Generative adversarial networks (GANs) use two neural networks, a generator and discriminator, that compete against each other. The generator creates synthetic samples and the discriminator evaluates them as real or fake. This training process allows the generator to produce highly realistic samples. GANs have been used to generate new images like faces, as well as music, dance motions, and design concepts. Resources for learning more about GANs include online courses, books, and example notebooks.