SlideShare a Scribd company logo
1 of 23
Khade Grant EGRB 421 Final Project 11/30/2015
EGRB 421 Final Design Project
A Prosthetic Device Design Providing Natural Gait Movement for
Patients in Full-Leg Casts
Khade Grant
11/30/2015
Khade Grant EGRB 421 Final Project 11/30/2015
Abstract:
A fracture isa breakinthe continuityof abone.The tibiaisthe most commonly fracturedlong
bone inthe body (33% of all fracturesin the body).Afterafracture,the legisusuallyputina cast
dependingonthe type of tibial fracture.There are three kindsof tibial fractures:Tibial shaftfractures,
tibial plateaufractures,andtibial plafondfractures.Tibial shaftfractures,whichare the mostcommon
tibial fracture (93%of tibial fractures),occurbetweenthe knee andthe ankle.These fracturesrequire
the legto be put ina full-legcastforrecovery.Unsurprisingly,duringrecovery,mobilityisanissue for
those whohave fracturedtheirtibia.There are some currentsolutions;suchascrutches,knee-scooters,
or the iWalk 2.0; that have beenproposed toaddressthe mobilityissue,butthese fall shortof providing
those infull-legcastswitha natural walkingmotion orsufficientmaneuverability.Also,the requireduse
of handsheavilylimitsthe activitiesthe usercanperform duringmovementwhileusingmanyof these
mobilityaids. The proposeddesignsolutionconsists of anelectromechanical prostheticdevice which
consistsof twotitaniumalloypylons(rods) onthe leftandrightof the injuredleg.Bothrodsattach to a
mechanical knee oneachside andcontinue pastthe kneesandcome togethertoformone rod beneath
the patient’sfoot.The footportionof the device hasrubberonthe end topromote some ankle flexion
motion.The patientissupportedwithneoprenestraps.The device consistsof angularsensorsand
microprocessorsthatrelate the hipflexionangleduringeachstage of the humangait cycle to the knee
flexionangleatthe correspondingstage inthe gaitcycle.The outputsignal producedfromthe hip
flexionangleiscalibratedtoproduce the correspondingkneeflexionangle. First,anthropometricdata
was collectedfromthe CenterforDisease Control(CDC) formenandwomentodetermine the required
sizesanddimensionsof the device.Next,the material propertiesforvariousmaterialswereevaluated
and the optimummaterialswere selectedforuse inthe design.The requiredelectrical properties of the
mechanical knee were thenincorporatedintothe physical device.Afterfinalizingadesignmodel,the
device will undergostrengthtestingaswell asmotiontestingtodetermineif the model isasufficient
design.The final prototype will be able tosufficientlyprovide normal humangaitmovementtopeople
whoare confinedtofull legcasts.
Khade Grant EGRB 421 Final Project 11/30/2015
Introduction
A fracture isa breakinthe continuityof abone.Fracturesto the legare a verycommoninjury.
The tibiais the mostcommonly fracturedlongbone inthe body.Almost500,000 people fracture their
tibiaeachyear,makingup around33% of all fracturesin the body (Fields,2015). These fracturesare
oftenexpensiveasthe healthcare costfortibial fracturesrange from$11,686 to $25,556 perpatient
dependingonthe locationandseverityof fracture (Antonovaetal.2013). Aftera fracture,the legis
usuallyputina cast dependingonthe type of tibial fracture.There are three kindsof tibial fractures:
Tibial shaftfractures,tibial plateaufractures,andtibial plafondfractures.Tibial shaftfractures,which
are the mostcommon tibial fracture,occurbetweenthe kneeandthe ankle.These fracturesrequire the
legto be put ina full-legcastforrecovery.Tibial plateaufracturesoccurjustbelow the knee joint.These
require at-leastafull-legcastfor recoveryandare usuallythe worstkindof fracturesas theycan leadto
problemssuchasknee arthritisevenafterrecovery.Tibial plafondfracturesoccurat the bottomof the
shinaroundthe ankle joint.These fracturesare perhapsthe leastsevere,astheyonlyrequire alower
legcast.
Unsurprisingly,duringrecovery,mobilityisabigissue forthose whohave fracturedtheirtibia.
There are some currentsolutionstoaddressthe mobilityissue. These mainlyincludecrutches,knee-
scooters,andwheel chairs.These mobilityaidsoftendonotprovide sufficientmobilitytoitsusers. One
wayto ergonomicallymeasure the effectivenessof mobilityaidsistolookat if theyallow itsusersto
adequatelyperformthe instrumental activitiesof dailyliving(IADLs) andthe basicactivitiesof daily
living(BADLs).The IADLsare the complex skillsrequiredtolive independently.These include:shopping,
preparingmeals,usingthe telephone,home maintenance,managingmedications,driving,and
managingfinances:Crutchesare the mostcommonmobilityaid.Crutches,however,don’tgive the user
a natural walkingmotionorsufficientmaneuverability.The requireduse of handsheavilylimitsthe
typesof activitiesthe usercando duringmovement. Usingcurrentmobilityaids,aroundtwo-thirdsof
usershave significantlimitationsinone ormore of the IADLs (NCHS,1998). BADLs, such as walking,
climbingstairs,eating,puttingonclothes, andgroomingare alsosignificantlylimitedunderthe current
mobilityaids.Approximatelyone-thirdof the peoplewhouse mobilityaiddevicesneedassistance from
anotherpersoninperformingthe BADLscomparedtolessthan1% innon-users(NCHS,1998).
There isa needfora designthatprovidesenhanced mobility,ishands-free duringmotion,and
providesanatural walkingmotionduringrecovery.One recentinvention,the iWALK2.0,takesa stepin
the right direction.The userrestshis/herknee onapad whichisattachedto a mechanical legandhasa
strap on the thighto make itsecure.Thisallowsamore natural walkingmotionthananydevice
currentlyonthe market.However,there are some shortcomings.There isnoflexioninthe knee of the
mechanical leg,sothe walkingmotionisnotnatural.More importantly,since the kneemustbe bentin
orderto use the device,itcanonlybe usedbypatientswithlowerlegcasts.Onlytibial plafondfractures,
whichmake up onlyabout7% of tibial fractures,canbe treatedwitha lowerlegcast.Thisdevice cannot
be usedby 93% of the tibial fracture population.
The designsolutionshouldbe amechanical device that allowsnatural walkingmovementby
providingfull knee flexionandsufficientankleflexionfor patientsinfull-legcasts.The device shouldbe
hands-free andshouldallowfornormal walkingspeedsonrelativelyflatsurfaces.Inadditiontoa
natural walkingmotion,the device shouldprovidesufficientmobility,stability,andsafetytoitsusers.
The deliverablesforthisdevice are asfollows:
1. Electromechanical HingedKneeJoint:The knee-jointwill be microprocessorcontrolled.The
microprocessorwill analyze andinterpretsignalsfromknee-anglesensorsandmomentsensors.
Khade Grant EGRB 421 Final Project 11/30/2015
It will alsobe controlledusingpositionsensorsinthe knee usingsignalsfromanangularposition
sensoronthe hip.The knee jointwill produce the requiredknee flexionof the device.
(Calibratedspecificallytothe userpriorto injury,orcalibratedusingaverage gaitdatafrom a
storeddatabase obtainedduringtesting).
2. Rotary encoder:The rotaryencodermustaccuratelymeasure hipflexionangles.
3. Footstructure capable of plantar/dorsi ankle flexion:The mechanical ankle will furtherallowfor
betterapproximationof normal humangaitmovement.
4. Normal humangaitmovement data:Data consistingof natural humangaitmovement,including
hipand knee flexionanglesduringeachstage of gaitmovement.Thisdatawill be usedto
calibrate the device.
5. Final Prototype:A final prototype will be designedaftervariousalternative designsare
consideredandrigoroustestsare conducted.
Descriptionof Approach and Methods
DesignandSelectionCriteria
The firststepin the designprocesswastouse anthropometricdatatofithuman lowerlimbdimensions
to the design.Thismainlyincludedlookingatanthropometricdata.The productdesignisgenerallyfor
bothmenand women.Inorderto take intoaccount the varioussize differencesbetweenthe
population,aswell asthe differences betweenmenandwomen,the anthropometricdata
measurementsforthe 5th
,10th
, 15th
, 25th
, 50th
, 75th
, 85th
, 90th
, and 95th
percentilesforbothmenand
womenwere tabulatedandusedtodetermine the variousdimensionsof the designproduct.There
were three keymeasurementsusedinthissection.The firstwasthe upperleglengthincentimetersfor
malesandfemales20 yearsof age and older.The secondkeymeasurementwasthe knee heightin
centimetersformalesandfemales20yearsof age and older.The lastkeymeasurementwasthe mid-
thighcircumference incentimetersformalesandfemales20 yearsof age and older.Thisdimensionwas
usedforthe innercircumference of the topringof the mechanical legthatwouldfitaroundthe thighof
the user.The knee heightdimensionswere usedtodetermine where onthe mechanical legtoplace the
artificial knee thatwouldallowforrotation. Thisdatawasobtainedfromresourcessuchas the Centers
for Disease Control andPrevention(CDC).Additionally,itcould be experimentallyobtainedbythe
designers. The followingtable wasasample of the measurementsused.
Table 1. Anthropometric data in centimeters for relevant measures. Obtained from CDC (2008)
The anthropometricdatawas used todetermine the lengthsof the upperandlowerpylons,aswell as
the circumference of the legstrap.The 10th
, 50th
, and 95th
percentileswere usedtodeterminethe
dimensionsof three differentsizesforthe device.The upperpylonlengthwascalculatedusing
Khade Grant EGRB 421 Final Project 11/30/2015
approximatelythree-fourthsthe lengthof the upperleg.The lowerpylonlengthwasdeterminedusinga
measurementslightlylargerthanthe knee heightmeasurement.The strapdimensionswere determined
usinga measurementslightlysmallerthan the thighcircumference measurements.The dimensionsof
the device are shownin the final designsectionin table 3.
There were variousmaterialsthatwere consideredforthe designof the mechanical leg.Forthe
dual-pylons,aluminum, titanium,andsteel werethe materialsconsidered.Titanium(Ti-6Al-4V) was
chosenas the material because itisverystrongyetlightweight.The material propertiesof Titaniumare
providedbelow inFigure1.
Figure 1. Material Properties of Ti-6Al-4V (ASM, 1996)
Basedon the fatigue strengthof 240 MPa and the Shear Strengthof 550 MPa, andincludinga
safetyfactorof 5 as well asdesigningtothe 95th
percentile intermsof knee heightandbodymass,the
minimuminnerradiusdimensionforacylindrical pylonwithanouterradiusof 2 cm was determinedto
