET- Automatic Traffic Control System based on the Vehicular DensityIRJET- Automatic Traffic Control System based on the Vehicular Density
IRJET- Automatic Traffic Control System based on the Vehicular Density
 
IRJET- Smart Helmet an Intelligent Bike System
IRJET- 	  Smart Helmet an Intelligent Bike SystemIRJET- 	  Smart Helmet an Intelligent Bike System
IRJET- Smart Helmet an Intelligent Bike System
 
M2M Perspective of New World Health Paradigm at Bio-IT World Asia 2013
M2M Perspective of  New World Health Paradigm at Bio-IT World Asia 2013M2M Perspective of  New World Health Paradigm at Bio-IT World Asia 2013
M2M Perspective of New World Health Paradigm at Bio-IT World Asia 2013
 
B1803050722
B1803050722B1803050722
B1803050722
 
Db24664671
Db24664671Db24664671
Db24664671
 
Oozi cats (Capri 2013)
Oozi cats (Capri 2013)Oozi cats (Capri 2013)
Oozi cats (Capri 2013)
 
IRJET-Intelligent Control of Electronic Appliances using Remote GSM
IRJET-Intelligent Control of Electronic Appliances using Remote GSMIRJET-Intelligent Control of Electronic Appliances using Remote GSM
IRJET-Intelligent Control of Electronic Appliances using Remote GSM
 
E notice board project report
E notice board project reportE notice board project report
E notice board project report
 
IRJET - Vehicle Parking Management System using Load Cell Sensor
IRJET - Vehicle Parking Management System using Load Cell SensorIRJET - Vehicle Parking Management System using Load Cell Sensor
IRJET - Vehicle Parking Management System using Load Cell Sensor
 
IRJET - Accident Monitoring and Rescue System
IRJET - Accident Monitoring and Rescue SystemIRJET - Accident Monitoring and Rescue System
IRJET - Accident Monitoring and Rescue System
 
Wireless Electronic Notice Board
Wireless Electronic Notice BoardWireless Electronic Notice Board
Wireless Electronic Notice Board
 
IRJET- Automotive Safety System using Controller Area Network(CAN) Protocol
IRJET- Automotive Safety System using Controller Area Network(CAN) ProtocolIRJET- Automotive Safety System using Controller Area Network(CAN) Protocol
IRJET- Automotive Safety System using Controller Area Network(CAN) Protocol
 
Automatic fire prevteing system in train and buses
Automatic fire prevteing system in train and busesAutomatic fire prevteing system in train and buses
Automatic fire prevteing system in train and buses
 
Vehicle Monitoring and Tracking System based on ARM7 and Android Application
Vehicle Monitoring and Tracking System based on ARM7 and Android ApplicationVehicle Monitoring and Tracking System based on ARM7 and Android Application
Vehicle Monitoring and Tracking System based on ARM7 and Android Application
 
IRJET- Passenger Indicator for Driver
IRJET- Passenger Indicator for DriverIRJET- Passenger Indicator for Driver
IRJET- Passenger Indicator for Driver
 
A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...
A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...
A PROPOSED MODEL FOR TRAFFIC SIGNAL PREEMPTION USING GLOBAL POSITIONING SYSTE...
 
IRJET- ATM Security using GSM and MEMS Sensor
IRJET- ATM Security using GSM and MEMS SensorIRJET- ATM Security using GSM and MEMS Sensor
IRJET- ATM Security using GSM and MEMS Sensor
 
Ieeepro techno solutions 2013 ieee embedded project zigbee based intelligen...
Ieeepro techno solutions   2013 ieee embedded project zigbee based intelligen...Ieeepro techno solutions   2013 ieee embedded project zigbee based intelligen...
Ieeepro techno solutions 2013 ieee embedded project zigbee based intelligen...
 
Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...
Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...
Intelligent Traffic Control System for Congestion Control, Emergency Vehicle ...
 

Viewers also liked

2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test
2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test
2 Parameter vs. 3 Parameter Weibull with a Cable Flex TestRob Schubert
 
La gerencia y ciclo de vida de los proyectos
La gerencia y ciclo de vida de los proyectosLa gerencia y ciclo de vida de los proyectos
La gerencia y ciclo de vida de los proyectosSilviaCastroMoreno
 
Waterleap webinar1 strategy design waste water treatment ro25.03.2016
Waterleap webinar1 strategy design waste water treatment ro25.03.2016Waterleap webinar1 strategy design waste water treatment ro25.03.2016
Waterleap webinar1 strategy design waste water treatment ro25.03.2016Business Development Group
 
10 coisasqueoshomenspodemfazer
10 coisasqueoshomenspodemfazer10 coisasqueoshomenspodemfazer
10 coisasqueoshomenspodemfazerAppr Associação
 
U.S. Organic Honey Market. Analysis and Forecast To 2025
U.S. Organic Honey Market. Analysis and Forecast To 2025U.S. Organic Honey Market. Analysis and Forecast To 2025
U.S. Organic Honey Market. Analysis and Forecast To 2025IndexBox Marketing
 
5th (13.04.2015) on cassia bark Diptarco Singha
5th (13.04.2015) on cassia bark Diptarco Singha5th (13.04.2015) on cassia bark Diptarco Singha
5th (13.04.2015) on cassia bark Diptarco SinghaDiptarco Singha
 
Citing of Books and Other Non Periodical Publications
Citing of Books and Other Non Periodical PublicationsCiting of Books and Other Non Periodical Publications
Citing of Books and Other Non Periodical Publicationsmoinkeedoinkee
 
IoT M2M case study analysis
IoT M2M case study analysisIoT M2M case study analysis
IoT M2M case study analysisSpiros Louvros
 
Régénération et échec du système
Régénération et échec du systèmeRégénération et échec du système
Régénération et échec du systèmexosea
 
Leading and Engaging a Diverse Workforce
Leading and Engaging a Diverse WorkforceLeading and Engaging a Diverse Workforce
Leading and Engaging a Diverse WorkforceEngage for Success
 
How To Write Effective Case Scenarios
How To Write Effective Case ScenariosHow To Write Effective Case Scenarios
How To Write Effective Case ScenariosJustina Sharma
 
Фотографии Лыжня России 2016 в г. Тавда
Фотографии Лыжня России 2016 в г. ТавдаФотографии Лыжня России 2016 в г. Тавда
Фотографии Лыжня России 2016 в г. ТавдаRomanenko Evgeniy
 

