SlideShare a Scribd company logo
1 of 124
Download to read offline
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
PowerPoint® Lecture Presentations for
Biology
Eighth Edition
Neil Campbell and Jane Reece
Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp
Chapter 6
A Tour of the Cell
Overview: The Fundamental Units of Life
• All organisms are made of cells
• The cell is the simplest collection of matter
that can live
• Cell structure is correlated to cellular function
• All cells are related by their descent from
earlier cells
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-1
Concept 6.1: To study cells, biologists use
microscopes and the tools of biochemistry
• Though usually too small to be seen by the
unaided eye, cells can be complex
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Microscopy
• Scientists use microscopes to visualize cells
too small to see with the naked eye
• In a light microscope (LM), visible light
passes through a specimen and then through
glass lenses, which magnify the image
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• The quality of an image depends on
– Magnification, the ratio of an object’s image
size to its real size
– Resolution, the measure of the clarity of the
image, or the minimum distance of two
distinguishable points
– Contrast, visible differences in parts of the
sample
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-2
10 m
1 m
0.1 m
1 cm
1 mm
100 µm
10 µm
1 µm
100 nm
10 nm
1 nm
0.1 nm Atoms
Small molecules
Lipids
Proteins
Ribosomes
Viruses
Smallest bacteria
Mitochondrion
Nucleus
Most bacteria
Most plant and
animal cells
Frog egg
Chicken egg
Length of some
nerve and
muscle cells
Human height
Unaided
eye
Light
microscope
Electron
microscope
• LMs can magnify effectively to about 1,000
times the size of the actual specimen
• Various techniques enhance contrast and
enable cell components to be stained or
labeled
• Most subcellular structures, including
organelles (membrane-enclosed
compartments), are too small to be resolved by
an LM
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-3
TECHNIQUE RESULTS
(a) Brightfield (unstained
specimen)
(b) Brightfield (stained
specimen)
50 µm
(c) Phase-contrast
(d) Differential-interference-
contrast (Nomarski)
(e) Fluorescence
(f) Confocal
50 µm
50 µm
Fig. 6-3ab
(a) Brightfield (unstained
specimen)
(b) Brightfield (stained
specimen)
TECHNIQUE RESULTS
50 µm
Fig. 6-3cd
(c) Phase-contrast
(d) Differential-interference-
contrast (Nomarski)
TECHNIQUE RESULTS
Fig. 6-3e
(e) Fluorescence
TECHNIQUE RESULTS
50 µm
Fig. 6-3f
(f) Confocal
TECHNIQUE RESULTS
50 µm
• Two basic types of electron microscopes
(EMs) are used to study subcellular structures
• Scanning electron microscopes (SEMs)
focus a beam of electrons onto the surface of a
specimen, providing images that look 3-D
• Transmission electron microscopes (TEMs)
focus a beam of electrons through a specimen
• TEMs are used mainly to study the internal
structure of cells
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-4
(a) Scanning electron
microscopy (SEM)
TECHNIQUE RESULTS
(b) Transmission electron
microscopy (TEM)
Cilia
Longitudinal
section of
cilium
Cross section
of cilium
1 µm
1 µm
Cell Fractionation
• Cell fractionation takes cells apart and
separates the major organelles from one
another
• Ultracentrifuges fractionate cells into their
component parts
• Cell fractionation enables scientists to
determine the functions of organelles
• Biochemistry and cytology help correlate cell
function with structure
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-5
Homogenization
TECHNIQUE
Homogenate
Tissue
cells
1,000 g
(1,000 times the
force of gravity)
10 min Differential centrifugation
Supernatant poured
into next tube
20,000 g
20 min
80,000 g
60 min
Pellet rich in
nuclei and
cellular debris
Pellet rich in
mitochondria
(and chloro-
plasts if cells
are from a plant)
Pellet rich in
“microsomes”
(pieces of plasma
membranes and
cells’ internal
membranes)
150,000 g
3 hr
Pellet rich in
ribosomes
Fig. 6-5a
Homogenization
Homogenate
Differential centrifugation
Tissue
cells
TECHNIQUE
Fig. 6-5b
1,000 g
(1,000 times the
force of gravity)
10 min
Supernatant poured
into next tube
20,000 g
20 min
80,000 g
60 min
150,000 g
3 hr
Pellet rich in
nuclei and
cellular debris
Pellet rich in
mitochondria
(and chloro-
plasts if cells
are from a plant)
Pellet rich in
“microsomes”
(pieces of plasma
membranes and
cells’ internal
membranes) Pellet rich in
ribosomes
TECHNIQUE (cont.)
Concept 6.2: Eukaryotic cells have internal
membranes that compartmentalize their functions
• The basic structural and functional unit of every
organism is one of two types of cells:
prokaryotic or eukaryotic
• Only organisms of the domains Bacteria and
Archaea consist of prokaryotic cells
• Protists, fungi, animals, and plants all consist of
eukaryotic cells
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Comparing Prokaryotic and Eukaryotic Cells
• Basic features of all cells:
– Plasma membrane
– Semifluid substance called cytosol
– Chromosomes (carry genes)
– Ribosomes (make proteins)
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Prokaryotic cells are characterized by having
– No nucleus
– DNA in an unbound region called the nucleoid
– No membrane-bound organelles
– Cytoplasm bound by the plasma membrane
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-6
Fimbriae
Nucleoid
Ribosomes
Plasma membrane
Cell wall
Capsule
Flagella
Bacterial
chromosome
(a) A typical
rod-shaped
bacterium
(b) A thin section
through the
bacterium
Bacillus
coagulans (TEM)
0.5 µm
• Eukaryotic cells are characterized by having
– DNA in a nucleus that is bounded by a
membranous nuclear envelope
– Membrane-bound organelles