Khade Grant EGRB 421 Final Project 11/30/2015
be 1.61 cm. The calculationsof the dimensionsare shown inAppendix I. The sole of the device will be
fittedwithrubbertoprovide some natural ankle flexionduringmovement. A preliminarystresstestwas
conductedonthe device made of Ti-6AL-4V.The results (shownin Appendix III) confirmthatthe
selected materialissufficientforthisdesign.
The strappingon the upperlegismade from non-flexible vinyl linedwithneoprene.Neoprene is
a syntheticrubberthatpreventsslippageof the strapon the legandprovidessufficientbreathability
(Smith,1985). Use of non-flexible vinyl preventsthe strapfromstretching,thusholdingthe patientin
place.
Comparisonof Solutions
Three designconceptswere consideredforthisdevice.Allof the designsconsistedof arotary
encoderonthe hip.The rotary encoderdetectedthe angulardisplacementandsentthe resultingsignal
to a circuit inthe mechanical knee thatproducedacorrespondingoutputsignal.Thatoutputsignal was
usedas the inputto produce the desiredangularrotation.The firstconsidereddesignwasAlternative 1.
It useda single-turnpotentiometerasthe rotary encoder.Alternative 2wassimilartoAlternative1
exceptitusedan optical rotaryencoderinplace of the single-turnpotentiometer.Anoptical rotary
encoderusesa lightshiningontoa photodiode throughslitsinmetal todetectangulardisplacement.
Thisrotary encoderprovidesaveryslightincrease inaccuracybuta substantial increaseincost.Itis also
difficulttomaintainbecauseitisverysensitive todust. Alternative3,usedan OnAxisMagneticrotary
encoder.Thisencoderemploysthe use of a 2 pole neodymiummagnetrotatingoverthe centerof the
encoder.Thisencodercanbe veryinaccurate and was thusinsufficientforuse inthisapplication.The
alternative solutionswere scoredbasedonvariouscategories.The followingscoringchartwasusedto
selectthe bestalternative.The maximumpossiblescoresforeachcategoryrangedfrom3 (little
importance) to9 (maximumimportance). The designalternative withthe highestscore wasselected.
Table 2. Scoring Chart of DesignAlternatives
Specifications(possible points) Alternative1 Alternative2 Alternative3
Function(9) 9 9 9
Features(9) 9 9 8
Noveltyandcommercial potential (6) 6 6 6
Safety(9) 9 9 5
Human factors(9) 7 7 4
Maintenance (6) 6 4 5
Reliability(9) 8 9 4
Manufacturability(6) 5 5 5
Khade Grant EGRB 421 Final Project 11/30/2015
Regulatoryrequirements(9) 9 9 9
Cost (6) 6 2 6
Ease of use (9) 9 8 6
Comfort(6) 5 5 5
Lifetime (3) 3 2 2
Total (96) 91 84 74
Final Design
The final designconsistsof two titaniumalloypylons (rods) onthe leftandrightof the injured
leg.Bothrods attach to a mechanical knee oneachside.The pylonscontinue pastthe mechanical knees
and come togethertoform one rod beneaththe patient’sfoot.The footportionof the device has
rubberon the endto promote some ankle flexionmotion. The device hasmultiplestrapsmade of
neoprene aroundthe patient’s thighforsupport. The device consistsof sensorsthatrelate the hip
flexionangleduringeachstage of the humangaitcycle to the knee flexionangleatthe corresponding
stage in the gaitcycle.The final designhasarotary encoderattachedtothe patient’ship.A single-turn
potentiometerisusedasthe rotaryencoder.Itproducesan outputsignal correspondingtothe hip
flexionangle. The mechanical knee rotatesthe legsof the device usinggears.These gearsare
microprocessorcontrolled.The microprocessortakesaninputsignal producedfromthe single-turn
potentiometerandproducesanoutputsignal thatcausesthe gearsto rotate the legto the determined
angularposition. The outputsignal producedfromthe hipflexionangle iscalibratedtoproduce the
correspondingknee flexionangle. Inadditiontoknee flexion, the designalsogivesthe userthe option
to lockthe mechanical kneesin the anatomical positioninordertoallow users toclimbstairs.The
motiondesignsystemis onlybe forrelativelyflatsurfaces.Inordertoaccount forthe heightdifference
producedbythe mechanical leg,anelevatedshoe isprovidedandshouldbe wornbythe user. During
motionthe device willbe hands-free.
Belowisa model of the final device design,aswell asthe device onthe humanleginvariousstagesof
the gait cycle.
Khade Grant EGRB 421 Final Project 11/30/2015
Figure 2. SolidWorks Model of Prosthetic Design. (a) Isometric View. (b) Frontal View. (c) Sagittal View. (d) Isometric w/ person
model.
Figure 3. SolidWorks Motion Model of Prosthetic Device in Main Stages of the Human Gait Cycle
Khade Grant EGRB 421 Final Project 11/30/2015
As statedinthe methods,titanium alloy (Ti-6Al-4V) isthe material usedforthe pylons, andnon-flexible
vinyl linedwith neoprene isthe strappingmaterial forthe upperleg.
The dimensions andmeasurements of the device componentsare listedbelow intable 3.
Table 3. Dimensions and weight of major device components (from 50th percentile)
Length
(cm)
Outer Radius
(cm)
Inner Radius
(cm)
Weight
(lbs)
Upper
Pylon 38 1.5 0.875 1.73
Lower
Pylon 54.1 1.5 0.875 2.46
Foot
Section 8 N/A N/A 1.54
Straps 50 N/A N/A 0.5
The total weightof the device isestimatedtobe 10.5 lbs.The determination/calculationof the
dimensionsandweightof the majorcomponentsare shownin Appendix I.A materialspartslistisalso
shownin Appendix I.The strap issufficienttohold the weightof amale inthe 95th
percentile.The
minimumsurface areaof the strap was determinedusingthe weightand the ultimate stressof skin.The
ultimate stressof skinisaround20 MPa (Gallagher,2012). The area of the straps wasover800 timesthe
minimumrequiredarea. The calculationsare shownin Appendix I. Since the cross-sectional areaof the
thighincreaseswithheight,the non-flexible vinyl strapswon’tslipupthe thighwhenanupward
reactionforce isappliedtoitduringwalking.
The initial designdrawingsare shownin Appendix II.The drawingsconsistof the frontal and
lateral viewinthe anatomical position,andthe lateral viewof the device inthe middleof the gaitcycle.
Electrical Properties
The device consistsof a sensorplacedonthe hip.The sensorplacedonthe hipwill be arotary
encoder(angularpositionsensor).There are varioustypesof angularpositionsensorsthatcouldbe
used,butfor thisapplicationasingle turnpotentiometer (resistiverotaryencoder) shouldbe sufficient.
Khade Grant EGRB 421 Final Project 11/30/2015
Figure 4. Single turn potentiometer (Webster, 2009)
A single turnpotentiometer consistsof astationaryresistive andpowerelement andamovable
wiper.Itusesthe conceptof voltage divisiontoproduce varyingoutputvoltagesasa wipermovesalong
the resistor. Usingvoltage division,the outputvoltage Vo producedfromaconstantinputvoltage Vi is
givenby:
𝑽 𝒐 =
𝑹 𝟐
𝑹 𝟏+𝑹 𝟐
× 𝑽 𝒊 =
𝑹 𝟐
𝑹 𝒕𝒐𝒕𝒂𝒍
× 𝑽 𝒊.
As the wiperturnscounter-clockwiseR2 decreasesandthe outputvoltage decreases
proportionally.Forthe single-turnpotentiometerthe powerandresistive elementwillremainstationary
as it will be attachedtothe hipof the patient.The wiperwill be directlycontrolledbythe movementof
the femur.Thusas the hipflexesorextendsduringmovement,the wiperwillrotate andproduce a
correspondingvoltage change.Therefore,eachhipflexionangle willhave acorrespondingoutput
voltage.
Duringthe human gaitcycle,hipflexionanglescorrespondtoknee flexionangles.Forexample,
inhealthyindividuals, when70%of the gait cycle iscomplete,the hipflexionangle isapproximately12°.
Thiscorrespondstoa knee flexionangleof 64°. The correspondinghipandknee flexionanglesare
showninFigure 5.
Khade Grant EGRB 421 Final Project 11/30/2015
Figure 5. Trajectories of hip and knee angles during human gait cycle (Colombo et al., 2000)
The voltage producedfroma hipflexionanglewouldcause the mechanical kneetorotate to the
correspondingknee flexionangle.
Sample Calculation:Vi = 20mV. At 0° hipflexionthe wiperisat180°. ThusR2 = Rtotal/2. Thisimplies0°hip
flexioncorrespondstoV0 = 10mV.
At 12° hipflexion,the wiperisat192°. Thus R2 =
192
360
× 𝑅total. 𝑉𝑜 =
192
360
×𝑅 𝑡𝑜𝑡𝑎𝑙
𝑅 𝑡𝑜𝑡𝑎𝑙
× 20𝑚𝑉 = 10.67𝑚𝑉.
10.67mV will thenbe calibratedtoproduce aknee flexionangle of 64°.
The mechanical knee consistsof amicrochipcircuit, ananalog to digital (A/D) converter, adigital
to analog(D/A) converter, amicroprocessor,anelectricsteppingmotor,andgears. The microchipcircuit
will transferthe electricenergyproducedbythe single-turnpotentiometertothe A/Dconverter.
Varyinghipflexionangleswillproduce voltages(andthuscurrent) atvaryingamplitudes.The varying
amountof electricenergy producedwillbe passed tothe A/Dconverter.The signal will thenbe
convertedtoa digital signal.Thissignal will thenbe passed tothe microprocessorwhichwill processthe
digital dataaccordingto the preprogrammed instructionsgiventoit.The microprocessorwillthen
outputa digital signal tothe D/A converterwhichwill produce andpassan electricsignal tothe electric
steppingmotor.The specificelectricsignal fromthe D/A converterwill cause the electricsteppingmotor
Khade Grant EGRB 421 Final Project 11/30/2015
to provide the mechanical energynecessaryto rotate the gearsto an absolute angle.The mechanical
legswhichare attachedto the mechanical knee will thusbe forcedtorotate to thatangle.
The electricsignal producedbya specifichipflexionangle will be convertedintoaspecificdigital
signal correspondingtothe inputtedelectricsignal.The microprocessorwill be preprogrammedto
convertthat digital signal toa newdigital signal thatwill correspondto the absolute angle rotationin
the mechanical knee.The newdigitalsignal will be convertedtoanelectricsignal (bythe D/A converter)
of the magnitude requiredto cause the electricsteppingmotorto produce a rotation of the gearsinthe
mechanical knee tothe absolute angularpositiondesired. The signal processingflowchartinthe
mechanical knee is showninfigure 6.
Figure 6. Signal Processing Flowchart of Mechanical Knee
In orderto ensure the knee flexestothe appropriate angleandtopreventover-rotation,one of
the gears will containaHigh-Resolution MagnetostrictivePositionSensor.These are positionsensors
producedbyMTS and usesthe same technologyasthe MTS testingsystemsusedinDr.Wayne’s
BiomechanicsLab.The inside of the mechanical kneewillhave these positionsensorsaswell locatedat
variousangularpositions.The positionsensoronthe gearwill remainactivated,butonlythe position