Viewers also liked (16)

2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test
2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test
2 Parameter vs. 3 Parameter Weibull with a Cable Flex Test
 
La gerencia y ciclo de vida de los proyectos
La gerencia y ciclo de vida de los proyectosLa gerencia y ciclo de vida de los proyectos
La gerencia y ciclo de vida de los proyectos
 
Nick's Recommendation
Nick's RecommendationNick's Recommendation
Nick's Recommendation
 
Waterleap webinar1 strategy design waste water treatment ro25.03.2016
Waterleap webinar1 strategy design waste water treatment ro25.03.2016Waterleap webinar1 strategy design waste water treatment ro25.03.2016
Waterleap webinar1 strategy design waste water treatment ro25.03.2016
 
10 coisasqueoshomenspodemfazer
10 coisasqueoshomenspodemfazer10 coisasqueoshomenspodemfazer
10 coisasqueoshomenspodemfazer
 
present95
present95present95
present95
 
Anunt webinar6 Waterleap Moldova
Anunt webinar6 Waterleap MoldovaAnunt webinar6 Waterleap Moldova
Anunt webinar6 Waterleap Moldova
 
U.S. Organic Honey Market. Analysis and Forecast To 2025
U.S. Organic Honey Market. Analysis and Forecast To 2025U.S. Organic Honey Market. Analysis and Forecast To 2025
U.S. Organic Honey Market. Analysis and Forecast To 2025
 
5th (13.04.2015) on cassia bark Diptarco Singha
5th (13.04.2015) on cassia bark Diptarco Singha5th (13.04.2015) on cassia bark Diptarco Singha
5th (13.04.2015) on cassia bark Diptarco Singha
 
Citing of Books and Other Non Periodical Publications
Citing of Books and Other Non Periodical PublicationsCiting of Books and Other Non Periodical Publications
Citing of Books and Other Non Periodical Publications
 
IoT M2M case study analysis
IoT M2M case study analysisIoT M2M case study analysis
IoT M2M case study analysis
 
Régénération et échec du système
Régénération et échec du systèmeRégénération et échec du système
Régénération et échec du système
 
Leading and Engaging a Diverse Workforce
Leading and Engaging a Diverse WorkforceLeading and Engaging a Diverse Workforce
Leading and Engaging a Diverse Workforce
 
How To Write Effective Case Scenarios
How To Write Effective Case ScenariosHow To Write Effective Case Scenarios
How To Write Effective Case Scenarios
 
How to face exam
How to face examHow to face exam
How to face exam
 
Фотографии Лыжня России 2016 в г. Тавда
Фотографии Лыжня России 2016 в г. ТавдаФотографии Лыжня России 2016 в г. Тавда
Фотографии Лыжня России 2016 в г. Тавда
 

Similar to M2M Telematics & Predictive Analytics White Paper by Gopalakrishna

Paper id 24201457
Paper id 24201457Paper id 24201457
Paper id 24201457IJRAT
 
M2M Presentation at Telecom Council of Silicon Valley
M2M Presentation at Telecom Council of Silicon ValleyM2M Presentation at Telecom Council of Silicon Valley
M2M Presentation at Telecom Council of Silicon ValleyDaniel Kellmereit
 
M2 m communication whitepaper
M2 m communication whitepaperM2 m communication whitepaper
M2 m communication whitepaperResearch48
 
Amir ahmadian m2 m communications as part of wireless sensor networks-final v...
Amir ahmadian m2 m communications as part of wireless sensor networks-final v...Amir ahmadian m2 m communications as part of wireless sensor networks-final v...
Amir ahmadian m2 m communications as part of wireless sensor networks-final v...Amir Mehdi Ahmadian
 
M2M Market Analysis, SDP Global Summit
M2M Market Analysis, SDP Global Summit M2M Market Analysis, SDP Global Summit
M2M Market Analysis, SDP Global Summit Alan Quayle
 
Management Summary of Onderzoek Flexibel Gebruik van MNC's
Management Summary of Onderzoek Flexibel Gebruik van MNC's Management Summary of Onderzoek Flexibel Gebruik van MNC's
Management Summary of Onderzoek Flexibel Gebruik van MNC's Raindeer
 
2 g _3g__4g..._omg_what_g_is_right_for_m2m
2 g _3g__4g..._omg_what_g_is_right_for_m2m2 g _3g__4g..._omg_what_g_is_right_for_m2m
2 g _3g__4g..._omg_what_g_is_right_for_m2mIrfan Ahmad
 
Consultation paper m2_m _18_october_2016
Consultation paper m2_m _18_october_2016Consultation paper m2_m _18_october_2016
Consultation paper m2_m _18_october_2016soumyadeepm96
 
M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014
M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014
M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014Martyn Taylor
 
Gsm energy meter
Gsm energy meterGsm energy meter
Gsm energy meterikm104
 
Gsmbasedcds projectreport-121112000646-phpapp02
Gsmbasedcds projectreport-121112000646-phpapp02Gsmbasedcds projectreport-121112000646-phpapp02
Gsmbasedcds projectreport-121112000646-phpapp02Shashank Singh
 
M2 m summary for all
M2 m summary for allM2 m summary for all
M2 m summary for allTarik KUCUK
 
Anti theftsystemforvechicles1 final
Anti theftsystemforvechicles1 finalAnti theftsystemforvechicles1 final
Anti theftsystemforvechicles1 finalAshu0711
 

Similar to M2M Telematics & Predictive Analytics White Paper by Gopalakrishna (20)

Lightweight M2M
Lightweight M2MLightweight M2M
Lightweight M2M
 
Paper id 24201457
Paper id 24201457Paper id 24201457
Paper id 24201457
 
M2M Presentation at Telecom Council of Silicon Valley
M2M Presentation at Telecom Council of Silicon ValleyM2M Presentation at Telecom Council of Silicon Valley
M2M Presentation at Telecom Council of Silicon Valley
 
M2 m communication whitepaper
M2 m communication whitepaperM2 m communication whitepaper
M2 m communication whitepaper
 
Amir ahmadian m2 m communications as part of wireless sensor networks-final v...
Amir ahmadian m2 m communications as part of wireless sensor networks-final v...Amir ahmadian m2 m communications as part of wireless sensor networks-final v...
Amir ahmadian m2 m communications as part of wireless sensor networks-final v...
 
