SlideShare a Scribd company logo
1 of 9
Download to read offline
 
 
 
 
Comparative Analysis of Microfluidic Biomolecular Separation
Techniques With An Emphasis on Dielectrophoresis
 
 
Word Count: 1264 
Prepared for 
Leo Banuelos 
Biomedical Engineering Master’s Student 
California Polytechnic State University 
San Luis Obispo, California 
 
 
 
 
 
Prepared by 
Keyon Keshtgar 
Biomedical Engineering 
 
 
March 4, 2016 
   
 
1 
Abstract 
Biomolecular separations are required in many contexts in biochemical and biomedical 
applications for the identification, isolation, and analysis for a sample of interest. Microfluidics is 
uniquely suited for handling biological samples, and emerging technologies have become an 
increasingly accessible tool for researchers and clinicians. This report aims to explore the 
innovative techniques for microfluidic cell separation and manipulation, specifically using 
dielectrophoresis (DEP). A working principle first explains what DEP is and also highlights 
some of the techniques to insulate and eliminate fouling. Two DEP techniques will then be 
discussed; screen­printed microfluidic DEP chip and contactless DEP chip. This report will 
explain each technique, highlight key features, and describe the manufacturing process. This 
paper is intended to help a master student at California Polytechnic State University, San Luis 
Obispo to complete their literature survey. 
   
 
2 
Introduction 
The manipulation of molecules is essential in biological research, clinical diagnostics, 
and cellular therapies. Separating heterogeneous molecules into subpopulations allows for the 
identification of samples of interest and subsequent physical and biochemical analysis for the 
purpose of scientific research. Molecule separation has long been a central theme in 
microfluidics research. ​In general, microfluidic devices are uniquely suited for manipulating 
biomolecules: low Reynolds number, laminar flow, fast fluid manipulation. In addition, 
incorporating  channels on the order of 10–100 µm enable the use of small sample volumes and 
fabrication from poly­dimethyl­siloxane (PDMS) makes the devices simple to make, cheap, and 
easy for imaging. ​The motivation to reduce the size, cost and complexity of this technology 
would allow for a more effective usability for scientists and clinicians. ​This article focuses 
specifically on a few microfluidic biomolecular separation techniques involving 
dielectrophoresis after a brief description of dielectrophoresis. 
Dielectrophoresis 
Dielectrophoresis (DEP) cell separation is a 
sorting technique that relies on the principle that when 
a polarizable molecule, such as large biomolecules 
and cells, are placed in a non­uniform electric field, 
the field can exhibit a net force on that particle due to 
an induced or permanent dipole. A particle is not 
required to be charged because all particles exhibit a 
dielectrophoretic activity in the presence of an electrical field. 
 
3 
The strength of the force, however, strongly depends on the medium and particle's electrical 
property, shape/size, and the frequency of the electrical field. ​Multiple electrical fields can be 
utilized in order to separate a mixture of particles. ​Figure 1​ accurately demonstrates this method. 
DEP can be positive, like that shown in (a), where the particle moves in the direction of 
increasing electrical field. Similarly, DEP can be negative, like that shown in (b), where the 
particle moves away from the high field regions. Alternatively, multiple fields may be created to 
separate different shaped or sized molecules in subsequent branching arrangements, like that 
shown in (c). 
There is an alternative manner of carrying out DEP which is known as insulator­based 
DEP (iDEP). In this technique, a voltage is applied using two electrodes that straddle an 
insulating structures array. They do not lose their functionality despite fouling effects, which 
make them more suitable for biological applications. iDEP systems can also be made from a 
wide variety of materials, including plastics. As a result, it becomes possible for inexpensive 
systems and increased potential for high throughput applications.  
Another potential issue is fouling. While working with bio­particles, fouling of the metal 
electrodes may distort the operation of AC­DEP devices. One of the possible solutions, is to 
employ carbon electrodes because carbon has a much wider electrochemical stability window 
than metals commonly used in thin film electrode fabrications, such as gold and platinum. This 
allows for higher voltages to be applied in a given medium without electrolyzing it. It is 
important to understand these challenges when choosing the appropriate method for separation. 
 