sensorsaroundthe inside of the mechanical knee atthe correctangularknee positon(correspondingto
the hipangular position) willbe activated.Whentwoactivatedpositionsensorscome incontact,the
rotationstopsat that position.
Khade Grant EGRB 421 Final Project 11/30/2015
The microprocessorwill allow the calibrationof the mechanical knee tobe veryrobust.A
microprocessorisa programmable device thatacceptsdigital dataas input,processesthatdata
accordingto preprogrammedinstructionsstoredinitsmemory,andoutputsdigital data.A computer
program will needtobe writteninthe future forthe microprocessortoproduce the requiredelectric
signal.The programwill have torelate the electricsignal producedbyhipflexiontoacorresponding
signal thatproducesthe requiredabsolute anglerotation. Sincea12° hipflexionangleproduces
10.67mV, and assumingan electricsignal of 15mV appliedtothe electricsteppingmotorwill cause a
rotationto the 64° position,the followingsamplecode shownin Figure 7couldbe used.
Figure 7. Sample Code for microprocessor
One potential problemisthe factthat some hipflexionanglesoccurtwice inthe gaitcycle,and
thushave two differentcorrespondingkneeflexionangles.Thisproblemissolvedbyaddingan
additional wiper(offset90°clockwise fromthe firstwiper),adifferentiator,anothermicroprocessor,
A/D andD/A converter,anda single-poledouble-throw (SPDT) switch. Sincehipflexionanglesonly
occur once whenthe hipisflexing,andthenagainwhenthe hipextends,the voltage producedfromthe
firstwipercanbe usedwhenthe hipisflexing,andthe voltage producedfromthe secondwiper
(producesdifferentvaluesbecause of the 90° offset) canbe usedwhenthe hipisextending.While the
hipis flexing,the outputvoltagewouldbe increasing.Thusthe differentiator( 𝑖 = 𝐶 ×
𝑑𝑣
𝑑𝑡
) would
produce a positive current.Whenthe microprocessorreceivesapositivecurrentsignal itwill cause the
switchto connectto the firstwiper.However,whenthe hipisextending,andanegative currentis
producedfromthe differentiator,the microprocessorwill cause the switchtoconnecttothe second
wiper. The signal processingflowchartforthe entire device isshownbelow infigure 8:
Khade Grant EGRB 421 Final Project 11/30/2015
Figure 8. Signal Processing Flowchart for Entire Device
Testing/EvaluationMethods
The device will undergotwomajor testingmethods:strengthtestingand motiontesting;aswell aspost-
productionevaluation.
StrengthTesting:The methodsrequiredfortestingpylonstrengthbefore use are compressive loading
and bendingtests. These testswillconsistof applying normal andcycliccompressiveloads,aswell as
bendingloadstothe device until failure todeterminethe maximumloadsthe device canbear.
Furthermore,beforethe designcanbe usedinthe market,itmustfirstundergotrialsbyhealthyhuman
subjects.These testswillconsistof performingwalkingmovementsatvariousspeeds;namely,walking
at 60% normal walkingspeed,walkingatnormal walkingspeed(5.0km/hor3.1 mph),anda brisk
Khade Grant EGRB 421 Final Project 11/30/2015
walkingpace at around9.0 km/h.Duringtesting,the pylonswill be fittedwithpiezoelectricpolymeric
films(polyvinylidenefluoride). These filmsare thin,lightweightandpliant.Theywill be placedinthe
longitudinalandcircumferential directionsonthe pylonsduringthe testsinordertomeasure strain.
Furthermore,apreliminarycompressiontest(resultsshownin Appendix III)wasconductedonthe
SolidWorksmodel.
MotionTesting:The motionproducedbythe device will be evaluatedusingmotionanalysistools
providedby©ViconMotionSystemsLtd.First,the humansubjectswill be trackedmovingatthe three
varyingspeedswithoutwearingthe device.The dataobtainedwill serveasthe control.Next,the human
subjectswill be trackedwhileperformingthe same walkingmovementswhile wearingthe device.The
data obtainedwill thenbe comparedtothe control datausingvariousmotionanalysistechniquessuch
as spatial analysisandfourieranalysistodetermine how closelythe device approximateshumangait
movement.Also,the numberanddegree of lateral andforward/backwardcompensatorymovements
producedduringwalkingwithandwithoutthe device will be comparedandanalyzedtodetermine
stability.The amountanddegree of armabduction(amovementusedbyhumansforstability) willalso
be analyzedandcomparedto arm movementduringnormal walking.Subjectivemeasurementswill also
be collectedbyaskingthe userstorate the comfort, stability,andmobility of the device ona1(worst) –
10(best) scale.
Post-ProductionEvaluation:Afterthe device entersthe market,customerfeedbackwill be collected
specificallyforthe categoriesof comfort,safety,mobility,andease of use.Customerfeedbackwill also
be collectedintermsof the percentage of usersthatexperience limitationsinperformingone ormore
of the IADLsand the BADLs. Thispercentage will be comparedtothe percentage of usersthat
experience significantlimitationswhileusingothertraditional mobilityaids. Customerfeedbackonany
additional comments orconcerns thatcustomersmayhave will alsobe collected.
Summary
There are some potential limitationsassociatedwiththe proposeddesignsolution.One
limitationismobilityduringwalkingupanddown stairs.The device isdesignedtoproduce natural
walkingmotiononrelativelyflatsurfaces,notforclimbingstairs.Thus,afuture improvementforthis
device wouldbe toadda mobilityfeature thatallowsthe usertonaturallymove upanddownstairs.
Thiscouldpossiblybe done by addinga separate stair-climbingmode thatthe usercan select.Thismode
wouldcalibrate hipflexionanglestoknee flexionangleswhile walkingupanddownstairs.Another
potential limitationisthe weightof the device.Althoughthe weightof the device isonlyestimatedtobe
around10.5 pounds,andthe userwon’tneedto constantlyliftthe full weight;the weightof the device
couldstill make itslightlycumbersome tomove afterwalkingforextendedperiodsof time. The costof
the device isalsoanotherpotential limitation. Thus,afuture improvementforthisdevice wouldbe to
conduct furthermaterial researchandselectalighterandcheaper, yetsufficientlystrong,material.A
new“super-steel”alloythatissupposedlyasstrongastitaniumbuttentimesas cheapand alsolighteris
beingdevelopedinSouthKorea(Crew,2015).The material isan alloyconsistingof steel,aluminum,and
a small amountof nickel.The addednickelisthe keyingredientinthisnew material.
In conclusion,tibialfracturesare the mostcommon longbone fracturesinthe body, makingup
around33% of all fracturesinthe body. The majorityof tibial fracture (93%) require a full legcast.
Variousdesignsare onthe marketthat provide patientsinlowerlegcastswithsufficientmobility.
However,there isasignificantneedforamobilityaidsuitable forthe 93% of the tibial fracture
populationwhoare notable to benefitfromthe currentdesigns.The proposeddesignprovidespeople
Khade Grant EGRB 421 Final Project 11/30/2015
recoveringfromtibial fractureswithahands-freedevice thatallowsforanatural walkingmotionby
providingknee flexion.The designsolutionconsistsof amechanical prostheticlegapparatus which
providesknee flexionthroughamechanical knee.The device consistsof angularsensorsand
microprocessorsthatrelate the hipflexionangleduringeachstage of the humangait cycle to the knee
flexionangleatthe correspondingstage inthe gaitcycle.The outputsignal producedfromthe hip
flexionangleiscalibratedtoproduce the correspondingkneeflexionangle.Thishands-free device
providespeople withtibial fractureswhoare subjectedtorehabilitationinfull-legcastswiththe ability
to move naturally.
Khade Grant EGRB 421 Final Project 11/30/2015
References
[1] Fields,Karl B.“Tibial ShaftFracturesinAdults.” UptoDate.Sep29.2015. Web Nov29. 2015
[2] Antonova,E.,etal.“Tibia ShaftFractures:CostlyBurdenonNonunions.” BioMed Central. Jan26.
2013. WebNov29. 2015
[3] National CenterforHealthStatistics.“National HealthInterview SurveyonDisability.”Centersfor
Disease Controland Prevention. Jul. 1998. Web Nov30. 2015
[4] Margaret, A.,etal. “AnthropometricReference DataforChildrenandAdults:UnitedStates,2003-
2006.” CentersforDisease Controland Prevention. Oct22. 2008. WebNov2. 2015
[5] MatwebLLC. “TitaniumTi-6AL-4V (Grade 5),Annealed.”AerospaceSpecification MetalsInc. May
1996. WebNov3. 2015
[6] Simth,J.“The Ten-YearInvention:Neoprene andDuPontResearch.” Technology and Culture. Jan.
1985. WebNov30. 2015
[7] Gallagher,A.J.“DynamicTensilePropertiesof HumanSkin.” InternationalResearch Councilon the
Biomechanicsof Impact.Sep.2012. WebNov 30. 2015
[8] Webster,J.“Medical Instrumentation:ApplicationandDesign.” John Wiley & Sons,Inc. Feb2009.
Print.
[9] Colombo,G.,etal.“Treadmill Trainingof ParaplegicPatientsUsingaRoboticOrthosis.” Journalof
Rehabilitation Research & Development. Dec.2000. WebNov29. 2015
[10] Crew,Bec.“New‘Super-Steel’AlloyisasStrongas Titanium, but10 TimesCheaper.”ScienceAlert.
Feb6. 2015. Web Nov30. 2015
Khade Grant EGRB 421 Final Project 11/30/2015
Appendix I – Calculation/Validation of Dimensions and Materials List
Supplementary Figure 1. Calculation/Validation of Dimensions and Material Parts List
Khade Grant EGRB 421 Final Project 11/30/2015
Appendix I (continued)
Supplementary Figure 2. Calculation/Validation of Dimensions
Khade Grant EGRB 421 Final Project 11/30/2015
Appendix II – Initial Drawings
Supplementary Figure 3. Initial Drawings. (a) Frontal View. (b) Sagittal View. (c) Sagittal View during Gait Cycle
Khade Grant EGRB 421 Final Project 11/30/2015
Appendix III – Preliminary Test Results
CompressionTest Results
Name Type Min Max
Stress1 VON: von Mises Stress 0 N/m^2
Node: 50455
2.45758e+006 N/m^2
Node: 83321
iKhade-Static 1-Stress-Stress1
Supplementary Figure 4. Compression Test Results: Stress Analysis
Khade Grant EGRB 421 Final Project 11/30/2015
Appendix III (continued)
Name Type Min Max
Displacement1 URES: Resultant Displacement 0 mm
Node: 50455
0.00288903 mm
Node: 80672
iKhade-Static 1-Displacement-Displacement1
Supplementary Figure 5. Compression Test Results: Deformation Analysis
Khade Grant EGRB 421 Final Project 11/30/2015
Appendix III (continued)
Name Type Min Max
Strain1 ESTRN: EquivalentStrain 0
Element: 29414
1.75294e-005
Element: 54094
iKhade-Static 1-Strain-Strain1
Supplementary Figure 6. Compression Test Results: Strain Analysis