Bi oilandgas2-ps
Bi oilandgas2-psBi oilandgas2-ps
Bi oilandgas2-ps
 
M2M Market Analysis, SDP Global Summit
M2M Market Analysis, SDP Global Summit M2M Market Analysis, SDP Global Summit
M2M Market Analysis, SDP Global Summit
 
Management Summary of Onderzoek Flexibel Gebruik van MNC's
Management Summary of Onderzoek Flexibel Gebruik van MNC's Management Summary of Onderzoek Flexibel Gebruik van MNC's
Management Summary of Onderzoek Flexibel Gebruik van MNC's
 
2 g _3g__4g..._omg_what_g_is_right_for_m2m
2 g _3g__4g..._omg_what_g_is_right_for_m2m2 g _3g__4g..._omg_what_g_is_right_for_m2m
2 g _3g__4g..._omg_what_g_is_right_for_m2m
 
The M2M platform for a connected world
The M2M platform for a connected worldThe M2M platform for a connected world
The M2M platform for a connected world
 
Consultation paper m2_m _18_october_2016
Consultation paper m2_m _18_october_2016Consultation paper m2_m _18_october_2016
Consultation paper m2_m _18_october_2016
 
M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014
M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014
M2M (Machine to Machine) & MVNOs - Mobile telecommunications in 2014
 
Ami system using dlms
Ami system using dlmsAmi system using dlms
Ami system using dlms
 
Iot Evolution
Iot EvolutionIot Evolution
Iot Evolution
 
Gsm energy meter
Gsm energy meterGsm energy meter
Gsm energy meter
 
Gsmbasedcds projectreport-121112000646-phpapp02
Gsmbasedcds projectreport-121112000646-phpapp02Gsmbasedcds projectreport-121112000646-phpapp02
Gsmbasedcds projectreport-121112000646-phpapp02
 
Repot on gsm based arm
Repot on gsm based armRepot on gsm based arm
Repot on gsm based arm
 
M2 m summary for all
M2 m summary for allM2 m summary for all
M2 m summary for all
 
M2M summary for all
M2M summary for allM2M summary for all
M2M summary for all
 
Anti theftsystemforvechicles1 final
Anti theftsystemforvechicles1 finalAnti theftsystemforvechicles1 final
Anti theftsystemforvechicles1 final
 

More from Gopalakrishna Palem

Big Data Predictive Analytics for Retail businesses
Big Data Predictive Analytics for Retail businessesBig Data Predictive Analytics for Retail businesses
Big Data Predictive Analytics for Retail businessesGopalakrishna Palem
 
Food borne disease outbreak analysis by Cenacle Research
Food borne disease outbreak analysis by Cenacle ResearchFood borne disease outbreak analysis by Cenacle Research
Food borne disease outbreak analysis by Cenacle ResearchGopalakrishna Palem
 
Big Data Analytics Solutions for healthcare by Cenacle Research
Big Data Analytics Solutions for healthcare by Cenacle ResearchBig Data Analytics Solutions for healthcare by Cenacle Research
Big Data Analytics Solutions for healthcare by Cenacle ResearchGopalakrishna Palem
 
Media Services Profile of Gopalakrishna (GK) Palem
Media Services Profile of Gopalakrishna (GK) PalemMedia Services Profile of Gopalakrishna (GK) Palem
Media Services Profile of Gopalakrishna (GK) PalemGopalakrishna Palem
 
Big data Analytics for Resource Management by Cenacle Research
Big data Analytics for Resource Management by Cenacle ResearchBig data Analytics for Resource Management by Cenacle Research
Big data Analytics for Resource Management by Cenacle ResearchGopalakrishna Palem
 
Predictive Analytics for Restaurant Business by Cenacle Research
Predictive Analytics for Restaurant Business by Cenacle ResearchPredictive Analytics for Restaurant Business by Cenacle Research
Predictive Analytics for Restaurant Business by Cenacle ResearchGopalakrishna Palem
 
Gopalakrishna: big data consultant
Gopalakrishna: big data consultantGopalakrishna: big data consultant
Gopalakrishna: big data consultantGopalakrishna Palem
 
Medicare healthcare charge disparity analysis
Medicare healthcare charge disparity analysisMedicare healthcare charge disparity analysis
Medicare healthcare charge disparity analysisGopalakrishna Palem
 
The practice of predictive analytics in healthcare
The practice of predictive analytics in healthcareThe practice of predictive analytics in healthcare
The practice of predictive analytics in healthcareGopalakrishna Palem
 
Condition-based Maintenance for High-speed Fleet
Condition-based Maintenance for High-speed FleetCondition-based Maintenance for High-speed Fleet
Condition-based Maintenance for High-speed FleetGopalakrishna Palem
 
Condition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematicsCondition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematicsGopalakrishna Palem
 

More from Gopalakrishna Palem (11)

Big Data Predictive Analytics for Retail businesses
Big Data Predictive Analytics for Retail businessesBig Data Predictive Analytics for Retail businesses
Big Data Predictive Analytics for Retail businesses
 
Food borne disease outbreak analysis by Cenacle Research
Food borne disease outbreak analysis by Cenacle ResearchFood borne disease outbreak analysis by Cenacle Research
Food borne disease outbreak analysis by Cenacle Research
 
Big Data Analytics Solutions for healthcare by Cenacle Research
Big Data Analytics Solutions for healthcare by Cenacle ResearchBig Data Analytics Solutions for healthcare by Cenacle Research
Big Data Analytics Solutions for healthcare by Cenacle Research
 
Media Services Profile of Gopalakrishna (GK) Palem
Media Services Profile of Gopalakrishna (GK) PalemMedia Services Profile of Gopalakrishna (GK) Palem
Media Services Profile of Gopalakrishna (GK) Palem
 
Big data Analytics for Resource Management by Cenacle Research
Big data Analytics for Resource Management by Cenacle ResearchBig data Analytics for Resource Management by Cenacle Research
Big data Analytics for Resource Management by Cenacle Research
 
Predictive Analytics for Restaurant Business by Cenacle Research
Predictive Analytics for Restaurant Business by Cenacle ResearchPredictive Analytics for Restaurant Business by Cenacle Research
Predictive Analytics for Restaurant Business by Cenacle Research
 
Gopalakrishna: big data consultant
Gopalakrishna: big data consultantGopalakrishna: big data consultant
Gopalakrishna: big data consultant
 