 
4 
Discussion 
Screen­Printed Microfluidic Dielectrophoresis Chip 
After conducting research on possible techniques for biomolecular separation, a few 
spark particular interest. The first is an inexpensive screen­printed AC­DEP chip used for the 
separation of yeast cells conducted by a group of researchers at South China University of 
Technology. The main components for this technique, such as the electrodes and channels, were 
constructed using a layer­by­layer screen printing process, which is especially suitable for 
high­throughput mass production. In order to reduce fouling of electrodes, carbon paste was used 
to print a semi­3d structure which serves for 
the same purpose. By doing so, the chip cost 
is dramatically decreased and particle 
trapping efficiency is increased. ​Figure 2​, 
shows the screen printing procedure of the 
microfluidic AC­DEP chip. A clean glass is 
served as the substrate and the bottom layer. 
Next, a patterned carbon ink is used as the 
electrode and conductive wires. A UV 
curable, dielectric composition for 
microfluidic channels is rested upon the 
carbon ink. Finally, a PDMS layer with inlet 
and outlet ports is placed on top of the 
assembly.  The electrode pattern may be oriented in three different ways; an offset castellated 
 
5 
orientation, non­offset castellated orientation, and an interdigitated line orientation. These can be 
seen in the figure above as (5), (6), and (7). When a suspension solution flows into the 
microchannel, yeast cells feel the positive DEP forces and are thus trapped onto the carbon 
electrodes. Meanwhile polystyrene microspheres experience weak negative DEP forces and are 
repelled from the electrode. As a result, the separation between yeast cells and the PS 
microspheres occurs. 
In comparison to conventional microfabrication processes, this method is 
especially suitable for high­throughput mass production due to it’s low cost, simple operating 
procedure and facile fabrication conditions. After successfully separating yeast and PS cells, the 
study conducted by Hongwu Zhu and his research team concluded that this technique showed a 
high capture rate and separation efficiency. It is believed that this approach can offer a great 
promise toward the development of miniaturized, portable flow­through DEP chips for 
diagnostic and clinical applications. 
Contactless Dielectrophoresis Chip 
A second, highly favored technique for biomolecular separation involves an alternative 
approach, which is known as contactless dielectrophoresis (cDEP). Traditionally, DEP devices 
include metallic electrodes patterned in a sample channel, which can be expensive to 
manufacture and requires the need for a highly sterilized environment. cDEP utilizes DEP while 
avoiding direct contact between electrodes, which eliminates the possibility of contamination. A 
unique characteristic is that the electrical field is generated using fluidic electrode channels that 
contain a highly conductive fluid. Another main advantage of this technique over existing 
 
6 
methods is that cells can be sorted and characterised based on their intrinsic biophysical 
properties without the need for labeling based on biomarkers. This method is useful for 
applications such as sorting live cells from dead, isolating tumor initiating cells, separating 
cancer cells based on stage, and looking at the effects of drugs on different cells. 
The fabrication of the cDEP chip begins by using ion 
etching to etch the channel design into a silicone wafer. 
PDMS is then mixed and poured onto the wafer, which is 
collectively heated to 100℃ for 45 minutes. After cooling, 
inlet and outlet holes are punctured into the PDMS. The 
channel side of the PDMS is then pressed onto a clean glass 
slide. A low conductivity buffer is mixed with the 
experimental cells, which are dyed using a fluorescent 
membrane permeable dye. This mixture is sucked into a thin 
tubing that fits onto the tip of a syringe on one end and is attached  to 
the inlet hole of the microfluidic chip on the other. Next, pipettes 
heads are attached onto the electrode channels and filled with PBS with a small amount of 
rhodamine B. Finally, this assembly (​Figure 3a)​ is attached to the necessary machinery (​Figure 
3b)​ for testing and analysis. The schematic of this low 
frequency continuous sorting device can been seen in  ​figure 
4​ where the two pairs of fluidic electrode channels compose 
the source and sink electrodes respectively and are separated 
from the sample channel made of a PDMS barrier. 
 
7 
Conclusion 
In conclusion, the ability to separate biomolecules in microfluidics using DEP is an 
important tool in order to fully understand their subsequent physical and biochemical 
characteristics for scientific research. This paper aimed to highlight a few different ways for 
effectively using DEP to biomolecular separation. There are both strengths and weaknesses 
associated with the screen­printed and contactless DEP chip. It should be noted that this paper is 
only a rough guide to these approaches of microfluidic bioseparation and the reader should 
consult other sources to provide a more complete understanding before selecting the most 
optimal method.  
 
   
 
8 
WORKS CITED 
[1] Jackson, Emily L., and Hang Lu. "Advances in microfluidic cell separation and manipulation." ​Curr Opin Chem Eng. Author 
manuscript​ (2013): 398­404. ​Google Scholar​. Web. 27 Feb. 2016. 
<​http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970816/​>. 
 