– Cytoplasm in the region between the plasma
membrane and nucleus
• Eukaryotic cells are generally much larger than
prokaryotic cells
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• The plasma membrane is a selective barrier
that allows sufficient passage of oxygen,
nutrients, and waste to service the volume of
every cell
• The general structure of a biological membrane
is a double layer of phospholipids
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-7
TEM of a plasma
membrane
(a)
(b) Structure of the plasma membrane
Outside of cell
Inside of
cell 0.1 µm
Hydrophilic
region
Hydrophobic
region
Hydrophilic
region
Phospholipid Proteins
Carbohydrate side chain
• The logistics of carrying out cellular metabolism
sets limits on the size of cells
• The surface area to volume ratio of a cell is
critical
• As the surface area increases by a factor of n2,
the volume increases by a factor of n3
• Small cells have a greater surface area relative
to volume
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-8
Surface area increases while
total volume remains constant
5
1
1
6 150 750
125 125
1
6 6
1.2
Total surface area
[Sum of the surface areas
(height  width) of all boxes
sides  number of boxes]
Total volume
[height  width  length 
number of boxes]
Surface-to-volume
(S-to-V) ratio
[surface area volume]
A Panoramic View of the Eukaryotic Cell
• A eukaryotic cell has internal membranes that
partition the cell into organelles
• Plant and animal cells have most of the same
organelles
BioFlix: Tour Of An Animal Cell
BioFlix: Tour Of A Plant Cell
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-9a
ENDOPLASMIC RETICULUM (ER)
Smooth ER
Rough ER
Flagellum
Centrosome
CYTOSKELETON:
Microfilaments
Intermediate
filaments
Microtubules
Microvilli
Peroxisome
Mitochondrion
Lysosome
Golgi
apparatus
Ribosomes
Plasma
membrane
Nuclear
envelope
Nucleolus
Chromatin
NUCLEUS
Fig. 6-9b
NUCLEUS
Nuclear envelope
Nucleolus
Chromatin
Rough endoplasmic
reticulum
Smooth endoplasmic
reticulum
Ribosomes
Central vacuole
Microfilaments
Intermediate
filaments
Microtubules
CYTO-
SKELETON
Chloroplast
Plasmodesmata
Wall of adjacent cell
Cell wall
Plasma
membrane
Peroxisome
Mitochondrion
Golgi
apparatus
Concept 6.3: The eukaryotic cell’s genetic
instructions are housed in the nucleus and carried
out by the ribosomes
• The nucleus contains most of the DNA in a
eukaryotic cell
• Ribosomes use the information from the DNA
to make proteins
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
The Nucleus: Information Central
• The nucleus contains most of the cell’s genes
and is usually the most conspicuous organelle
• The nuclear envelope encloses the nucleus,
separating it from the cytoplasm
• The nuclear membrane is a double membrane;
each membrane consists of a lipid bilayer
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-10
Nucleolus
Nucleus
Rough ER
Nuclear lamina (TEM)
Close-up of nuclear
envelope
1 µm
1 µm
0.25 µm
Ribosome
Pore
complex
Nuclear pore
Outer membrane
Inner membrane
Nuclear envelope:
Chromatin
Surface of
nuclear envelope
Pore complexes (TEM)
• Pores regulate the entry and exit of molecules
from the nucleus
• The shape of the nucleus is maintained by the
nuclear lamina, which is composed of protein
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• In the nucleus, DNA and proteins form genetic
material called chromatin
• Chromatin condenses to form discrete
chromosomes
• The nucleolus is located within the nucleus
and is the site of ribosomal RNA (rRNA)
synthesis
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Ribosomes: Protein Factories
• Ribosomes are particles made of ribosomal
RNA and protein
• Ribosomes carry out protein synthesis in two
locations:
– In the cytosol (free ribosomes)
– On the outside of the endoplasmic reticulum or
the nuclear envelope (bound ribosomes)
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-11
Cytosol
Endoplasmic reticulum (ER)
Free ribosomes
Bound ribosomes
Large
subunit
Small
subunit
Diagram of a ribosome
TEM showing ER and ribosomes
0.5 µm
Concept 6.4: The endomembrane system regulates
protein traffic and performs metabolic functions in
the cell
• Components of the endomembrane system:
– Nuclear envelope
– Endoplasmic reticulum
– Golgi apparatus
– Lysosomes
– Vacuoles
– Plasma membrane
• These components are either continuous or
connected via transfer by vesicles
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
The Endoplasmic Reticulum: Biosynthetic Factory
• The endoplasmic reticulum (ER) accounts for
more than half of the total membrane in many
eukaryotic cells
• The ER membrane is continuous with the
nuclear envelope
• There are two distinct regions of ER:
– Smooth ER, which lacks ribosomes
– Rough ER, with ribosomes studding its
surface
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-12
Smooth ER
Rough ER Nuclear
envelope
Transitional ER
Rough ER
Smooth ER
Transport vesicle
Ribosomes
Cisternae
ER lumen
200 nm
Functions of Smooth ER
• The smooth ER
– Synthesizes lipids
– Metabolizes carbohydrates
– Detoxifies poison
– Stores calcium
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Functions of Rough ER
• The rough ER
– Has bound ribosomes, which secrete
glycoproteins (proteins covalently bonded to
carbohydrates)
– Distributes transport vesicles, proteins
surrounded by membranes
– Is a membrane factory for the cell
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• The Golgi apparatus consists of flattened
membranous sacs called cisternae
• Functions of the Golgi apparatus:
– Modifies products of the ER
– Manufactures certain macromolecules
– Sorts and packages materials into transport
vesicles
The Golgi Apparatus: Shipping and
Receiving Center
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-13