Medicare healthcare charge disparity analysis
Medicare healthcare charge disparity analysisMedicare healthcare charge disparity analysis
Medicare healthcare charge disparity analysis
 
The practice of predictive analytics in healthcare
The practice of predictive analytics in healthcareThe practice of predictive analytics in healthcare
The practice of predictive analytics in healthcare
 
Condition-based Maintenance for High-speed Fleet
Condition-based Maintenance for High-speed FleetCondition-based Maintenance for High-speed Fleet
Condition-based Maintenance for High-speed Fleet
 
Condition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematicsCondition-based Maintenance with sensor arrays and telematics
Condition-based Maintenance with sensor arrays and telematics
 

Recently uploaded

Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creationsnakalysalcedo61
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024christinemoorman
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckPitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckHajeJanKamps
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...lizamodels9
 
Islamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in IslamabadIslamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in IslamabadAyesha Khan
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewasmakika9823
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiMalviyaNagarCallGirl
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
rishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdfrishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdfmuskan1121w
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation SlidesKeppelCorporation
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...lizamodels9
 
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCRsoniya singh
 
Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...
Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...
Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...lizamodels9
 

Recently uploaded (20)

Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creations
 
KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckPitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
 
Islamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in IslamabadIslamabad Escorts | Call 03274100048 | Escort Service in Islamabad
Islamabad Escorts | Call 03274100048 | Escort Service in Islamabad
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
rishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdfrishikeshgirls.in- Rishikesh call girl.pdf
rishikeshgirls.in- Rishikesh call girl.pdf
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
 
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
 
Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...
Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...
Lowrate Call Girls In Laxmi Nagar Delhi ❤️8860477959 Escorts 100% Genuine Ser...
 
Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
 

M2M Telematics & Predictive Analytics White Paper by Gopalakrishna

  • 1. 2013 M2M Telematics & Predictive Analytics Gopalakrishna Palem 2/24/2013
  • 2. C ONTENTS Executive Summary .......................................................................................................................................................2 M2M Drivers ..........................................................................................................................................................4 Embedded Telematics Trends ...............................................................................................................................4 Mobile Device Telematics Trends ..........................................................................................................................5 Predictive Maintenance .................................................................................................................................................7 Solution Enablers .......................................................................................................................................................9 The Methodology ....................................................................................................................................................11 Best Practices Guidelines .........................................................................................................................................15 Concluding Remarks ....................................................................................................................................................16 References ...................................................................................................................................................................16 About Author ...............................................................................................................................................................17
  • 3. E XECUTIVE S UMMARY Number of machine-to-machine (M2M) device connections world-wide is expected to grow from 130 million in 2012 to 2.14 billion by 2021, while the total world-wide M2M management market is expected to grow from USD459 million in 2012 to USD1.1 billion in 2016 at 23% CAGR (Figure 1). 1200 1118 Revenue (USD Million) 1000 895 800 724 574 600 459 397 400 200 0 2011 F IGURE 1 M2M 2012 2013 2014 2015 2016 MANAGEMENT MARKET FORECAST ( S O URCE : A NA LYSYS M ASON , 2012 ) CSPs are actively exploring opportunities for providing M2M solutions to industry sectors such as automotive and transport, energy and utilities, security and surveillance, public safety, financial services, retail, healthcare, and warehousing and distribution.      Automotive: o Vehicle & Asset Tracking: Real-time GPS/GSM evaluation and tracking o Fleet management: Real-time predictive maintenance, inventory control, optimal work-schedules o Eco-routing: Real-time traffic monitoring systems for vehicle efficiency and passenger safety with cooperative M2M interactions Healthcare: o Telemedicine: Health monitoring and remote medicine administration o Assisted Living: Supportive sensor aids and safety guides Retail: o Match sales: Real-time auctioning for buyer’s basket o Supply chain monitoring: Real-time environment conditions of goods, location tracking o Connected cabinets: Real-time stock level display, revenue reports, targeted advertising Finance: o Usage-based Insurance Services Energy & Utilities:
  • 4. o o Smart Grid: Real-time network optimization with demand based generation, load-based distribution and smart metering capabilities Monitoring & Control: Remote monitoring operational metrics, such as pipeline pressure, temperature etc. As the global energy usage continues to surge, the confluence of M2M telematics and real-time analytics is the key for delivering green solutions. Take an example of electric vehicle (EV) that you drive home and connect to the electric grid, letting it figure out your next commute requirement from the calendar appointments on your hand-held or mobile, and your grid’s active load usage and nonpeak hours from the energy provider, all summed up to auto-tune its own recharging schedule to reduce the load on grid while taking into account any emergency commutes that might be required based on your personal commute history and your associations – computed all without the need for slightest manual intervention, that’s M2M Telematics hand-in-hand with real-time analytics at work. Intelligent devices, such as the EV presented above, are the promise of M2M. On a broader note, the machine-to-machine (M2M) communication operations include both, intelligent control of remote machine parts (telematics) and remote measurement of various sensor readings (telemetry). A typical definition of M2M in mobile space is, machines using network resources to communicate with remote application infrastructure for monitoring and control, either of the machine itself or its surrounding environment. The possibility of having billions of devices being uniquely addressable with IPV6 (Internet Protocol version 6), the advent of seamless wireless communications with improved standardization and broadband signal capabilities, and the onslaught of realtime analytics on commodity hardware with large data sets being processed in parallel – all are contributing to the success of M2M telematics systems with real-time predictive analytic capabilities. A typical architecture of such a system reads as shown in Figure 2. Analytics Processing Stream Processing Remote Administration External Sensors Asset with Internal Sensors Monitor & Control Center F IGURE 2 M2M T ELEMATICS WITH P REDICTIVE A NALYTICS S YSTEM
  • 5. M2M D R I V E R S Key drivers for M2M initiatives are as below:       Telematics and telemetry are increasingly being perceived as sources of greater operational efficiency and cost reduction. o Automated monitoring of heating, ventilation and cooling are few driving factors for smart buildings o Street lights that operate based on traffic flow, alternate automatic routing based on peak-hours etc. are driving factors for smart cities o Predictive maintenance through improved system monitoring, remote monitoring of farms and mining operations etc. are cost saving factors Regulatory requirements for safety and energy efficiency are pushing the utility sector and automotive industries to use innovative ways of M2M methods o Emergency calling, accident alerts, cooperative driving etc. are compelling factors for automotive industry o Smart meters and energy demand response are driving factors for Utilities industry Standardization and adaptation of IPV6 across industry has opened the possibility for billions of uniquely addressable IP devices Wide rollout of 3G and LTE networks are providing devices with always on connectivity and increased bandwidth enabling M2M segment applications such as remote surveillance, asset tracker, health meters etc. Smart application development is creating new opportunities for application developers to build applications for every possible segment, right from smart homes to smart amenities Innovations in the retail and consumer electronics segment are pushing the boundaries of connectivity, with applications such as wireless payments to connected satellite navigation systems The electronics and communications industry is rapidly moving towards intelligent, addressable, embeddable devices enabling seamless communications between every device. Following sections describe the embedded and mobile based telematics trends and the potential revenue opportunities, followed by a sector-focus case study. E MB E D D ED T EL E M AT I C S T RE N D S 2.5G GPRS - 3G CDMA 3.5G HSPA - 4G LTE Key Information Dominant embedded technology in Europe CDMA2000 is dominant in USA Europe is moving to WCDMA New systems are evolving rapidly on HSPA Industry wide deployments are expected to be available by 2015 - Remarks New systems should be using 3G Also used in Japan, Korea and China eCall may use either GPRS or WCDMA Available in Europe for Luxury cars May be year earlier for Luxury brands
  • 6. In summary, embedded telematics are likely to continue using 3G and 3.5G technologies until 2015 in the developed countries, and even longer in other areas. LTE is expected to become mainstream 4G technology for mobile phone industry and auto-industry. WiMax missed its opportunity to become mainstream technology, but will become a niche player in most regions. M O BI LE D EV I CE T EL E M AT I CS T R EN D S Mobile device telematics leverage operator’s mobile phone to establish communication between instrument and the monitoring station. Predominantly used in vehicles and automobiles, driven by the need for hands-free interface (HFI). The trends are: Key Information Mobile Phone HFI Available for long time by OEMs Telematics Service - Evolving as a popular telematics approach Primarily for infotainment services - - Telematics Service & Smartphone Apps - Leverage wealth of auto-related smart Apps Smart phone to H-U apps integration emerging - Remarks Initially wired, then Bluetooth Popularized by Ford SYNC success Lower reliability than embedded link Likely to become necessity by 2015 timeframe Need for technology solutions to lower driver distraction Some of the prominent market implementations for automobile telematics in North America segment are: OEM Service GM OnStar/MyLink/Inte lliLink/CUE BMW ConnectDrive / BMW Assist Ford Sync/ MyFord Touch / MyFord Mobile Toyota Safety Connect / Entune Audi Audi Connect Mercedes mBrace Nissan Nissan CarWings Hyundai Blue Link Features eCall/bCall, SVR, Vehicle Slow Down, Google, Mobile App eCall/bCall, Concierge, Lock/Unlock, Diagnostics, Google Services, Tracking, Full Browsing, Mobile Apps, Traffic eCall/bCall, Navigation, Weather, Traffic, Mobile Apps, Live Operator SOS/ACN, Roadside Assistance, Stolen Vehicle Location, Entune Navigation, Weather, Gas prices, Travel Info, News, Wi-Fi Hotspot eCall/bCall, SVR, Crisis Assist, Google Send to Car, Traffic, Weather, Concierge, Lock/Unlock, Car Finder, Diagnostics, Mobile App Charge Levels, Charging Stations, Comparison of Drivers, Google Send to Car Navi, eCall/bCall, Weather, Launch 1996 2001 2007 2009 Technology Embedded/ Mobile Device Embedded/ Mobile Device Embedded/ Mobile Device Embedded/ Mobile Device 2011 Embedded 2011 Embedded 2011 Embedded 2011 Embedded