More Related Content

What's hot

Evolution of hip disarticulation prosthesis
Evolution of hip disarticulation prosthesisEvolution of hip disarticulation prosthesis
Evolution of hip disarticulation prosthesisRani Kumari
 
Recent Advances In Lower Limb Prosthesis
Recent Advances In Lower Limb ProsthesisRecent Advances In Lower Limb Prosthesis
Recent Advances In Lower Limb ProsthesisAbey P Rajan
 
Total Knee Replacement (TKR) in advanced arthritis
Total Knee Replacement (TKR) in advanced arthritisTotal Knee Replacement (TKR) in advanced arthritis
Total Knee Replacement (TKR) in advanced arthritisBhaskarBorgohain4
 
ankle replacement evolution
ankle replacement evolutionankle replacement evolution
ankle replacement evolutionSrinath Gupta
 
Understanding & treating common foot pathology
Understanding & treating common foot pathologyUnderstanding & treating common foot pathology
Understanding & treating common foot pathologyPOLY GHOSH
 
Pemberton's Osteotomy for Acetabular Dysplasia
Pemberton's Osteotomy for Acetabular DysplasiaPemberton's Osteotomy for Acetabular Dysplasia
Pemberton's Osteotomy for Acetabular DysplasiaLibin Thomas
 
Total hip replacement(thr)
Total hip replacement(thr)Total hip replacement(thr)
Total hip replacement(thr)Kaushal Shah
 
HIPS STEM DESIGN-- Ashish Sharma
HIPS STEM DESIGN-- Ashish SharmaHIPS STEM DESIGN-- Ashish Sharma
HIPS STEM DESIGN-- Ashish Sharmaas747
 
Orthotics and prosthetics
Orthotics and prostheticsOrthotics and prosthetics
Orthotics and prostheticsAsma Khan
 
Floor reaction orthosis
Floor reaction orthosisFloor reaction orthosis
Floor reaction orthosisIndra Singh
 
Shoulder arthroplasty - Basic information about shoulder replacement surgery
Shoulder arthroplasty - Basic information about shoulder replacement surgeryShoulder arthroplasty - Basic information about shoulder replacement surgery
Shoulder arthroplasty - Basic information about shoulder replacement surgeryDr Devinder Garewal
 
Reverse shoulder biomechanics
Reverse shoulder biomechanicsReverse shoulder biomechanics
Reverse shoulder biomechanicsMoby Parsons
 
Oper treat osteo spine 3 10-2015
Oper treat osteo spine 3 10-2015Oper treat osteo spine 3 10-2015
Oper treat osteo spine 3 10-2015George Sapkas
 
Steps total knee replacement
Steps total knee replacement Steps total knee replacement
Steps total knee replacement AdityaApte11
 

What's hot (20)

Evolution of hip disarticulation prosthesis
Evolution of hip disarticulation prosthesisEvolution of hip disarticulation prosthesis
Evolution of hip disarticulation prosthesis
 
Recent Advances In Lower Limb Prosthesis
Recent Advances In Lower Limb ProsthesisRecent Advances In Lower Limb Prosthesis
Recent Advances In Lower Limb Prosthesis
 
Hip replacement
Hip replacementHip replacement
Hip replacement
 
HKAFO
HKAFOHKAFO
HKAFO
 
Total Knee Replacement (TKR) in advanced arthritis
Total Knee Replacement (TKR) in advanced arthritisTotal Knee Replacement (TKR) in advanced arthritis
Total Knee Replacement (TKR) in advanced arthritis
 
ankle replacement evolution
ankle replacement evolutionankle replacement evolution
ankle replacement evolution
 
Understanding & treating common foot pathology
Understanding & treating common foot pathologyUnderstanding & treating common foot pathology
Understanding & treating common foot pathology
 
Pemberton's Osteotomy for Acetabular Dysplasia
Pemberton's Osteotomy for Acetabular DysplasiaPemberton's Osteotomy for Acetabular Dysplasia
Pemberton's Osteotomy for Acetabular Dysplasia
 
Total hip replacement(thr)
Total hip replacement(thr)Total hip replacement(thr)
Total hip replacement(thr)
 
Hip Arthroscopy
Hip ArthroscopyHip Arthroscopy
Hip Arthroscopy
 
Knee rthrodesis
Knee rthrodesisKnee rthrodesis
Knee rthrodesis
 
Spinal orthosis
Spinal orthosisSpinal orthosis
Spinal orthosis
 
Dr tarek orthotic overview
Dr tarek orthotic overviewDr tarek orthotic overview
Dr tarek orthotic overview
 
HIPS STEM DESIGN-- Ashish Sharma
HIPS STEM DESIGN-- Ashish SharmaHIPS STEM DESIGN-- Ashish Sharma
HIPS STEM DESIGN-- Ashish Sharma
 
Orthotics and prosthetics
Orthotics and prostheticsOrthotics and prosthetics
Orthotics and prosthetics
 
Floor reaction orthosis
Floor reaction orthosisFloor reaction orthosis
Floor reaction orthosis
 
Shoulder arthroplasty - Basic information about shoulder replacement surgery
Shoulder arthroplasty - Basic information about shoulder replacement surgeryShoulder arthroplasty - Basic information about shoulder replacement surgery
Shoulder arthroplasty - Basic information about shoulder replacement surgery
 
Reverse shoulder biomechanics
Reverse shoulder biomechanicsReverse shoulder biomechanics
Reverse shoulder biomechanics
 
Oper treat osteo spine 3 10-2015
Oper treat osteo spine 3 10-2015Oper treat osteo spine 3 10-2015
Oper treat osteo spine 3 10-2015
 
Steps total knee replacement
Steps total knee replacement Steps total knee replacement
Steps total knee replacement
 