cis face
(“receiving” side of
Golgi apparatus) Cisternae
trans face
(“shipping” side of
Golgi apparatus)
TEM of Golgi apparatus
0.1 µm
Lysosomes: Digestive Compartments
• A lysosome is a membranous sac of hydrolytic
enzymes that can digest macromolecules
• Lysosomal enzymes can hydrolyze proteins,
fats, polysaccharides, and nucleic acids
Lysosome Formation
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Some types of cell can engulf another cell by
phagocytosis; this forms a food vacuole
• A lysosome fuses with the food vacuole and
digests the molecules
• Lysosomes also use enzymes to recycle the
cell’s own organelles and macromolecules, a
process called autophagy
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-14
Nucleus 1 µm
Lysosome
Digestive
enzymes
Lysosome
Plasma
membrane
Food vacuole
(a) Phagocytosis
Digestion
(b) Autophagy
Peroxisome
Vesicle
Lysosome
Mitochondrion
Peroxisome
fragment
Mitochondrion
fragment
Vesicle containing
two damaged organelles
1 µm
Digestion
Fig. 6-14a
Nucleus 1 µm
Lysosome
Lysosome
Digestive
enzymes
Plasma
membrane
Food vacuole
Digestion
(a) Phagocytosis
Fig. 6-14b
Vesicle containing
two damaged organelles
Mitochondrion
fragment
Peroxisome
fragment
Peroxisome
Lysosome
Digestion
Mitochondrion
Vesicle
(b) Autophagy
1 µm
Vacuoles: Diverse Maintenance Compartments
• A plant cell or fungal cell may have one or
several vacuoles
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Food vacuoles are formed by phagocytosis
• Contractile vacuoles, found in many
freshwater protists, pump excess water out of
cells
• Central vacuoles, found in many mature plant
cells, hold organic compounds and water
Video: Paramecium Vacuole
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-15
Central vacuole
Cytosol
Central
vacuole
Nucleus
Cell wall
Chloroplast
5 µm
The Endomembrane System: A Review
• The endomembrane system is a complex and
dynamic player in the cell’s compartmental
organization
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-16-1
Smooth ER
Nucleus
Rough ER
Plasma
membrane
Fig. 6-16-2
Smooth ER
Nucleus
Rough ER
Plasma
membrane
cis Golgi
trans Golgi
Fig. 6-16-3
Smooth ER
Nucleus
Rough ER
Plasma
membrane
cis Golgi
trans Golgi
Concept 6.5: Mitochondria and chloroplasts
change energy from one form to another
• Mitochondria are the sites of cellular
respiration, a metabolic process that generates
ATP
• Chloroplasts, found in plants and algae, are
the sites of photosynthesis
• Peroxisomes are oxidative organelles
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Mitochondria and chloroplasts
– Are not part of the endomembrane system
– Have a double membrane
– Have proteins made by free ribosomes
– Contain their own DNA
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Mitochondria: Chemical Energy Conversion
• Mitochondria are in nearly all eukaryotic cells
• They have a smooth outer membrane and an
inner membrane folded into cristae
• The inner membrane creates two
compartments: intermembrane space and
mitochondrial matrix
• Some metabolic steps of cellular respiration
are catalyzed in the mitochondrial matrix
• Cristae present a large surface area for
enzymes that synthesize ATP
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-17
Free
ribosomes
in the
mitochondrial
matrix
Intermembrane space
Outer
membrane
Inner
membrane
Cristae
Matrix
0.1 µm
Chloroplasts: Capture of Light Energy
• The chloroplast is a member of a family of
organelles called plastids
• Chloroplasts contain the green pigment
chlorophyll, as well as enzymes and other
molecules that function in photosynthesis
• Chloroplasts are found in leaves and other
green organs of plants and in algae
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Chloroplast structure includes:
– Thylakoids, membranous sacs, stacked to
form a granum
– Stroma, the internal fluid
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-18
Ribosomes
Thylakoid
Stroma
Granum
Inner and outer
membranes
1 µm
Peroxisomes: Oxidation
• Peroxisomes are specialized metabolic
compartments bounded by a single membrane
• Peroxisomes produce hydrogen peroxide and
convert it to water
• Oxygen is used to break down different types
of molecules
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-19
1 µm
Chloroplast
Peroxisome
Mitochondrion
Concept 6.6: The cytoskeleton is a network of fibers
that organizes structures and activities in the cell
• The cytoskeleton is a network of fibers
extending throughout the cytoplasm
• It organizes the cell’s structures and activities,
anchoring many organelles
• It is composed of three types of molecular
structures:
– Microtubules
– Microfilaments
– Intermediate filaments
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-20
Microtubule
Microfilaments
0.25 µm
Roles of the Cytoskeleton: Support, Motility, and
Regulation
• The cytoskeleton helps to support the cell and
maintain its shape
• It interacts with motor proteins to produce
motility
• Inside the cell, vesicles can travel along
“monorails” provided by the cytoskeleton
• Recent evidence suggests that the
cytoskeleton may help regulate biochemical
activities
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-21
Vesicle
ATP
Receptor for
motor protein
Microtubule
of cytoskeleton
Motor protein
(ATP powered)
(a)
Microtubule Vesicles
(b)
0.25 µm
Components of the Cytoskeleton
• Three main types of fibers make up the
cytoskeleton:
– Microtubules are the thickest of the three
components of the cytoskeleton
– Microfilaments, also called actin filaments, are
the thinnest components
– Intermediate filaments are fibers with
diameters in a middle range
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Table 6-1
10 µm 10 µm 10 µm
Column of tubulin dimers
Tubulin dimer
Actin subunit
 