[2] Minnella, Walter. ​MICROFLUIDIC CELL SEPARATION AND SORTING: A SHORT REVIEW​. LAPASO project, n.d. Web. 
27 Feb. 2016. 
<​http://www.elveflow.com/microfluidic­tutorials/cell­biology­imaging­reviews­and­tutorials/microfluidic­for­cell­biolog
y/label­free­microfluidic­cell­separation­and­sorting­techniques­a­review/​>. 
 
[3] Gallo­Villanueva, Roberto C., and Blanca H. Lapizco­Encinas. ​Insulator­based dielectrophoresis for bioparticle 
manipulation​. AES Electrophoresis Society, 213. Web. 1 Mar. 2016. <​http://www.aesociety.org/areas/insulator_dep.php​>. 
 
[4] Zhu, Hongwu, Xiaoguang Lin, Yong Su, Hua Dong, and Jianhua Wu. "Screen­printed microfluidic dielectrophoresis chip for 
cell separation." ​Biosensors and Bioelectronics​ 63 (2014): 371­78. ​Google Scholar​. Web. 1 Mar. 2016. 
<​http://ac.els­cdn.com/S0956566314005739/1­s2.0­S0956566314005739­main.pdf?_tid=05c6526a­e028­11e5­9fa3­0000
0aacb35d&acdnat=1456890000_80e229e5b3fa28686bd9da01660decf7​>. 
[5] Elvington, Elizabeth S., Alireza Salmanzadeh, Mark A. Stremler, and Rafael V. Davalos. "Label­free Isolation and 
Enrichment of Cells Through Contactless Dielectrophoresis." (2013). ​Google Scholar​. Web. 1 Mar. 2016. 
<​http://www.jove.com/video/50634/label­free­isolation­enrichment­cells­through­contactless​>. 
 
 

More Related Content

Similar to BioFiltrationLiterature (2)

nanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospectsnanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospectsYULIU384426
 
microfluids.docx
microfluids.docxmicrofluids.docx
microfluids.docxFellow Ship
 
Microfluidics Presentation
Microfluidics PresentationMicrofluidics Presentation
Microfluidics PresentationVidiu
 
Application of nanotechnology in biomedicine
Application of nanotechnology in biomedicineApplication of nanotechnology in biomedicine
Application of nanotechnology in biomedicineUniversity of Allahabad
 
What are the specific laboratory techniques and procedures taught in the DMLT...
What are the specific laboratory techniques and procedures taught in the DMLT...What are the specific laboratory techniques and procedures taught in the DMLT...
What are the specific laboratory techniques and procedures taught in the DMLT...AnooskaGupta
 
Nanotechnology ppt.pptx
Nanotechnology ppt.pptxNanotechnology ppt.pptx
Nanotechnology ppt.pptxvarsha312583
 
nano-1-190112160747.pdf
nano-1-190112160747.pdfnano-1-190112160747.pdf
nano-1-190112160747.pdfChijiokeNsofor
 
Nanobiotechnology lecture 1
Nanobiotechnology lecture 1Nanobiotechnology lecture 1
Nanobiotechnology lecture 1Ibad khan
 
In Depth Review on Nanogel and its Applications
In Depth Review on Nanogel and its ApplicationsIn Depth Review on Nanogel and its Applications
In Depth Review on Nanogel and its Applicationsijtsrd
 
Course bionanotechnology and nanomedicin
Course  bionanotechnology and nanomedicinCourse  bionanotechnology and nanomedicin
Course bionanotechnology and nanomedicindrmortaza
 
Design of MEMS Biosensor for Pathogenic Bacterial Disease Detection
Design of MEMS Biosensor for Pathogenic Bacterial Disease DetectionDesign of MEMS Biosensor for Pathogenic Bacterial Disease Detection
Design of MEMS Biosensor for Pathogenic Bacterial Disease DetectionAI Publications
 
Prahlad Rao Latestresume
Prahlad Rao LatestresumePrahlad Rao Latestresume
Prahlad Rao Latestresumeprao123
 
RESEARCH- Laboratory techniques and methods
RESEARCH- Laboratory techniques and methodsRESEARCH- Laboratory techniques and methods
RESEARCH- Laboratory techniques and methodsbonifacioandres287
 
nanoscience ppt.ppt of biophysics and nanotechnology
nanoscience ppt.ppt of biophysics and nanotechnologynanoscience ppt.ppt of biophysics and nanotechnology
nanoscience ppt.ppt of biophysics and nanotechnologysweta178930
 
