Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Laboratory Integration John Trigg


Published on

Presentation given at the 9th Laboratory Informatics Forum, San Diego, November 2011

  • Be the first to comment

Laboratory Integration John Trigg

  1. 1. Overcoming the Challenges Facing Laboratory Integration <ul><li>John Trigg </li></ul><ul><li>phaseFour Informatics Limited </li></ul><ul><li> </li></ul><ul><li> </li></ul>
  2. 2. The e-Laboratory vs the i-Laboratory <ul><li>The electronic or paperless laboratory </li></ul><ul><ul><li>Application-centric </li></ul></ul><ul><ul><li>A jigsaw puzzle – a case of trying to make the pieces fit </li></ul></ul><ul><ul><li>Hampered by lack of standards </li></ul></ul><ul><ul><li>Dependent on custom solutions </li></ul></ul><ul><li>The integrated laboratory </li></ul><ul><ul><li>Modular </li></ul></ul><ul><ul><li>Content separated from the application </li></ul></ul><ul><ul><li>Based on data interchange standards </li></ul></ul><ul><ul><li>Based on communication standards </li></ul></ul><ul><ul><li>Products able to work together </li></ul></ul>
  3. 3. Laboratory Integration Objectives <ul><li>Smoother, easier workflows </li></ul><ul><ul><li>Less manual effort </li></ul></ul><ul><ul><li>Avoiding duplication of data entry </li></ul></ul><ul><li>Easier compliance </li></ul><ul><ul><li>Easier to validate and maintain </li></ul></ul><ul><ul><li>Error reduction </li></ul></ul><ul><li>Reduced cost of development and support </li></ul><ul><ul><li>Eliminate custom interfaces </li></ul></ul><ul><ul><li>Improved efficiencies </li></ul></ul><ul><li>Better data management </li></ul><ul><ul><li>Easier access to data/information </li></ul></ul><ul><li>More flexibility </li></ul><ul><ul><li>Easier to upgrade/change </li></ul></ul>Ref: The Integration of Laboratory Systems, Institute for Laboratory Information, 2010
  4. 4. Changing business models, driven by technology <ul><li>Analogue  Digital </li></ul><ul><ul><li>Music </li></ul></ul><ul><ul><li>Film </li></ul></ul><ul><ul><li>Television </li></ul></ul><ul><li>Physical media  Electronic </li></ul><ul><ul><li>Photography </li></ul></ul><ul><ul><li>Newspapers/Magazines </li></ul></ul><ul><ul><li>Books </li></ul></ul><ul><li>Pareto  Long Tail (markets of millions -> millions of markets) </li></ul><ul><ul><li>Amazon </li></ul></ul><ul><ul><li>eBay </li></ul></ul><ul><ul><li>iTunes </li></ul></ul>
  5. 5. Analogue vs. digital photography <ul><li>Upload </li></ul><ul><li>Email </li></ul><ul><li>MMS </li></ul>
  6. 6. Why is digital photography different/better? <ul><li>Easier to take, evaluate and edit photos </li></ul><ul><ul><li>Point & shoot </li></ul></ul><ul><ul><li>Instant results - no need to send films away to be processed </li></ul></ul><ul><ul><li>Doesn ’ t need to involve 3 rd parties to reprint photos </li></ul></ul><ul><ul><li>Metadata automatically assigned </li></ul></ul><ul><li>Easier to store and search images </li></ul><ul><ul><li>No need for shoeboxes, wallets and photo-albums </li></ul></ul><ul><ul><li>Long term storage and archiving needs to be addressed </li></ul></ul><ul><li>Easier to share </li></ul><ul><ul><li>Photo-sharing sites </li></ul></ul><ul><ul><li>Social network sites </li></ul></ul><ul><ul><li>MMS messaging </li></ul></ul><ul><ul><li>Email </li></ul></ul><ul><li>Applies to personal, social and business use. </li></ul><ul><li>And we don’t really need to worry about image formats and connectivity. </li></ul>
  7. 7. A generic laboratory data ‘ architecture ’ <ul><li>The triangle represents the different layers of abstraction that exist in R&D information flows. These are almost always handled by different systems. </li></ul><ul><li>Above the experimental layer is often management context, and is handled by traditional IT tools used elsewhere in the enterprise. </li></ul><ul><li>Cross discipline collaboration tends to happen around experiment (or reports summarising experiments). Anything more detailed than the experiment requires specific expertise and tools to interpret. </li></ul><ul><li>Below the experiment level there is an increasing specialisation of data types and tools, and only a few systems are comfortably deployed across workgroups. </li></ul>INFORMATION DATA KNOWLEDGE
  8. 8. Laboratory ‘ architecture ’ Activity Format Application Programme/ Study Document Enterprise tools (Doc. Mgt.) Project Document/ Files Desktop tools (MS Office) Experiment Notebook Q/A Chemistry Biology Sample Structured data/files LIMS SDMS Chemistry tools Structures Reactions Registration Biology tools (Excel?) Databases Test Raw/ Processed data Lab Automation
  9. 9. Current business drivers in the laboratory <ul><li>Productivity and business efficiency </li></ul><ul><li>Compliance; regulatory, legal, internal, H&S </li></ul><ul><li>IP protection, security </li></ul><ul><li>Knowledge management </li></ul><ul><li>Changing scientific goals </li></ul><ul><ul><li>Increasingly biology-centric </li></ul></ul><ul><ul><li>Increasing complexity </li></ul></ul><ul><ul><li>Multi-disciplinary </li></ul></ul><ul><ul><li>More and more data </li></ul></ul><ul><ul><li>Increasing accountability (health/environment) </li></ul></ul>