25 nm
7 nm
Keratin proteins
Fibrous subunit (keratins
coiled together)
8–12 nm
Table 6-1a
10 µm
Column of tubulin dimers
Tubulin dimer
 
25 nm
Table 6-1b
Actin subunit
10 µm
7 nm
Table 6-1c
5 µm
Keratin proteins
Fibrous subunit (keratins
coiled together)
8–12 nm
Microtubules
• Microtubules are hollow rods about 25 nm in
diameter and about 200 nm to 25 microns long
• Functions of microtubules:
– Shaping the cell
– Guiding movement of organelles
– Separating chromosomes during cell division
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Centrosomes and Centrioles
• In many cells, microtubules grow out from a
centrosome near the nucleus
• The centrosome is a “microtubule-organizing
center”
• In animal cells, the centrosome has a pair of
centrioles, each with nine triplets of
microtubules arranged in a ring
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-22
Centrosome
Microtubule
Centrioles
0.25 µm
Longitudinal section
of one centriole
Microtubules Cross section
of the other centriole
Cilia and Flagella
• Microtubules control the beating of cilia and
flagella, locomotor appendages of some cells
• Cilia and flagella differ in their beating patterns
Video: Chlamydomonas
Video: Paramecium Cilia
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-23
5 µm
Direction of swimming
(a) Motion of flagella
Direction of organism’s movement
Power stroke Recovery stroke
(b) Motion of cilia
15 µm
• Cilia and flagella share a common
ultrastructure:
– A core of microtubules sheathed by the plasma
membrane
– A basal body that anchors the cilium or
flagellum
– A motor protein called dynein, which drives
the bending movements of a cilium or
flagellum Cilia and Flagella
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-24
0.1 µm
Triplet
(c) Cross section of basal body
(a) Longitudinal
section of cilium
0.5 µm
Plasma
membrane
Basal body
Microtubules
(b) Cross section of
cilium
Plasma
membrane
Outer microtubule
doublet
Dynein proteins
Central
microtubule
Radial
spoke
Protein cross-
linking outer
doublets
0.1 µm
• How dynein “walking” moves flagella and cilia:
− Dynein arms alternately grab, move, and
release the outer microtubules
– Protein cross-links limit sliding
– Forces exerted by dynein arms cause doublets
to curve, bending the cilium or flagellum
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-25
Microtubule
doublets
Dynein
protein
ATP
ATP
(a) Effect of unrestrained dynein movement
Cross-linking proteins
inside outer doublets
Anchorage
in cell
(b) Effect of cross-linking proteins
1 3
2
(c) Wavelike motion
Fig. 6-25a
Microtubule
doublets
Dynein
protein
(a) Effect of unrestrained dynein movement
ATP
Fig. 6-25b
Cross-linking proteins
inside outer doublets
Anchorage
in cell
ATP
(b) Effect of cross-linking proteins
(c) Wavelike motion
1 3
2
Microfilaments (Actin Filaments)
• Microfilaments are solid rods about 7 nm in
diameter, built as a twisted double chain of
actin subunits
• The structural role of microfilaments is to bear
tension, resisting pulling forces within the cell
• They form a 3-D network called the cortex just
inside the plasma membrane to help support
the cell’s shape
• Bundles of microfilaments make up the core of
microvilli of intestinal cells
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-26
Microvillus
Plasma membrane
Microfilaments (actin
filaments)
Intermediate filaments
0.25 µm
• Microfilaments that function in cellular motility
contain the protein myosin in addition to actin
• In muscle cells, thousands of actin filaments
are arranged parallel to one another
• Thicker filaments composed of myosin
interdigitate with the thinner actin fibers
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-27
Muscle cell
Actin filament
Myosin filament
Myosin arm
(a) Myosin motors in muscle cell contraction
Cortex (outer cytoplasm):
gel with actin network
Inner cytoplasm: sol
with actin subunits
Extending
pseudopodium
(b) Amoeboid movement
Nonmoving cortical
cytoplasm (gel)
Chloroplast
Streaming
cytoplasm
(sol) Vacuole
Cell wall
Parallel actin
filaments
(c) Cytoplasmic streaming in plant cells
Fig, 6-27a
Muscle cell
Actin filament
Myosin filament
Myosin arm
(a) Myosin motors in muscle cell contraction
Fig. 6-27bc
Cortex (outer cytoplasm):
gel with actin network
Inner cytoplasm: sol
with actin subunits
Extending
pseudopodium
(b) Amoeboid movement
Nonmoving cortical
cytoplasm (gel)
Chloroplast
Cell wall
Streaming
cytoplasm
(sol)
Parallel actin
filaments
(c) Cytoplasmic streaming in plant cells
Vacuole
• Localized contraction brought about by actin
and myosin also drives amoeboid movement
• Pseudopodia (cellular extensions) extend and
contract through the reversible assembly and
contraction of actin subunits into microfilaments
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Cytoplasmic streaming is a circular flow of
cytoplasm within cells
• This streaming speeds distribution of materials
within the cell
• In plant cells, actin-myosin interactions and sol-
gel transformations drive cytoplasmic
streaming
Video: Cytoplasmic Streaming
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Intermediate Filaments