  • 7. Traffic, POI Voice Rec, Geo Fence, SVR, Diagnostics, Mobile App Despite the present and emerging mobile connectivity trend, embedded wireless modules are expected to grow significantly, mainly due to the stringent quality requirements and reliability standards that hand-held devices fail to meet adequately. Tight automotive requirements are also expected to be in place to sustain the growth of safety and security critical equipment that will be mandated by government regulations, such as eCall in Europe. The European eCall regulations will in fact force all new vehicles by 2015 to adapt a connectivity link for emergency call. The reality is that regulations such as eCall will give raise to further significant demand for telematics, enabling several additional services to be layered on top of basic emergency call. Some of the potential applications on those lines are:          Remote Diagnostics Remote Vehicle Control Vehicle Software Upgrade Electronic Toll Collection Eco-Driving Off-Board Navigation Smart Traffic Control Usage-based Insurance Services Condition-based Maintenance etc. It is the combination of Telematics with Predictive Analytics on Real-time Big Data that makes many of these innovations, such as smart traffic control, usage-based insurance, condition-based maintenance etc… possible, and smart players are already reaping enormous benefits by employing these in their strategic offerings. The following sections present an in-depth review on a sector-focus case-study, namely Condition-based maintenance, describing how predictive analytics and telematics are working together to reduce maintenance costs.
  • 8. P REDICTIVE M AINTENANCE M aintenance, considered as a non-value add function, is ever more requested to contribute higher and higher for costs reduction, keeping the machines in excellent working condition, while satisfying the stringent safety and operational requirements. Manufacturers and operators employ array of maintenance strategies to address that, all of which and can be broadly categorized as below:    Corrective Maintenance Preventive Maintenance Predictive Maintenance Corrective maintenance is the classic Run-to-Failure reactive maintenance that has no special maintenance plan in place. The machine is assumed to be fit unless proven otherwise.  “… In many cases, scheduled overhaul increases the overall failure rate by introducing a high infant mortality rate into an otherwise stable system…” - RCM Guide, NASA  Cons: o o o Pros: o o High risk of collateral damage and secondary failure High production downtime Overtime labor and high cost of spare parts Machines are not over-maintained No overhead of condition monitoring or planning costs Preventive maintenance (PM) is the popular periodic maintenance strategy that is actively employed by all manufacturers and operators in the industry today. An optimal breakdown window is pre-calculated (at the time of component design or installation, based on a wide range of models describing the degradation process of equipment, cost structure and admissible maintenance etc.), and a preventive maintenance schedule is laid out. Maintenance is carried-out on those periodic intervals, assuming that the machine is going to break otherwise.   Cons: o o Pros: o o o Calendar-based maintenance: Machines are repaired when there are no faults There will still be unscheduled breakdowns Fewer catastrophic failures and lesser collateral damage Greater control over spare-parts and inventory Maintenance is performed in controlled manner, with a rough estimate of costs well-known ahead of time Predictive Maintenance (PdM) is an emerging alternative to the above two that employs predictive analytics over real-time data collected (streamed) from parts of the machine to a centralized processor that detects variations in the functional parameters and detects anomalies that can potentially lead to breakdowns. The real-time nature of the analytics helps identify the functional breakdowns long before they happen but soon after their potential cause arises.
  • 9.  “… Preventive maintenance is how fleets attempt to avoid breakdowns today. But new thinking is moving towards predictive repairs, transforming time-or mileagebased model with one that is based on evidence of need…”  Pros: o o o Cons: o o Unexpected breakdown is reduced or even completely eliminated Parts are ordered when needed and maintenance performed when convenient Equipment life is maximized High investment costs Additional skills might be required Predictive maintenance, also known as Condition Based Maintenance (CBM) differs from preventive maintenance by basing maintenance need on the actual condition of the machine rather than on some preset schedule. For example, a typical preventive maintenance strategy demands automobile operators to change the engine oil after every 3,000 to 5,000 Miles traveled. No concern is given to the actual condition of vehicle or performance capability of the oil. If on the other hand, the operator has some way of knowing or somehow measuring the actual condition of the vehicle and the oil lubrication properties, he/she gains the potential to extend the vehicle usage and postpone oil change until the vehicle has traveled 10,000 Miles, or perhaps pre-pone the oil change in case of any abnormality. Predictive analytics with M2M telematics provides such deep insights into the machine operations and full functionality status – giving rise to optimal maintenance schedules with improved machine availability. Underlying preventive maintenance is the popular belief that machine failures are directly related to machine operating age, which studies indicate not to be true always. Failures are not always linear in nature. Studies indicate that 89% of the problems are random with no direct relation to the age. Table 1 showcases some of these well-known failure patterns and their conditional probability (Y-axis) with respect to Time (X-axis). T ABLE 1 F AILURE C ONDITIONAL P ROBABILITY C URVES ( SOUR CE : J OHN M OUBRAY , N OWLAN & H EAP ) Age-Related = 11% Random = 89% Wear out Infant Mortality Type A = 2% Type B = 68% Bathtub Type E = 4% Initial Break-in Period Type C = 7% Fatigue Relatively Constant Type F = 5% Type D = 14%
  • 10. “Predictive analytics help reduce overmaintenance, decrease operational costs and maximize equipment availability” Complex items frequently demonstrate some infant mortality, after which their failure probability either increases gradually or remains constant, and a marked wear-out age is not common. Considering this fact, the chance of a preventive maintenance avoiding a potential failure is low, as there is every possibility that the system can fail right after a scheduled maintenance. Thus, preventive maintenance imposes additional costs of repair. Predictive Maintenance reduces such additional costs by scheduling maintenance if and only when a potential breakdown symptom is identified. Preventive Maintenance Predictive Maintenance F IGURE 3 P REDICTIVE MAINTENANC E S CHEDULES ARE SMARTER AND CONVENIENT However, the costs of monitoring equipment and monitoring operations should not exceed the original asset replacement costs; lest the whole point of Predictive Maintenance becomes moot. Studies have estimated that a properly functioning CBM program can provide savings of 8% to 12% over the traditional maintenance schemes. Independent surveys indicate the following industrial average savings resultant from initiation of a functional predictive maintenance program:     Reduction in maintenance costs: 25% to 30% Elimination of breakdowns: 70% to 75% Reduction in equipment or process downtime: 35% to 45% Increase in production: 20% to 25% Apart from the above, improved worker and environment safety, increased component availability, better product quality etc. are making more and more manufacturers and operators embrace CBM based management solutions. S OLUTION E N ABLERS Predictive Maintenance or Condition-Based-Maintenance Management (CBMM) solution is enabled by three major technology enhancements over a traditional maintenance schedule: 1. 2. 3. Remote Sensor Monitoring & Data Capturing Real-time Stream Processing of Sensor Data Predictive Analytics