Viewers also liked

Rick Todd Letter of Reference
Rick Todd Letter of ReferenceRick Todd Letter of Reference
Rick Todd Letter of ReferenceJeff Bucchi
 
Amplificadores operacionales: CONVERTIDOR CON OPAM
Amplificadores operacionales: CONVERTIDOR CON OPAMAmplificadores operacionales: CONVERTIDOR CON OPAM
Amplificadores operacionales: CONVERTIDOR CON OPAMAlberto Mendoza
 
Internetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuud
Internetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuudInternetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuud
Internetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuudLavii.ee
 
Stationary LAB M11 Certificate
Stationary LAB M11 CertificateStationary LAB M11 Certificate
Stationary LAB M11 CertificateGIFT NUMWA
 
Hyper local tms_yuvraj
Hyper local tms_yuvrajHyper local tms_yuvraj
Hyper local tms_yuvrajAmaaya123
 
Accelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket CacheAccelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket CacheNicolas Poggi
 

Viewers also liked (11)

Letter of Reference
Letter of ReferenceLetter of Reference
Letter of Reference
 
Rick Todd Letter of Reference
Rick Todd Letter of ReferenceRick Todd Letter of Reference
Rick Todd Letter of Reference
 
Amplificadores operacionales: CONVERTIDOR CON OPAM
Amplificadores operacionales: CONVERTIDOR CON OPAMAmplificadores operacionales: CONVERTIDOR CON OPAM
Amplificadores operacionales: CONVERTIDOR CON OPAM
 
Internetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuud
Internetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuudInternetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuud
Internetiturundus. Digiagentuur Lavii - SWÄRKI maksvate klientidega intervjuud
 
Breast augmentation
Breast augmentationBreast augmentation
Breast augmentation
 
general paper
general papergeneral paper
general paper
 
Manejo sustentabledeagua%202006 ebook
Manejo sustentabledeagua%202006 ebookManejo sustentabledeagua%202006 ebook
Manejo sustentabledeagua%202006 ebook
 
Stationary LAB M11 Certificate
Stationary LAB M11 CertificateStationary LAB M11 Certificate
Stationary LAB M11 Certificate
 
profileF
profileFprofileF
profileF
 
Hyper local tms_yuvraj
Hyper local tms_yuvrajHyper local tms_yuvraj
Hyper local tms_yuvraj
 
Accelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket CacheAccelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket Cache
 

Similar to Human Factors & Ergonomics Design Project

Recent Advances in Arthroscopic Hip Treatment
Recent Advances in Arthroscopic Hip TreatmentRecent Advances in Arthroscopic Hip Treatment
Recent Advances in Arthroscopic Hip Treatmentcoreinstitute
 
L.L Prosthetics.pptx
L.L Prosthetics.pptxL.L Prosthetics.pptx
L.L Prosthetics.pptxSaniaSaeed56
 
Bone and joint care
Bone and joint careBone and joint care
Bone and joint careArman Care
 
Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)
Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)
Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)College of Medicine, Sulaymaniyah
 
Claviclefrctures
ClaviclefrcturesClaviclefrctures
Claviclefrcturesrajusvmc
 
TKA in valgus knee.pptx
TKA in valgus knee.pptxTKA in valgus knee.pptx
TKA in valgus knee.pptxAjayShringeri
 
Lecture 1;TRANSTIBIA PROSTHETICS-1.ppt
Lecture 1;TRANSTIBIA PROSTHETICS-1.pptLecture 1;TRANSTIBIA PROSTHETICS-1.ppt
Lecture 1;TRANSTIBIA PROSTHETICS-1.pptSundayNdomba
 
Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...
Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...
Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...Dr.Anandu Mathews Anto
 
Amputations below knee
Amputations below kneeAmputations below knee
Amputations below kneeMeddcoDm
 
Amputation
AmputationAmputation
AmputationSufindc
 
Ankle and foot injuries
Ankle and foot injuriesAnkle and foot injuries
Ankle and foot injuriesAmardeep kaur
 
Complications of total knee replacement
Complications of total knee replacementComplications of total knee replacement
Complications of total knee replacementVaishnavi S Nair
 

Similar to Human Factors & Ergonomics Design Project (20)

Recent Advances in Arthroscopic Hip Treatment
Recent Advances in Arthroscopic Hip TreatmentRecent Advances in Arthroscopic Hip Treatment
Recent Advances in Arthroscopic Hip Treatment
 
Orthotics devices
Orthotics devicesOrthotics devices
Orthotics devices
 
Prosthetic devices
Prosthetic devicesProsthetic devices
Prosthetic devices
 
L.L Prosthetics.pptx
L.L Prosthetics.pptxL.L Prosthetics.pptx
L.L Prosthetics.pptx
 
Bone and joint care
Bone and joint careBone and joint care
Bone and joint care
 
Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)
Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)
Orthopedics 5th year, 7th/part two & 8th lectures (Dr. Ali A.Nabi)
 
Osteoarthritis
OsteoarthritisOsteoarthritis
Osteoarthritis
 
Claviclefrctures
ClaviclefrcturesClaviclefrctures
Claviclefrctures
 
H1302034856
H1302034856H1302034856
H1302034856
 
Patella Fracture
Patella FracturePatella Fracture
Patella Fracture
 
TKA in valgus knee.pptx
TKA in valgus knee.pptxTKA in valgus knee.pptx
TKA in valgus knee.pptx
 
Ankle fractures
Ankle fracturesAnkle fractures
Ankle fractures
 
Ankle fractures
Ankle fracturesAnkle fractures
Ankle fractures
 
Lecture 1;TRANSTIBIA PROSTHETICS-1.ppt
Lecture 1;TRANSTIBIA PROSTHETICS-1.pptLecture 1;TRANSTIBIA PROSTHETICS-1.ppt
Lecture 1;TRANSTIBIA PROSTHETICS-1.ppt
 
Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...
Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...
Journal club: Etiopathology and Management of Stiff Knees: A Current Concept ...
 
Amputations below knee
Amputations below kneeAmputations below knee
Amputations below knee
 
Amputation
AmputationAmputation
Amputation
 
Ilizarov fixator
Ilizarov fixatorIlizarov fixator
Ilizarov fixator
 
Ankle and foot injuries
Ankle and foot injuriesAnkle and foot injuries
Ankle and foot injuries
 
Complications of total knee replacement
Complications of total knee replacementComplications of total knee replacement
Complications of total knee replacement
 