• Intermediate filaments range in diameter from
8–12 nanometers, larger than microfilaments
but smaller than microtubules
• They support cell shape and fix organelles in
place
• Intermediate filaments are more permanent
cytoskeleton fixtures than the other two classes
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Concept 6.7: Extracellular components and
connections between cells help coordinate cellular
activities
• Most cells synthesize and secrete materials
that are external to the plasma membrane
• These extracellular structures include:
– Cell walls of plants
– The extracellular matrix (ECM) of animal cells
– Intercellular junctions
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Cell Walls of Plants
• The cell wall is an extracellular structure that
distinguishes plant cells from animal cells
• Prokaryotes, fungi, and some protists also have
cell walls
• The cell wall protects the plant cell, maintains its
shape, and prevents excessive uptake of water
• Plant cell walls are made of cellulose fibers
embedded in other polysaccharides and protein
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
• Plant cell walls may have multiple layers:
– Primary cell wall: relatively thin and flexible
– Middle lamella: thin layer between primary
walls of adjacent cells
– Secondary cell wall (in some cells): added
between the plasma membrane and the
primary cell wall
• Plasmodesmata are channels between
adjacent plant cells
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-28
Secondary
cell wall
Primary
cell wall
Middle
lamella
Central vacuole
Cytosol
Plasma membrane
Plant cell walls
Plasmodesmata
1 µm
Fig. 6-29
10 µm
Distribution of cellulose
synthase over time
Distribution of microtubules
over time
RESULTS
The Extracellular Matrix (ECM) of Animal Cells
• Animal cells lack cell walls but are covered by
an elaborate extracellular matrix (ECM)
• The ECM is made up of glycoproteins such as
collagen, proteoglycans, and fibronectin
• ECM proteins bind to receptor proteins in the
plasma membrane called integrins
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-30
EXTRACELLULAR FLUID
Collagen
Fibronectin
Plasma
membrane
Micro-
filaments
CYTOPLASM
Integrins
Proteoglycan
complex
Polysaccharide
molecule
Carbo-
hydrates
Core
protein
Proteoglycan
molecule
Proteoglycan complex
Fig. 6-30a
Collagen
Fibronectin
Plasma
membrane
Proteoglycan
complex
Integrins
CYTOPLASM
Micro-
filaments
EXTRACELLULAR FLUID
Fig. 6-30b
Polysaccharide
molecule
Carbo-
hydrates
Core
protein
Proteoglycan
molecule
Proteoglycan complex
• Functions of the ECM:
– Support
– Adhesion
– Movement
– Regulation
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Intercellular Junctions
• Neighboring cells in tissues, organs, or organ
systems often adhere, interact, and
communicate through direct physical contact
• Intercellular junctions facilitate this contact
• There are several types of intercellular junctions
– Plasmodesmata
– Tight junctions
– Desmosomes
– Gap junctions
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Plasmodesmata in Plant Cells
• Plasmodesmata are channels that perforate
plant cell walls
• Through plasmodesmata, water and small
solutes (and sometimes proteins and RNA) can
pass from cell to cell
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-31
Interior
of cell
Interior
of cell
0.5 µm Plasmodesmata Plasma membranes
Cell walls
Tight Junctions, Desmosomes, and Gap Junctions in
Animal Cells
• At tight junctions, membranes of neighboring
cells are pressed together, preventing leakage of
extracellular fluid
• Desmosomes (anchoring junctions) fasten cells
together into strong sheets
• Gap junctions (communicating junctions) provide
cytoplasmic channels between adjacent cells
Tight Junctions
Desmosomes
Gap Junctions
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-32
Tight junction
0.5 µm
1 µm
Desmosome
Gap junction
Extracellular
matrix
0.1 µm
Plasma membranes
of adjacent cells
Space
between
cells
Gap
junctions
Desmosome
Intermediate
filaments
Tight junction
Tight junctions prevent
fluid from moving
across a layer of cells
Fig. 6-32a
Tight junctions prevent
fluid from moving
across a layer of cells
Tight junction
Intermediate
filaments
Desmosome
Gap
junctions
Extracellular
matrix
Space
between
cells
Plasma membranes
of adjacent cells
Fig. 6-32b
Tight junction
0.5 µm
Fig. 6-32c
Desmosome
1 µm
Fig. 6-32d
Gap junction
0.1 µm
The Cell: A Living Unit Greater Than the Sum of
Its Parts
• Cells rely on the integration of structures and
organelles in order to function
• For example, a macrophage’s ability to destroy
bacteria involves the whole cell, coordinating
components such as the cytoskeleton,
lysosomes, and plasma membrane
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 6-33
Fig. 6-UN1
Cell Component Structure Function
Houses chromosomes, made of
chromatin (DNA, the genetic
material, and proteins); contains
nucleoli, where ribosomal
subunits are made. Pores
regulate entry and exit of
materials.
Nucleus
(ER)
Concept 6.3
The eukaryotic cell’s genetic
instructions are housed in
the nucleus and carried out
by the ribosomes
Ribosome