  • 11. “…Predictive technology does not avoid failures – rather what it avoids is the high-costs associated with the failures, by providing early warnings of the failures so that operators can decide when and where to address them before they actually happen” CBMM solutions essentially operate by having sensors attached to remote assets (mobile or stationary) that send continuous streams of data about the assets’ operational conditions to a monitoring station that then analyzes them in real-time using predictive analytic models and detects any problems in the behavior or state of the asset. Once a problem is detected, appropriate pre-configured action is taken to notify the operator or manufacture for corrective action. The monitoring station in question can be on the same network as that of the sensors or it could be in a remote location far away from them, connected through wide area networks or satellite networks. Nature of the sensors being monitored, frequency of the data getting collected and precision of the analytic models being used – all affect the quality of the prediction results. Thus, it is imperative that manufacturers and operators define all these parameters with utmost care while deploying a condition-based-maintenance management system. This, however, entails a thorough understanding of the system under operation and expects a clear-cut answer as to what is being monitored and what is expected out of such monitoring. Some of the questions that can help manufacturers and operators along those lines are: For monitoring:     Which parts of the system or asset are expected to be monitored? What type of data is expected to be collected and which type of sensors give such data? For example, visual data, thermal data etc. What is the expected frequency for the data collection? How should any failures in the sensors be handled? For real-time stream collection and processing at the monitoring station:    What is the acceptable data processing latency? How to deal with imperfections in the received data? For example, a faulty sensor sending incorrect data What should be done with the collected data after processing? For Analytics sub-system:      Which analysis technique accurately models the asset/system behavior? What is the definition of acceptable behavior and anomaly? What should be the response in case of any anomaly detection? What should be the reasonable timeframe between anomaly detection and corrective action? How to deal with situations where there are multiple anomalies detected at the same time? Generic and security related questions:  Who should be allowed to access the collected data and analysis results?
  • 12.  What is the change management process required in case one wants to tune the tracking and analysis parameters? The following section briefly summarizes some of the industry standard methods used in CBMM systems and can help in answering the above questions. T HE M ETHODOLOGY The primary component in a condition-based-monitoring management solution is a sensor array and the measurements it provide. Some of the widely used measurement techniques in the industry are:  Temperature Measurement: Thermal indicators, such as temperature-sensitive paint, thermography etc., help detect potential failures arising out of temperature changes in the equipment. Excessive mechanical friction, degraded heat transfer, poor electrical connections are some of the problems that can be detected with this type of measurement. Method Point Temperature Description A thermocouple or RTD Area Pyrometer IR radiation measured from a surface, often with laser sight Temperature Paint Chemical indicators calibrated to change colors at specified temperature Handheld still or video camera sensitive to emitted IR Thermography  Applications Can be used on all accessible surfaces Good for walk around temperature checks on machines and panels Works great for inspection rounds Best for remote monitoring. Requires good training Dynamic Monitoring: Spectrum analysis, shock pulse analysis are some of the dynamic monitoring methods that measure and analyze energy emitted from mechanical equipment in the form of waves, vibration, pulses and acoustic effects. Wear and tear, imbalance, misalignment and internal surface damage are some of the problems that can be detected with this type of measurement. Method Description Applications ISO Filtered velocity 2Hz-1kHz filtered velocity A general condition indicator SPM Carpet and Peak related to demodulation of sensor resonance around 30kHz Single value indicator method Acoustic Emission Distress & dB, demodulates a 100kHz carrier sensitive to stress waves Better indicator than ISO velocity, without the ISO comfort zone Vibration Meters Combine velocity, bearing and acceleration techniques ISO Velocity, envelope and high frequency acceleration give best performance 4-20mA sensors Filter data converted DCS/PLC compatible signal Useful to home-in on specific problems by special order to bearing
  • 13.      Fluid Analysis: Ferrography, particle counter testing are some of the fluid analysis methods performed on different types of oils, such as lubrication, hydraulic, insulation oil etc., to identify any potential problems of wear and tear in the machines. Machine degradation, oil contamination, improper oil consistency, oil deterioration are some of the problems that can be detected with this method. The main areas of analysis in this are: o Fluid physical properties: Viscosity, appearance o Fluid chemical properties: TBN, TAN, additives, contamination, % water o Fluid contamination: ISO cleanliness, Ferrography, Spectroscopy, dissolved gases o Machine health: Wear metals associated with plant components Corrosion Monitoring: Methods such as Coupon testing, Corrometer testing help identify the extent of corrosion, corrosion rate and state (active/passive corrosion) for the materials used in the asset. Non-destructive Testing: Involves using non-destructive methods, such as XRays, ultrasonic etc., to detect any potential anomalies arising internal to the asset structure. Most of these tests can be performed while the asset is online and being used Electrical testing and Monitoring: High potential testing, power signal analysis are some of the prominent electrical condition monitoring mechanisms that try to identify any changes in the system properties, such as resistance, conductivity, dielectric strength and potential. Electrical insulation deterioration, broken motor rotor bars and shorted motor stator lamination etc. are some of the problems that can be detected with this type of mechanism Observation and Surveillance: Visual, audio and touch inspection criteria are some of the surveillance condition monitoring techniques based on the human sensory capabilities. They act as supplement to other condition-monitoring techniques and help detect problems such as loose/worn parts, leaking equipment, poor electrical and pipe connections, stream leaks, pressure relief valve leaks and surface roughness changes etc. Once the appropriate measurement mechanisms are in place, the next step is the event definition phase: to define what constitutes an acceptable system behavior and what is to be considered as anomaly. It is useless to put costly monitoring equipment in place, without knowing what to expect out of it. Expert opinion and judgment (such as manufacturer’s recommendations), published information (such as case studies), historical data etc. are some of the good sources that can help in this task. The definition of anomaly should be unambiguous and easy to detect. If the cost of anomaly detection far exceeds the costs of consequences of that anomaly, then it is not a valid scenario for implementing CBM. The next step that follows the event definition phase is, determining event inspection frequency. Frequency of any of form of condition-based-maintenance is based on the fact that most failures do not occur instantaneously, and that it is often possible to detect them during their final stages of deterioration. If evidence can be found that
  • 14. something is in the final stages of failure, it is possible to take action for preventing it from failing completely and/or avoid the consequences. The failure behavior typically exhibited by majority of the systems in operation is as showcased in Figure 4. During operation, over a period of time, the systems enter a phase of potential failure (P), and start displaying few early signs of wear & tear and other stressful behaviors that if neglected finally lead to full functional failure (F). For most of the systems the time interval between the potential failure point (P) and full function failure (F) is large enough to allow detection and prevention of the failure. This time gap between P and F is what is popularly known as the P-F Interval in the literature, and any cost-effective maintenance strategy should try to maximize on it. The P-F Interval could be in hours or days, or even weeks or months, based on the complexity of the system and the unit of measurement - for it is not uncommon to see the P-F Interval being measured in non-time units, such as stop-start cycles or units of output etc. Based on the failure mode and the unit of measurement, the P-F Interval can end up varying from fractions of a second to several decades (on temporal scale). F IGURE 4 M EASUREMENT F REQUENCIES CAN BE DETERMINED WITH P-F INTERVAL Be whatever the unit of measurement and the P-F interval, a successful CBMM system should be capable of detecting the early signals after P and respond to them long before F. The response action typically consists of multiple steps (as laid out below) and should all be accompanied within the P-F interval. 1. 2. 3. 4. Analyzing the root-cause based on detected early signals Planning corrective action based on the analyzed root-cause Organizing the resources to implement the laid out plan Actual implementation of the corrective action plan The amount of time needed for these response actions usually vary, from a matter of hours (e.g. until the end of operating cycle or end of shift), minutes (e.g. to clear people from a failing building), to weeks or even months (e.g. until a major shutdown). Thus, it is a common practice to use the inspection interval to be half the P-F interval. This will ensure that there is at-least half the P-F interval remaining after the potentialfailure detection for corrective action plan. However, it should be noted that most of the times earlier the corrective action plans are implemented, lower the cost – in which cases, some other smaller fraction of P-F interval can be used as the inspection interval, so that potential problems can be detected as early as possible and rectified.