Human Factors & Ergonomics Design Project

  • 1. Khade Grant EGRB 421 Final Project 11/30/2015 EGRB 421 Final Design Project A Prosthetic Device Design Providing Natural Gait Movement for Patients in Full-Leg Casts Khade Grant 11/30/2015
  • 2. Khade Grant EGRB 421 Final Project 11/30/2015 Abstract: A fracture isa breakinthe continuityof abone.The tibiaisthe most commonly fracturedlong bone inthe body (33% of all fracturesin the body).Afterafracture,the legisusuallyputina cast dependingonthe type of tibial fracture.There are three kindsof tibial fractures:Tibial shaftfractures, tibial plateaufractures,andtibial plafondfractures.Tibial shaftfractures,whichare the mostcommon tibial fracture (93%of tibial fractures),occurbetweenthe knee andthe ankle.These fracturesrequire the legto be put ina full-legcastforrecovery.Unsurprisingly,duringrecovery,mobilityisanissue for those whohave fracturedtheirtibia.There are some currentsolutions;suchascrutches,knee-scooters, or the iWalk 2.0; that have beenproposed toaddressthe mobilityissue,butthese fall shortof providing those infull-legcastswitha natural walkingmotion orsufficientmaneuverability.Also,the requireduse of handsheavilylimitsthe activitiesthe usercanperform duringmovementwhileusingmanyof these mobilityaids. The proposeddesignsolutionconsists of anelectromechanical prostheticdevice which consistsof twotitaniumalloypylons(rods) onthe leftandrightof the injuredleg.Bothrodsattach to a mechanical knee oneachside andcontinue pastthe kneesandcome togethertoformone rod beneath the patient’sfoot.The footportionof the device hasrubberonthe end topromote some ankle flexion motion.The patientissupportedwithneoprenestraps.The device consistsof angularsensorsand microprocessorsthatrelate the hipflexionangleduringeachstage of the humangait cycle to the knee flexionangleatthe correspondingstage inthe gaitcycle.The outputsignal producedfromthe hip flexionangleiscalibratedtoproduce the correspondingkneeflexionangle. First,anthropometricdata was collectedfromthe CenterforDisease Control(CDC) formenandwomentodetermine the required sizesanddimensionsof the device.Next,the material propertiesforvariousmaterialswereevaluated and the optimummaterialswere selectedforuse inthe design.The requiredelectrical properties of the mechanical knee were thenincorporatedintothe physical device.Afterfinalizingadesignmodel,the device will undergostrengthtestingaswell asmotiontestingtodetermineif the model isasufficient design.The final prototype will be able tosufficientlyprovide normal humangaitmovementtopeople whoare confinedtofull legcasts.
  • 3. Khade Grant EGRB 421 Final Project 11/30/2015 Introduction A fracture isa breakinthe continuityof abone.Fracturesto the legare a verycommoninjury. The tibiais the mostcommonly fracturedlongbone inthe body.Almost500,000 people fracture their tibiaeachyear,makingup around33% of all fracturesin the body (Fields,2015). These fracturesare oftenexpensiveasthe healthcare costfortibial fracturesrange from$11,686 to $25,556 perpatient dependingonthe locationandseverityof fracture (Antonovaetal.2013). Aftera fracture,the legis usuallyputina cast dependingonthe type of tibial fracture.There are three kindsof tibial fractures: Tibial shaftfractures,tibial plateaufractures,andtibial plafondfractures.Tibial shaftfractures,which are the mostcommon tibial fracture,occurbetweenthe kneeandthe ankle.These fracturesrequire the legto be put ina full-legcastforrecovery.Tibial plateaufracturesoccurjustbelow the knee joint.These require at-leastafull-legcastfor recoveryandare usuallythe worstkindof fracturesas theycan leadto problemssuchasknee arthritisevenafterrecovery.Tibial plafondfracturesoccurat the bottomof the shinaroundthe ankle joint.These fracturesare perhapsthe leastsevere,astheyonlyrequire alower legcast. Unsurprisingly,duringrecovery,mobilityisabigissue forthose whohave fracturedtheirtibia. There are some currentsolutionstoaddressthe mobilityissue. These mainlyincludecrutches,knee- scooters,andwheel chairs.These mobilityaidsoftendonotprovide sufficientmobilitytoitsusers. One wayto ergonomicallymeasure the effectivenessof mobilityaidsistolookat if theyallow itsusersto adequatelyperformthe instrumental activitiesof dailyliving(IADLs) andthe basicactivitiesof daily living(BADLs).The IADLsare the complex skillsrequiredtolive independently.These include:shopping, preparingmeals,usingthe telephone,home maintenance,managingmedications,driving,and managingfinances:Crutchesare the mostcommonmobilityaid.Crutches,however,don’tgive the user a natural walkingmotionorsufficientmaneuverability.The requireduse of handsheavilylimitsthe typesof activitiesthe usercando duringmovement. Usingcurrentmobilityaids,aroundtwo-thirdsof usershave significantlimitationsinone ormore of the IADLs (NCHS,1998). BADLs, such as walking, climbingstairs,eating,puttingonclothes, andgroomingare alsosignificantlylimitedunderthe current mobilityaids.Approximatelyone-thirdof the peoplewhouse mobilityaiddevicesneedassistance from anotherpersoninperformingthe BADLscomparedtolessthan1% innon-users(NCHS,1998). There isa needfora designthatprovidesenhanced mobility,ishands-free duringmotion,and providesanatural walkingmotionduringrecovery.One recentinvention,the iWALK2.0,takesa stepin the right direction.The userrestshis/herknee onapad whichisattachedto a mechanical legandhasa strap on the thighto make itsecure.Thisallowsamore natural walkingmotionthananydevice currentlyonthe market.However,there are some shortcomings.There isnoflexioninthe knee of the mechanical leg,sothe walkingmotionisnotnatural.More importantly,since the kneemustbe bentin orderto use the device,itcanonlybe usedbypatientswithlowerlegcasts.Onlytibial plafondfractures, whichmake up onlyabout7% of tibial fractures,canbe treatedwitha lowerlegcast.Thisdevice cannot be usedby 93% of the tibial fracture population. The designsolutionshouldbe amechanical device that allowsnatural walkingmovementby providingfull knee flexionandsufficientankleflexionfor patientsinfull-legcasts.The device shouldbe hands-free andshouldallowfornormal walkingspeedsonrelativelyflatsurfaces.Inadditiontoa natural walkingmotion,the device shouldprovidesufficientmobility,stability,andsafetytoitsusers. The deliverablesforthisdevice are asfollows: 1. Electromechanical HingedKneeJoint:The knee-jointwill be microprocessorcontrolled.The microprocessorwill analyze andinterpretsignalsfromknee-anglesensorsandmomentsensors.
  • 4. Khade Grant EGRB 421 Final Project 11/30/2015 It will alsobe controlledusingpositionsensorsinthe knee usingsignalsfromanangularposition sensoronthe hip.The knee jointwill produce the requiredknee flexionof the device. (Calibratedspecificallytothe userpriorto injury,orcalibratedusingaverage gaitdatafrom a storeddatabase obtainedduringtesting). 2. Rotary encoder:The rotaryencodermustaccuratelymeasure hipflexionangles. 3. Footstructure capable of plantar/dorsi ankle flexion:The mechanical ankle will furtherallowfor betterapproximationof normal humangaitmovement. 4. Normal humangaitmovement data:Data consistingof natural humangaitmovement,including hipand knee flexionanglesduringeachstage of gaitmovement.Thisdatawill be usedto calibrate the device. 5. Final Prototype:A final prototype will be designedaftervariousalternative designsare consideredandrigoroustestsare conducted. Descriptionof Approach and Methods DesignandSelectionCriteria The firststepin the designprocesswastouse anthropometricdatatofithuman lowerlimbdimensions to the design.Thismainlyincludedlookingatanthropometricdata.The productdesignisgenerallyfor bothmenand women.Inorderto take intoaccount the varioussize differencesbetweenthe population,aswell asthe differences betweenmenandwomen,the anthropometricdata measurementsforthe 5th ,10th , 15th , 25th , 50th , 75th , 85th , 90th , and 95th percentilesforbothmenand womenwere tabulatedandusedtodetermine the variousdimensionsof the designproduct.There were three keymeasurementsusedinthissection.The firstwasthe upperleglengthincentimetersfor malesandfemales20 yearsof age and older.The secondkeymeasurementwasthe knee heightin centimetersformalesandfemales20yearsof age and older.The lastkeymeasurementwasthe mid- thighcircumference incentimetersformalesandfemales20 yearsof age and older.Thisdimensionwas usedforthe innercircumference of the topringof the mechanical legthatwouldfitaroundthe thighof the user.The knee heightdimensionswere usedtodetermine where onthe mechanical legtoplace the artificial knee thatwouldallowforrotation. Thisdatawasobtainedfromresourcessuchas the Centers for Disease Control andPrevention(CDC).Additionally,itcould be experimentallyobtainedbythe designers. The followingtable wasasample of the measurementsused. Table 1. Anthropometric data in centimeters for relevant measures. Obtained from CDC (2008) The anthropometricdatawas used todetermine the lengthsof the upperandlowerpylons,aswell as the circumference of the legstrap.The 10th , 50th , and 95th percentileswere usedtodeterminethe dimensionsof three differentsizesforthe device.The upperpylonlengthwascalculatedusing
  • 5. Khade Grant EGRB 421 Final Project 11/30/2015 approximatelythree-fourthsthe lengthof the upperleg.The lowerpylonlengthwasdeterminedusinga measurementslightlylargerthanthe knee heightmeasurement.The strapdimensionswere determined usinga measurementslightlysmallerthan the thighcircumference measurements.The dimensionsof the device are shownin the final designsectionin table 3. There were variousmaterialsthatwere consideredforthe designof the mechanical leg.Forthe dual-pylons,aluminum, titanium,andsteel werethe materialsconsidered.Titanium(Ti-6Al-4V) was chosenas the material because itisverystrongyetlightweight.The material propertiesof Titaniumare providedbelow inFigure1. Figure 1. Material Properties of Ti-6Al-4V (ASM, 1996) Basedon the fatigue strengthof 240 MPa and the Shear Strengthof 550 MPa, andincludinga safetyfactorof 5 as well asdesigningtothe 95th percentile intermsof knee heightandbodymass,the minimuminnerradiusdimensionforacylindrical pylonwithanouterradiusof 2 cm was determinedto