Concept 6.4 Endoplasmic reticulum
The endomembrane system
regulates protein traffic and
performs metabolic functions
in the cell
(Nuclear
envelope)
Concept 6.5
Mitochondria and chloro-
plasts change energy from
one form to another
Golgi apparatus
Lysosome
Vacuole
Mitochondrion
Chloroplast
Peroxisome
Two subunits made of ribo-
somal RNA and proteins; can be
free in cytosol or bound to ER
Extensive network of
membrane-bound tubules and
sacs; membrane separates
lumen from cytosol;
continuous with
the nuclear envelope.
Membranous sac of hydrolytic
enzymes (in animal cells)
Large membrane-bounded
vesicle in plants
Bounded by double
membrane;
inner membrane has
infoldings (cristae)
Typically two membranes
around fluid stroma, which
contains membranous thylakoids
stacked into grana (in plants)
Specialized metabolic
compartment bounded by a
single membrane
Protein synthesis
Smooth ER: synthesis of
lipids, metabolism of carbohy-
drates, Ca2+ storage, detoxifica-
tion of drugs and poisons
Rough ER: Aids in synthesis of
secretory and other proteins from
bound ribosomes; adds
carbohydrates to glycoproteins;
produces new membrane
Modification of proteins, carbo-
hydrates on proteins, and phos-
pholipids; synthesis of many
polysaccharides; sorting of Golgi
products, which are then
released in vesicles.
Breakdown of ingested substances,
cell macromolecules, and damaged
organelles for recycling
Digestion, storage, waste
disposal, water balance, cell
growth, and protection
Cellular respiration
Photosynthesis
Contains enzymes that transfer
hydrogen to water, producing
hydrogen peroxide (H2O2) as a
by-product, which is converted
to water by other enzymes
in the peroxisome
Stacks of flattened
membranous
sacs; has polarity
(cis and trans
faces)
Surrounded by nuclear
envelope (double membrane)
perforated by nuclear pores.
The nuclear envelope is
continuous with the
endoplasmic reticulum (ER).
Fig. 6-UN1a
Cell Component Structure Function
Concept 6.3
The eukaryotic cell’s genetic
instructions are housed in
the nucleus and carried out
by the ribosomes
Nucleus Surrounded by nuclear
envelope (double membrane)
perforated by nuclear pores.
The nuclear envelope is
continuous with the
endoplasmic reticulum (ER).
(ER)
Houses chromosomes, made of
chromatin (DNA, the genetic
material, and proteins); contains
nucleoli, where ribosomal
subunits are made. Pores
regulate entry and exit os
materials.
Ribosome Two subunits made of ribo-
somal RNA and proteins; can be
free in cytosol or bound to ER
Protein synthesis
Fig. 6-UN1b
Cell Component Structure Function
Concept 6.4
The endomembrane system
regulates protein traffic and
performs metabolic functions
in the cell
Endoplasmic reticulum
(Nuclear
envelope)
Golgi apparatus
Lysosome
Vacuole Large membrane-bounded
vesicle in plants
Membranous sac of hydrolytic
enzymes (in animal cells)
Stacks of flattened
membranous
sacs; has polarity
(cis and trans
faces)
Extensive network of
membrane-bound tubules and
sacs; membrane separates
lumen from cytosol;
continuous with
the nuclear envelope.
Smooth ER: synthesis of
lipids, metabolism of carbohy-
drates, Ca2+ storage, detoxifica-
tion of drugs and poisons
Rough ER: Aids in sythesis of
secretory and other proteins
from bound ribosomes; adds
carbohydrates to glycoproteins;
produces new membrane
Modification of proteins, carbo-
hydrates on proteins, and phos-
pholipids; synthesis of many
polysaccharides; sorting of
Golgi products, which are then
released in vesicles.
Breakdown of ingested sub-
stances cell macromolecules,
and damaged organelles for
recycling
Digestion, storage, waste
disposal, water balance, cell
growth, and protection
Fig. 6-UN1c
Cell Component
Concept 6.5
Mitochondria and chloro-
plasts change energy from
one form to another
Mitochondrion
Chloroplast
Peroxisome
Structure Function
Bounded by double
membrane;
inner membrane has
infoldings (cristae)
Typically two membranes
around fluid stroma, which
contains membranous thylakoids
stacked into grana (in plants)
Specialized metabolic
compartment bounded by a
single membrane
Cellular respiration
Photosynthesis
Contains enzymes that transfer
hydrogen to water, producing
hydrogen peroxide (H2O2) as a
by-product, which is converted
to water by other enzymes
in the peroxisome
Fig. 6-UN2
Fig. 6-UN3
You should now be able to:
1. Distinguish between the following pairs of terms:
magnification and resolution; prokaryotic and
eukaryotic cell; free and bound ribosomes; smooth
and rough ER
2. Describe the structure and function of the
components of the endomembrane system
3. Briefly explain the role of mitochondria, chloroplasts,
and peroxisomes
4. Describe the functions of the cytoskeleton
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
5. Compare the structure and functions of microtubules,
microfilaments, and intermediate filaments
6. Explain how the ultrastructure of cilia and flagella
relate to their functions
7. Describe the structure of a plant cell wall
8. Describe the structure and roles of the extracellular
matrix in animal cells
9. Describe four different intercellular junctions
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