Introduction of Organ-On-A-Chip - Creative Biolabs
Introduction of Organ-On-A-Chip - Creative BiolabsIntroduction of Organ-On-A-Chip - Creative Biolabs
Introduction of Organ-On-A-Chip - Creative BiolabsCreative-Biolabs
 
Immunobiology and new challenges in drug development
Immunobiology and new challenges in drug developmentImmunobiology and new challenges in drug development
Immunobiology and new challenges in drug developmentDr Kurt Sales
 
Univ of IL Micro + Nanotechnology Lab highlights
Univ of IL Micro + Nanotechnology Lab highlightsUniv of IL Micro + Nanotechnology Lab highlights
Univ of IL Micro + Nanotechnology Lab highlightsLaura Schmitt
 
1477 3155-2-3
1477 3155-2-31477 3155-2-3
1477 3155-2-3gana9
 

Similar to BioFiltrationLiterature (2) (20)

nanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospectsnanobiotechnology, achievements and development prospects
nanobiotechnology, achievements and development prospects
 
microfluids.docx
microfluids.docxmicrofluids.docx
microfluids.docx
 
Microfluidics Presentation
Microfluidics PresentationMicrofluidics Presentation
Microfluidics Presentation
 
MicrofluidicsCongressAgenda
MicrofluidicsCongressAgendaMicrofluidicsCongressAgenda
MicrofluidicsCongressAgenda
 
Application of nanotechnology in biomedicine
Application of nanotechnology in biomedicineApplication of nanotechnology in biomedicine
Application of nanotechnology in biomedicine
 
What are the specific laboratory techniques and procedures taught in the DMLT...
What are the specific laboratory techniques and procedures taught in the DMLT...What are the specific laboratory techniques and procedures taught in the DMLT...
What are the specific laboratory techniques and procedures taught in the DMLT...
 
Nanotechnology ppt.pptx
Nanotechnology ppt.pptxNanotechnology ppt.pptx
Nanotechnology ppt.pptx
 
nano-1-190112160747.pdf
nano-1-190112160747.pdfnano-1-190112160747.pdf
nano-1-190112160747.pdf
 
Nanobiotechnology lecture 1
Nanobiotechnology lecture 1Nanobiotechnology lecture 1
Nanobiotechnology lecture 1
 
In Depth Review on Nanogel and its Applications
In Depth Review on Nanogel and its ApplicationsIn Depth Review on Nanogel and its Applications
In Depth Review on Nanogel and its Applications
 
Course bionanotechnology and nanomedicin
Course  bionanotechnology and nanomedicinCourse  bionanotechnology and nanomedicin
Course bionanotechnology and nanomedicin
 
Design of MEMS Biosensor for Pathogenic Bacterial Disease Detection
Design of MEMS Biosensor for Pathogenic Bacterial Disease DetectionDesign of MEMS Biosensor for Pathogenic Bacterial Disease Detection
Design of MEMS Biosensor for Pathogenic Bacterial Disease Detection
 
Deepthy j dileep
Deepthy j dileepDeepthy j dileep
Deepthy j dileep
 
Prahlad Rao Latestresume
Prahlad Rao LatestresumePrahlad Rao Latestresume
Prahlad Rao Latestresume
 
RESEARCH- Laboratory techniques and methods
RESEARCH- Laboratory techniques and methodsRESEARCH- Laboratory techniques and methods
RESEARCH- Laboratory techniques and methods
 
nanoscience ppt.ppt of biophysics and nanotechnology
nanoscience ppt.ppt of biophysics and nanotechnologynanoscience ppt.ppt of biophysics and nanotechnology
nanoscience ppt.ppt of biophysics and nanotechnology
 
Introduction of Organ-On-A-Chip - Creative Biolabs
Introduction of Organ-On-A-Chip - Creative BiolabsIntroduction of Organ-On-A-Chip - Creative Biolabs
Introduction of Organ-On-A-Chip - Creative Biolabs
 
Immunobiology and new challenges in drug development
Immunobiology and new challenges in drug developmentImmunobiology and new challenges in drug development
Immunobiology and new challenges in drug development
 
Univ of IL Micro + Nanotechnology Lab highlights
Univ of IL Micro + Nanotechnology Lab highlightsUniv of IL Micro + Nanotechnology Lab highlights
Univ of IL Micro + Nanotechnology Lab highlights
 
1477 3155-2-3
1477 3155-2-31477 3155-2-3
1477 3155-2-3
 

BioFiltrationLiterature (2)