  • 6. Khade Grant EGRB 421 Final Project 11/30/2015 be 1.61 cm. The calculationsof the dimensionsare shown inAppendix I. The sole of the device will be fittedwithrubbertoprovide some natural ankle flexionduringmovement. A preliminarystresstestwas conductedonthe device made of Ti-6AL-4V.The results (shownin Appendix III) confirmthatthe selected materialissufficientforthisdesign. The strappingon the upperlegismade from non-flexible vinyl linedwithneoprene.Neoprene is a syntheticrubberthatpreventsslippageof the strapon the legandprovidessufficientbreathability (Smith,1985). Use of non-flexible vinyl preventsthe strapfromstretching,thusholdingthe patientin place. Comparisonof Solutions Three designconceptswere consideredforthisdevice.Allof the designsconsistedof arotary encoderonthe hip.The rotary encoderdetectedthe angulardisplacementandsentthe resultingsignal to a circuit inthe mechanical knee thatproducedacorrespondingoutputsignal.Thatoutputsignal was usedas the inputto produce the desiredangularrotation.The firstconsidereddesignwasAlternative 1. It useda single-turnpotentiometerasthe rotary encoder.Alternative 2wassimilartoAlternative1 exceptitusedan optical rotaryencoderinplace of the single-turnpotentiometer.Anoptical rotary encoderusesa lightshiningontoa photodiode throughslitsinmetal todetectangulardisplacement. Thisrotary encoderprovidesaveryslightincrease inaccuracybuta substantial increaseincost.Itis also difficulttomaintainbecauseitisverysensitive todust. Alternative3,usedan OnAxisMagneticrotary encoder.Thisencoderemploysthe use of a 2 pole neodymiummagnetrotatingoverthe centerof the encoder.Thisencodercanbe veryinaccurate and was thusinsufficientforuse inthisapplication.The alternative solutionswere scoredbasedonvariouscategories.The followingscoringchartwasusedto selectthe bestalternative.The maximumpossiblescoresforeachcategoryrangedfrom3 (little importance) to9 (maximumimportance). The designalternative withthe highestscore wasselected. Table 2. Scoring Chart of DesignAlternatives Specifications(possible points) Alternative1 Alternative2 Alternative3 Function(9) 9 9 9 Features(9) 9 9 8 Noveltyandcommercial potential (6) 6 6 6 Safety(9) 9 9 5 Human factors(9) 7 7 4 Maintenance (6) 6 4 5 Reliability(9) 8 9 4 Manufacturability(6) 5 5 5
  • 7. Khade Grant EGRB 421 Final Project 11/30/2015 Regulatoryrequirements(9) 9 9 9 Cost (6) 6 2 6 Ease of use (9) 9 8 6 Comfort(6) 5 5 5 Lifetime (3) 3 2 2 Total (96) 91 84 74 Final Design The final designconsistsof two titaniumalloypylons (rods) onthe leftandrightof the injured leg.Bothrods attach to a mechanical knee oneachside.The pylonscontinue pastthe mechanical knees and come togethertoform one rod beneaththe patient’sfoot.The footportionof the device has rubberon the endto promote some ankle flexionmotion. The device hasmultiplestrapsmade of neoprene aroundthe patient’s thighforsupport. The device consistsof sensorsthatrelate the hip flexionangleduringeachstage of the humangaitcycle to the knee flexionangleatthe corresponding stage in the gaitcycle.The final designhasarotary encoderattachedtothe patient’ship.A single-turn potentiometerisusedasthe rotaryencoder.Itproducesan outputsignal correspondingtothe hip flexionangle. The mechanical knee rotatesthe legsof the device usinggears.These gearsare microprocessorcontrolled.The microprocessortakesaninputsignal producedfromthe single-turn potentiometerandproducesanoutputsignal thatcausesthe gearsto rotate the legto the determined angularposition. The outputsignal producedfromthe hipflexionangle iscalibratedtoproduce the correspondingknee flexionangle. Inadditiontoknee flexion, the designalsogivesthe userthe option to lockthe mechanical kneesin the anatomical positioninordertoallow users toclimbstairs.The motiondesignsystemis onlybe forrelativelyflatsurfaces.Inordertoaccount forthe heightdifference producedbythe mechanical leg,anelevatedshoe isprovidedandshouldbe wornbythe user. During motionthe device willbe hands-free. Belowisa model of the final device design,aswell asthe device onthe humanleginvariousstagesof the gait cycle.
  • 8. Khade Grant EGRB 421 Final Project 11/30/2015 Figure 2. SolidWorks Model of Prosthetic Design. (a) Isometric View. (b) Frontal View. (c) Sagittal View. (d) Isometric w/ person model. Figure 3. SolidWorks Motion Model of Prosthetic Device in Main Stages of the Human Gait Cycle
  • 9. Khade Grant EGRB 421 Final Project 11/30/2015 As statedinthe methods,titanium alloy (Ti-6Al-4V) isthe material usedforthe pylons, andnon-flexible vinyl linedwith neoprene isthe strappingmaterial forthe upperleg. The dimensions andmeasurements of the device componentsare listedbelow intable 3. Table 3. Dimensions and weight of major device components (from 50th percentile) Length (cm) Outer Radius (cm) Inner Radius (cm) Weight (lbs) Upper Pylon 38 1.5 0.875 1.73 Lower Pylon 54.1 1.5 0.875 2.46 Foot Section 8 N/A N/A 1.54 Straps 50 N/A N/A 0.5 The total weightof the device isestimatedtobe 10.5 lbs.The determination/calculationof the dimensionsandweightof the majorcomponentsare shownin Appendix I.A materialspartslistisalso shownin Appendix I.The strap issufficienttohold the weightof amale inthe 95th percentile.The minimumsurface areaof the strap was determinedusingthe weightand the ultimate stressof skin.The ultimate stressof skinisaround20 MPa (Gallagher,2012). The area of the straps wasover800 timesthe minimumrequiredarea. The calculationsare shownin Appendix I. Since the cross-sectional areaof the thighincreaseswithheight,the non-flexible vinyl strapswon’tslipupthe thighwhenanupward reactionforce isappliedtoitduringwalking. The initial designdrawingsare shownin Appendix II.The drawingsconsistof the frontal and lateral viewinthe anatomical position,andthe lateral viewof the device inthe middleof the gaitcycle. Electrical Properties The device consistsof a sensorplacedonthe hip.The sensorplacedonthe hipwill be arotary encoder(angularpositionsensor).There are varioustypesof angularpositionsensorsthatcouldbe used,butfor thisapplicationasingle turnpotentiometer (resistiverotaryencoder) shouldbe sufficient.
  • 10. Khade Grant EGRB 421 Final Project 11/30/2015 Figure 4. Single turn potentiometer (Webster, 2009) A single turnpotentiometer consistsof astationaryresistive andpowerelement andamovable wiper.Itusesthe conceptof voltage divisiontoproduce varyingoutputvoltagesasa wipermovesalong the resistor. Usingvoltage division,the outputvoltage Vo producedfromaconstantinputvoltage Vi is givenby: 𝑽 𝒐 = 𝑹 𝟐 𝑹 𝟏+𝑹 𝟐 × 𝑽 𝒊 = 𝑹 𝟐 𝑹 𝒕𝒐𝒕𝒂𝒍 × 𝑽 𝒊. As the wiperturnscounter-clockwiseR2 decreasesandthe outputvoltage decreases proportionally.Forthe single-turnpotentiometerthe powerandresistive elementwillremainstationary as it will be attachedtothe hipof the patient.The wiperwill be directlycontrolledbythe movementof the femur.Thusas the hipflexesorextendsduringmovement,the wiperwillrotate andproduce a correspondingvoltage change.Therefore,eachhipflexionangle willhave acorrespondingoutput voltage. Duringthe human gaitcycle,hipflexionanglescorrespondtoknee flexionangles.Forexample, inhealthyindividuals, when70%of the gait cycle iscomplete,the hipflexionangle isapproximately12°. Thiscorrespondstoa knee flexionangleof 64°. The correspondinghipandknee flexionanglesare showninFigure 5.
  • 11. Khade Grant EGRB 421 Final Project 11/30/2015 Figure 5. Trajectories of hip and knee angles during human gait cycle (Colombo et al., 2000) The voltage producedfroma hipflexionanglewouldcause the mechanical kneetorotate to the correspondingknee flexionangle. Sample Calculation:Vi = 20mV. At 0° hipflexionthe wiperisat180°. ThusR2 = Rtotal/2. Thisimplies0°hip flexioncorrespondstoV0 = 10mV. At 12° hipflexion,the wiperisat192°. Thus R2 = 192 360 × 𝑅total. 𝑉𝑜 = 192 360 ×𝑅 𝑡𝑜𝑡𝑎𝑙 𝑅 𝑡𝑜𝑡𝑎𝑙 × 20𝑚𝑉 = 10.67𝑚𝑉. 10.67mV will thenbe calibratedtoproduce aknee flexionangle of 64°. The mechanical knee consistsof amicrochipcircuit, ananalog to digital (A/D) converter, adigital to analog(D/A) converter, amicroprocessor,anelectricsteppingmotor,andgears. The microchipcircuit will transferthe electricenergyproducedbythe single-turnpotentiometertothe A/Dconverter. Varyinghipflexionangleswillproduce voltages(andthuscurrent) atvaryingamplitudes.The varying amountof electricenergy producedwillbe passed tothe A/Dconverter.The signal will thenbe convertedtoa digital signal.Thissignal will thenbe passed tothe microprocessorwhichwill processthe digital dataaccordingto the preprogrammed instructionsgiventoit.The microprocessorwillthen outputa digital signal tothe D/A converterwhichwill produce andpassan electricsignal tothe electric steppingmotor.The specificelectricsignal fromthe D/A converterwill cause the electricsteppingmotor
  • 12. Khade Grant EGRB 421 Final Project 11/30/2015 to provide the mechanical energynecessaryto rotate the gearsto an absolute angle.The mechanical legswhichare attachedto the mechanical knee will thusbe forcedtorotate to thatangle. The electricsignal producedbya specifichipflexionangle will be convertedintoaspecificdigital signal correspondingtothe inputtedelectricsignal.The microprocessorwill be preprogrammedto convertthat digital signal toa newdigital signal thatwill correspondto the absolute angle rotationin the mechanical knee.The newdigitalsignal will be convertedtoanelectricsignal (bythe D/A converter) of the magnitude requiredto cause the electricsteppingmotorto produce a rotation of the gearsinthe mechanical knee tothe absolute angularpositiondesired. The signal processingflowchartinthe mechanical knee is showninfigure 6. Figure 6. Signal Processing Flowchart of Mechanical Knee In orderto ensure the knee flexestothe appropriate angleandtopreventover-rotation,one of the gears will containaHigh-Resolution MagnetostrictivePositionSensor.These are positionsensors producedbyMTS and usesthe same technologyasthe MTS testingsystemsusedinDr.Wayne’s BiomechanicsLab.The inside of the mechanical kneewillhave these positionsensorsaswell locatedat variousangularpositions.The positionsensoronthe gearwill remainactivated,butonlythe position sensorsaroundthe inside of the mechanical knee atthe correctangularknee positon(correspondingto the hipangular position) willbe activated.Whentwoactivatedpositionsensorscome incontact,the rotationstopsat that position.