  • 15. However, an important point to be remembered is P-F interval is not an easy metric to be computed. It varies from asset type to asset type, environment to environment and even from one asset to another with in the same asset type (based on its previous fault history and working conditions). Understanding the failure patterns, and identifying the class of pattern to which the asset belongs, its past fault history, manufacturer’s recommendations, operating conditions, expert judgment etc. are some of the sources that can help in arriving at an accurate P-F interval for any given asset/system. At each inspection interval, the CBMM system collects data from sensors and uses one of the following methods to determine the condition of the asset being monitored:     Trend Analysis: Reviews the data to find if the asset being monitored is on an obvious and immediate downward slide toward failure. Typically a minimum of three monitoring points are recommended for arriving at a trend accurately as a reliable measure to find if the condition is deprecating linearly. Pattern recognition: Decodes the causal relations between certain type of events and machine failures. For example, after being used for a certain product run, one of the components used in the asset fails due to stresses that are unique to that run Critical range and limits: Tests to verify if the data is within a critical range limit (set by professional intuition) Statistical process analysis: Existing failure record data (retrieved from warranty claims, data archives and case-study histories) is driven through analytical procedures to find an accurate model for the failure curves and the new data is compared against those models to identify any potential failures. Based on the failure mode and asset class the right method for the prediction can vary. For example, assets that fall into type E class (bathtub pattern) usually benefit from Weibull distribution, while split system approach is used for complex systems with multiple sub-systems. Stream processing the arriving data can help build the trend analysis and critical range limits, but to accurately process pattern recognition and statistical model building methods, past history data is as important as the new arriving data. Thus, typically CBM management systems should keep record of old data for some reasonable amount of time before they are archived or destroyed. This time period varies from domain to domain and may even be regulated by local country laws. For example, financial fraud records may need to be kept active for longer time, in the range of 7 to 15 years per se, while flight records generated from airplane internal sensors are typically discarded after the journey completion (primarily due to it being voluminous, though this trend could soon change as the big data warehousing gets more prominent). Another reason the old data streams become important is to identify any potential outliers in the streamed-in data from the sensors. While monitoring for the faults in the assets, it is possible that the sensor that is taking the readings, being a machine itself, could fail and start sending faulty records. Intelligent CBM management systems capable of detecting such outliers will try to isolate these faulty sensors and notify the
  • 16. appropriate personal for corrective action, or substitute it with proper estimated data based on previous records. In either case, human inspection is as much necessary as a completely automated monitoring system – for automation only complements the human surveillance efforts, not replace them. Thus, many automated monitoring systems provide a way for manual override for configurable parts of their functionality. Typically a CBM management solution will have an administrative console that lets the operators define and update various parameters, such as the critical limits, response notifications, default corrective actions etc. Advanced management systems also allow the administrators to access the monitoring solution functionality remotely through web UI and mobile UI, capable of sending periodic digests weekly or monthly for pre-configured stake-holders reporting the status of the asset being monitored on a regular basis. F IGURE 5 CBM M ANAGEMENT S YSTEM A RCHITECTURE With architectures like the one shown in Figure 5 and common interface standards such as IEEE 1451, IEEE 1232, MIMOSA and OSA-CBM, advanced management systems integrations become possible among disparate software and hardware components from different vendors, all working hard together just for one single purpose – to provide the operators maximum usage out of their assets. B EST P RACTICES G UIDELINES Here are few guidelines that can help in formulating the best practices for maintenance strategies:      Try organizing and reviewing repair tasks in cost descending order. Since planned component replacement is less costly than unscheduled repair visits, review maintenance costs by apparatus class and repair task for improvement. In case of fleet management, read work order comments for specifics regarding repairs and note the mileage. Take into consideration the environment where the vehicle works as the terrain or weather may affect maintenance. Review current component brands’ performance. A different brand or a higher quality of the same brand may last longer. Investigate each repair task in detail before taking action. Ensure that every action taken will further reduce maintenance costs and downtime.
  • 17.     After instituting changes, track repairs to validate anticipated results and document the cost savings. Share the cost savings with all involved personnel to improve relationships and foster a team approach for a good management practice. Look for similarities on specific components that may indicate design flaws or the need for additional technician training. Frequent breakdowns on specific units can indicate abuse or poor operator practices. Look for opportunities to lower maintenance costs and at the same time improve repair practices and operator care. One of the highest maintenance costs for fleets is tires; therefore, take time researching this expense. The right quality tire for the job function will make a difference. Make sure tire ratings are correct for the weight of the vehicle fully loaded. Consider the tread design, ply rating, composition, and heat rating. Review service calls, breakdowns, and towing expenses for possible predictive maintenance by unit and cause by month. Note that it incurs additional costs to dispatch a vendor or an employee to perform on-site repairs or towing units to a repair facility. As instances are reviewed and appropriate action is taken, the number of such instances should decrease, thereby reducing maintenance costs. C ONCLUDING R EMARKS Emergence of uniquely addressable embeddable devices has raised the bar on M2M capabilities. Though the technology itself is not new, its application has been quite limited until now. M2M technologies generate volumes of data that are orders of magnitude larger than what operators have dealt with previously. Real-time big data computation capabilities have opened the flood gates for creating new predictive analytics capabilities into an otherwise simple data log systems, enabling real-time control and monitoring to take preventive action in case of any anomalies. Conditionbased-maintenance, usage-based-insurance, smart metering and demand-based load generation etc. are some of the predictive analytics use cases for M2M. The possibilities are rich and early players are reaping the benefits through cost-savings and innovative service offerings. R EFERENCES     Moubray, John. Reliability-Centered Maintenance. Industrial Press. New York, NY. 1997 Nowlan, F. Stanley, and Howard F. Heap. Reliability-Centered Maintenance. Department of Defense, Washington, D.C. 1978. Report Number AD-A066579 NFPA 1911, Standard for the Inspection, Maintenance, Testing, and Retirement of In-Service Automotive Fire Apparatus, 2007 Edition, 6.1.5.1, p1911-14 Weibull, W. "A statistical distribution function of wide applicability", Journal of Applied Mechanics-Trans. ASME 18 (3): 293–297. 1951
  • 18. A BOUT A UTHOR Gopalakrishna Palem is a Corporate Technology Strategist specialized in Distributed Computing systems and Cloud operations. During his 12+ year tenure at Microsoft and Oracle, he helped many customers build their high volume transactional systems, distributed render pipelines, advanced visualization & modeling tools, real-time dataflow dependency-graph architectures, and Single-sign-on implementations for M2M telematics. When he is not busy working, he is actively engaged in driving open-source efforts and guiding researchers on Algorithmic Information Theory, Systems Control and Automata, Poincare recurrences for finite-state machines, Knowledge modeling in data-dependent systems and Natural Language Processing. He can be reached at Gopalakrishna.Palem@Yahoo.com