  10. 10. What are the barriers to an integrated lab ? <ul><li>Lack of: </li></ul><ul><ul><li>Data interchange standards </li></ul></ul><ul><ul><li>Laboratory communication standards </li></ul></ul><ul><ul><li>Common language/terminology </li></ul></ul><ul><li>Short termism </li></ul><ul><ul><li>The current economic climate and short term tactical requirements do not encourage long term investment </li></ul></ul><ul><li>We don’t have a guardian angel </li></ul><ul><ul><li>No industry association, that represents user communities, to drive the development and adoption of integration standards </li></ul></ul><ul><li>Lack of community action </li></ul><ul><ul><li>No self-forming communities to tackle common problems </li></ul></ul><ul><ul><li>No (not enough?) pressure on vendors </li></ul></ul><ul><ul><li>But, there are signs of community interest in discussion and sharing opinion in the LinkedIn groups, but no call to action. </li></ul></ul>
  11. 11. What might save us? <ul><li>Vendor response (single vendor vs. best of breed) </li></ul><ul><li>Industry (vendors + user community) collaboration </li></ul><ul><ul><li>An organised body (The Pistoia Alliance?) </li></ul></ul><ul><li>Community action </li></ul><ul><ul><li>See : </li></ul></ul><ul><ul><ul><li>Tribes, Seth Godin,Piatkus Books, 2008 </li></ul></ul></ul><ul><ul><ul><li>Here Comes Everybody, Clay Shirky, AllenLane/Penguin Books, 2008 </li></ul></ul></ul><ul><li>Technology </li></ul><ul><ul><li>Electronic Records Management (documents) </li></ul></ul><ul><ul><ul><li>Need for reliability, authenticity, integrity, usability </li></ul></ul></ul><ul><ul><ul><li>Document standards (PDF, PDF/A, ODF, OOXML) </li></ul></ul></ul><ul><ul><li>Data Standards </li></ul></ul><ul><ul><ul><li>JCAMP-DX, ANDI, AnIML </li></ul></ul></ul><ul><ul><ul><li>Need for agreed terminology, common laboratory language </li></ul></ul></ul><ul><ul><ul><li>Web services/XML? </li></ul></ul></ul>
  12. 12. What is necessary for data standards to evolve? <ul><li>“… inefficient practices have become deeply ingrained by a highly risk averse and legalistic corporate culture, often at the expense of opportunities to co-develop early-stage technology tools, establish data standards, share disease target information, or pursue other forms of collaboration that could lift the productivity of the entire industry.” </li></ul><ul><ul><ul><ul><li>Macrowikinomics, Don Tapscott & Anthony D.Williams, Atlantic Books, 2010 </li></ul></ul></ul></ul><ul><li>Collaborative Innovation? </li></ul><ul><li>Do we have the energy and inertia to collaboratively evolve a common language and common terminology to facilitate the development of laboratory data standards? </li></ul><ul><li>Do we have the energy and inertia to collaboratively encourage vendors to adopt agreed data standards? </li></ul>
  13. 13. Technology Milestones 1980 1990 2000 Microcomputers Minicomputers Proprietary OS MS-DOS Standalone Apps MS-Windows (GUI) ‘ Industry ’ standards DBMS Client-Server Integrated Apps Central Control Central Control User Control 2010 Open Source Distributed Apps Smart phones Tablets Distributed Control ‘ Social’ network Internet Networks
  14. 14. The Five Eras of the Social Web: <ul><li>Era of Social Relationships: People connect to others and share </li></ul><ul><li>Era of Social Functionality: Social networks become like operating systems </li></ul><ul><li>Era of Social Colonisation: Every experience can now be social </li></ul><ul><li>Era of Social Context: Personalised and accurate content </li></ul><ul><li>Era of Social Commerce: Communities define future products and services </li></ul><ul><li>Ref: Post by Jeremiah Owyang on Web Strategy </li></ul><ul><li> </li></ul>
  15. 16. Skills and Culture <ul><li>The laboratory is a knowledge ecosystem </li></ul><ul><li>Technology plays an increasing tactical and strategic role in scientific discovery and other laboratory processes </li></ul><ul><li>Innovation is becoming an ‘industrial’ and global process </li></ul><ul><li>How many lab workers receive formal training in laboratory automation and laboratory integration? </li></ul><ul><li>How capable and well equipped are users to understand and use technology? </li></ul>Technology Processes People
  16. 17. Lab Managers Survey:   Lab Staff Qualifications for Modern Laboratories <ul><li>Q: Applicants for positions have well qualified backgrounds in lab automation tools and technologies. </li></ul>Joe Liscouski, Institute for Laboratory Automation, April 2011
  17. 18. Conclusions <ul><li>In order to meet laboratory integration goals, </li></ul><ul><li>We need a non-competitive process in which we, as a community can collaborate with solution providers to achieve common goals, free of politics and commercial interests, and which places the advancement of science at the forefront. </li></ul><ul><li>We need to work together to evolve a common basis (language and terminology) for data interchange standards to be developed, and to encourage their adoption. </li></ul><ul><li>We need to collaborate with higher education establishments to encourage programmes designed to address the technology and process understanding needs of modern industrial science. </li></ul>