More Related Content

Similar to Chapter 6 - Lecture.pdf

07 ge lecture presentation
07 ge lecture presentation07 ge lecture presentation
07 ge lecture presentationmahmood jassim
 
06 lecture presentation
06 lecture presentation06 lecture presentation
06 lecture presentationYazeed Samara
 
06atourofthecell 130311053323-phpapp01
06atourofthecell 130311053323-phpapp0106atourofthecell 130311053323-phpapp01
06atourofthecell 130311053323-phpapp01Cleophas Rwemera
 
04 lecture presentation
04 lecture presentation04 lecture presentation
04 lecture presentationcurrie538
 
AP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the CellAP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the Cellsciencewithsuresh
 
Chapter :Tour of cell ,structure and function of parts
Chapter :Tour of cell ,structure and function of partsChapter :Tour of cell ,structure and function of parts
Chapter :Tour of cell ,structure and function of partsnowsheranss185151
 
Power pt on cell structure
Power pt on cell structurePower pt on cell structure
Power pt on cell structuredicabelle_100
 
Chapter4 sections+1 7
Chapter4 sections+1 7Chapter4 sections+1 7
Chapter4 sections+1 7bigdanny
 
Chapter4 sections+1 7
Chapter4 sections+1 7Chapter4 sections+1 7
Chapter4 sections+1 7bigdanny
 
Biochapter6notes 151125141544-lva1-app6892
Biochapter6notes 151125141544-lva1-app6892Biochapter6notes 151125141544-lva1-app6892
Biochapter6notes 151125141544-lva1-app6892Cleophas Rwemera
 
Bio chapter 6 notes
Bio chapter 6 notesBio chapter 6 notes
Bio chapter 6 notesAngel Vega
 
04lecturepresentation 150906205152-lva1-app6892
04lecturepresentation 150906205152-lva1-app689204lecturepresentation 150906205152-lva1-app6892
04lecturepresentation 150906205152-lva1-app6892Cleophas Rwemera
 
Biology in Focus Chapter 4
Biology in Focus Chapter 4Biology in Focus Chapter 4
Biology in Focus Chapter 4mpattani
 
Bio chapter 1.pdf
Bio chapter 1.pdfBio chapter 1.pdf
Bio chapter 1.pdfNiveetha1
 
04 lecture presentation
04 lecture presentation04 lecture presentation
04 lecture presentationGian Romano
 
Cell structure-function
Cell structure-functionCell structure-function
Cell structure-functionsanisaddam
 

Similar to Chapter 6 - Lecture.pdf (20)

07 ge lecture presentation
07 ge lecture presentation07 ge lecture presentation
07 ge lecture presentation
 
06 lecture presentation
06 lecture presentation06 lecture presentation
06 lecture presentation
 