  • 13. Khade Grant EGRB 421 Final Project 11/30/2015 The microprocessorwill allow the calibrationof the mechanical knee tobe veryrobust.A microprocessorisa programmable device thatacceptsdigital dataas input,processesthatdata accordingto preprogrammedinstructionsstoredinitsmemory,andoutputsdigital data.A computer program will needtobe writteninthe future forthe microprocessortoproduce the requiredelectric signal.The programwill have torelate the electricsignal producedbyhipflexiontoacorresponding signal thatproducesthe requiredabsolute anglerotation. Sincea12° hipflexionangleproduces 10.67mV, and assumingan electricsignal of 15mV appliedtothe electricsteppingmotorwill cause a rotationto the 64° position,the followingsamplecode shownin Figure 7couldbe used. Figure 7. Sample Code for microprocessor One potential problemisthe factthat some hipflexionanglesoccurtwice inthe gaitcycle,and thushave two differentcorrespondingkneeflexionangles.Thisproblemissolvedbyaddingan additional wiper(offset90°clockwise fromthe firstwiper),adifferentiator,anothermicroprocessor, A/D andD/A converter,anda single-poledouble-throw (SPDT) switch. Sincehipflexionanglesonly occur once whenthe hipisflexing,andthenagainwhenthe hipextends,the voltage producedfromthe firstwipercanbe usedwhenthe hipisflexing,andthe voltage producedfromthe secondwiper (producesdifferentvaluesbecause of the 90° offset) canbe usedwhenthe hipisextending.While the hipis flexing,the outputvoltagewouldbe increasing.Thusthe differentiator( 𝑖 = 𝐶 × 𝑑𝑣 𝑑𝑡 ) would produce a positive current.Whenthe microprocessorreceivesapositivecurrentsignal itwill cause the switchto connectto the firstwiper.However,whenthe hipisextending,andanegative currentis producedfromthe differentiator,the microprocessorwill cause the switchtoconnecttothe second wiper. The signal processingflowchartforthe entire device isshownbelow infigure 8:
  • 14. Khade Grant EGRB 421 Final Project 11/30/2015 Figure 8. Signal Processing Flowchart for Entire Device Testing/EvaluationMethods The device will undergotwomajor testingmethods:strengthtestingand motiontesting;aswell aspost- productionevaluation. StrengthTesting:The methodsrequiredfortestingpylonstrengthbefore use are compressive loading and bendingtests. These testswillconsistof applying normal andcycliccompressiveloads,aswell as bendingloadstothe device until failure todeterminethe maximumloadsthe device canbear. Furthermore,beforethe designcanbe usedinthe market,itmustfirstundergotrialsbyhealthyhuman subjects.These testswillconsistof performingwalkingmovementsatvariousspeeds;namely,walking at 60% normal walkingspeed,walkingatnormal walkingspeed(5.0km/hor3.1 mph),anda brisk
  • 15. Khade Grant EGRB 421 Final Project 11/30/2015 walkingpace at around9.0 km/h.Duringtesting,the pylonswill be fittedwithpiezoelectricpolymeric films(polyvinylidenefluoride). These filmsare thin,lightweightandpliant.Theywill be placedinthe longitudinalandcircumferential directionsonthe pylonsduringthe testsinordertomeasure strain. Furthermore,apreliminarycompressiontest(resultsshownin Appendix III)wasconductedonthe SolidWorksmodel. MotionTesting:The motionproducedbythe device will be evaluatedusingmotionanalysistools providedby©ViconMotionSystemsLtd.First,the humansubjectswill be trackedmovingatthe three varyingspeedswithoutwearingthe device.The dataobtainedwill serveasthe control.Next,the human subjectswill be trackedwhileperformingthe same walkingmovementswhile wearingthe device.The data obtainedwill thenbe comparedtothe control datausingvariousmotionanalysistechniquessuch as spatial analysisandfourieranalysistodetermine how closelythe device approximateshumangait movement.Also,the numberanddegree of lateral andforward/backwardcompensatorymovements producedduringwalkingwithandwithoutthe device will be comparedandanalyzedtodetermine stability.The amountanddegree of armabduction(amovementusedbyhumansforstability) willalso be analyzedandcomparedto arm movementduringnormal walking.Subjectivemeasurementswill also be collectedbyaskingthe userstorate the comfort, stability,andmobility of the device ona1(worst) – 10(best) scale. Post-ProductionEvaluation:Afterthe device entersthe market,customerfeedbackwill be collected specificallyforthe categoriesof comfort,safety,mobility,andease of use.Customerfeedbackwill also be collectedintermsof the percentage of usersthatexperience limitationsinperformingone ormore of the IADLsand the BADLs. Thispercentage will be comparedtothe percentage of usersthat experience significantlimitationswhileusingothertraditional mobilityaids. Customerfeedbackonany additional comments orconcerns thatcustomersmayhave will alsobe collected. Summary There are some potential limitationsassociatedwiththe proposeddesignsolution.One limitationismobilityduringwalkingupanddown stairs.The device isdesignedtoproduce natural walkingmotiononrelativelyflatsurfaces,notforclimbingstairs.Thus,afuture improvementforthis device wouldbe toadda mobilityfeature thatallowsthe usertonaturallymove upanddownstairs. Thiscouldpossiblybe done by addinga separate stair-climbingmode thatthe usercan select.Thismode wouldcalibrate hipflexionanglestoknee flexionangleswhile walkingupanddownstairs.Another potential limitationisthe weightof the device.Althoughthe weightof the device isonlyestimatedtobe around10.5 pounds,andthe userwon’tneedto constantlyliftthe full weight;the weightof the device couldstill make itslightlycumbersome tomove afterwalkingforextendedperiodsof time. The costof the device isalsoanotherpotential limitation. Thus,afuture improvementforthisdevice wouldbe to conduct furthermaterial researchandselectalighterandcheaper, yetsufficientlystrong,material.A new“super-steel”alloythatissupposedlyasstrongastitaniumbuttentimesas cheapand alsolighteris beingdevelopedinSouthKorea(Crew,2015).The material isan alloyconsistingof steel,aluminum,and a small amountof nickel.The addednickelisthe keyingredientinthisnew material. In conclusion,tibialfracturesare the mostcommon longbone fracturesinthe body, makingup around33% of all fracturesinthe body. The majorityof tibial fracture (93%) require a full legcast. Variousdesignsare onthe marketthat provide patientsinlowerlegcastswithsufficientmobility. However,there isasignificantneedforamobilityaidsuitable forthe 93% of the tibial fracture populationwhoare notable to benefitfromthe currentdesigns.The proposeddesignprovidespeople
  • 16. Khade Grant EGRB 421 Final Project 11/30/2015 recoveringfromtibial fractureswithahands-freedevice thatallowsforanatural walkingmotionby providingknee flexion.The designsolutionconsistsof amechanical prostheticlegapparatus which providesknee flexionthroughamechanical knee.The device consistsof angularsensorsand microprocessorsthatrelate the hipflexionangleduringeachstage of the humangait cycle to the knee flexionangleatthe correspondingstage inthe gaitcycle.The outputsignal producedfromthe hip flexionangleiscalibratedtoproduce the correspondingkneeflexionangle.Thishands-free device providespeople withtibial fractureswhoare subjectedtorehabilitationinfull-legcastswiththe ability to move naturally.
  • 17. Khade Grant EGRB 421 Final Project 11/30/2015 References [1] Fields,Karl B.“Tibial ShaftFracturesinAdults.” UptoDate.Sep29.2015. Web Nov29. 2015 [2] Antonova,E.,etal.“Tibia ShaftFractures:CostlyBurdenonNonunions.” BioMed Central. Jan26. 2013. WebNov29. 2015 [3] National CenterforHealthStatistics.“National HealthInterview SurveyonDisability.”Centersfor Disease Controland Prevention. Jul. 1998. Web Nov30. 2015 [4] Margaret, A.,etal. “AnthropometricReference DataforChildrenandAdults:UnitedStates,2003- 2006.” CentersforDisease Controland Prevention. Oct22. 2008. WebNov2. 2015 [5] MatwebLLC. “TitaniumTi-6AL-4V (Grade 5),Annealed.”AerospaceSpecification MetalsInc. May 1996. WebNov3. 2015 [6] Simth,J.“The Ten-YearInvention:Neoprene andDuPontResearch.” Technology and Culture. Jan. 1985. WebNov30. 2015 [7] Gallagher,A.J.“DynamicTensilePropertiesof HumanSkin.” InternationalResearch Councilon the Biomechanicsof Impact.Sep.2012. WebNov 30. 2015 [8] Webster,J.“Medical Instrumentation:ApplicationandDesign.” John Wiley & Sons,Inc. Feb2009. Print. [9] Colombo,G.,etal.“Treadmill Trainingof ParaplegicPatientsUsingaRoboticOrthosis.” Journalof Rehabilitation Research & Development. Dec.2000. WebNov29. 2015 [10] Crew,Bec.“New‘Super-Steel’AlloyisasStrongas Titanium, but10 TimesCheaper.”ScienceAlert. Feb6. 2015. Web Nov30. 2015
  • 18. Khade Grant EGRB 421 Final Project 11/30/2015 Appendix I – Calculation/Validation of Dimensions and Materials List Supplementary Figure 1. Calculation/Validation of Dimensions and Material Parts List
  • 19. Khade Grant EGRB 421 Final Project 11/30/2015 Appendix I (continued) Supplementary Figure 2. Calculation/Validation of Dimensions
  • 20. Khade Grant EGRB 421 Final Project 11/30/2015 Appendix II – Initial Drawings Supplementary Figure 3. Initial Drawings. (a) Frontal View. (b) Sagittal View. (c) Sagittal View during Gait Cycle
  • 21. Khade Grant EGRB 421 Final Project 11/30/2015 Appendix III – Preliminary Test Results CompressionTest Results Name Type Min Max Stress1 VON: von Mises Stress 0 N/m^2 Node: 50455 2.45758e+006 N/m^2 Node: 83321 iKhade-Static 1-Stress-Stress1 Supplementary Figure 4. Compression Test Results: Stress Analysis
  • 22. Khade Grant EGRB 421 Final Project 11/30/2015 Appendix III (continued) Name Type Min Max Displacement1 URES: Resultant Displacement 0 mm Node: 50455 0.00288903 mm Node: 80672 iKhade-Static 1-Displacement-Displacement1 Supplementary Figure 5. Compression Test Results: Deformation Analysis
  • 23. Khade Grant EGRB 421 Final Project 11/30/2015 Appendix III (continued) Name Type Min Max Strain1 ESTRN: EquivalentStrain 0 Element: 29414 1.75294e-005 Element: 54094 iKhade-Static 1-Strain-Strain1 Supplementary Figure 6. Compression Test Results: Strain Analysis