06atourofthecell 130311053323-phpapp01
06atourofthecell 130311053323-phpapp0106atourofthecell 130311053323-phpapp01
06atourofthecell 130311053323-phpapp01
 
04 lecture presentation
04 lecture presentation04 lecture presentation
04 lecture presentation
 
AP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the CellAP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the Cell
 
Chapter :Tour of cell ,structure and function of parts
Chapter :Tour of cell ,structure and function of partsChapter :Tour of cell ,structure and function of parts
Chapter :Tour of cell ,structure and function of parts
 
06_cells_2017.ppt
06_cells_2017.ppt06_cells_2017.ppt
06_cells_2017.ppt
 
Power pt on cell structure
Power pt on cell structurePower pt on cell structure
Power pt on cell structure
 
Bio Ch 6 Pwpt
Bio  Ch 6 PwptBio  Ch 6 Pwpt
Bio Ch 6 Pwpt
 
Chapter4 sections+1 7
Chapter4 sections+1 7Chapter4 sections+1 7
Chapter4 sections+1 7
 
Chapter4 sections+1 7
Chapter4 sections+1 7Chapter4 sections+1 7
Chapter4 sections+1 7
 
Biochapter6notes 151125141544-lva1-app6892
Biochapter6notes 151125141544-lva1-app6892Biochapter6notes 151125141544-lva1-app6892
Biochapter6notes 151125141544-lva1-app6892
 
Bio chapter 6 notes
Bio chapter 6 notesBio chapter 6 notes
Bio chapter 6 notes
 
Chapter 4 cell & tissues (1) [compatibility mode]
Chapter 4  cell & tissues (1) [compatibility mode]Chapter 4  cell & tissues (1) [compatibility mode]
Chapter 4 cell & tissues (1) [compatibility mode]
 
04lecturepresentation 150906205152-lva1-app6892
04lecturepresentation 150906205152-lva1-app689204lecturepresentation 150906205152-lva1-app6892
04lecturepresentation 150906205152-lva1-app6892
 
Biology in Focus Chapter 4
Biology in Focus Chapter 4Biology in Focus Chapter 4
Biology in Focus Chapter 4
 
Bio chapter 1.pdf
Bio chapter 1.pdfBio chapter 1.pdf
Bio chapter 1.pdf
 
06 cell text
06  cell text06  cell text
06 cell text
 
04 lecture presentation
04 lecture presentation04 lecture presentation
04 lecture presentation
 
Cell structure-function
Cell structure-functionCell structure-function
Cell structure-function
 

Recently uploaded

Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 

Recently uploaded (20)

Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 

Chapter 6 - Lecture.pdf

  • 1. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Chapter 6 A Tour of the Cell
  • 2. Overview: The Fundamental Units of Life • All organisms are made of cells • The cell is the simplest collection of matter that can live • Cell structure is correlated to cellular function • All cells are related by their descent from earlier cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 4. Concept 6.1: To study cells, biologists use microscopes and the tools of biochemistry • Though usually too small to be seen by the unaided eye, cells can be complex Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 5. Microscopy • Scientists use microscopes to visualize cells too small to see with the naked eye • In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 6. • The quality of an image depends on – Magnification, the ratio of an object’s image size to its real size – Resolution, the measure of the clarity of the image, or the minimum distance of two distinguishable points – Contrast, visible differences in parts of the sample Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 7. Fig. 6-2 10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins Ribosomes Viruses Smallest bacteria Mitochondrion Nucleus Most bacteria Most plant and animal cells Frog egg Chicken egg Length of some nerve and muscle cells Human height Unaided eye Light microscope Electron microscope
  • 8. • LMs can magnify effectively to about 1,000 times the size of the actual specimen • Various techniques enhance contrast and enable cell components to be stained or labeled • Most subcellular structures, including organelles (membrane-enclosed compartments), are too small to be resolved by an LM Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 9. Fig. 6-3 TECHNIQUE RESULTS (a) Brightfield (unstained specimen) (b) Brightfield (stained specimen) 50 µm (c) Phase-contrast (d) Differential-interference- contrast (Nomarski) (e) Fluorescence (f) Confocal 50 µm 50 µm
  • 10. Fig. 6-3ab (a) Brightfield (unstained specimen) (b) Brightfield (stained specimen) TECHNIQUE RESULTS 50 µm
  • 11. Fig. 6-3cd (c) Phase-contrast (d) Differential-interference- contrast (Nomarski) TECHNIQUE RESULTS
  • 14. • Two basic types of electron microscopes (EMs) are used to study subcellular structures • Scanning electron microscopes (SEMs) focus a beam of electrons onto the surface of a specimen, providing images that look 3-D • Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen • TEMs are used mainly to study the internal structure of cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 15. Fig. 6-4 (a) Scanning electron microscopy (SEM) TECHNIQUE RESULTS (b) Transmission electron microscopy (TEM) Cilia Longitudinal section of cilium Cross section of cilium 1 µm 1 µm
  • 16. Cell Fractionation • Cell fractionation takes cells apart and separates the major organelles from one another • Ultracentrifuges fractionate cells into their component parts • Cell fractionation enables scientists to determine the functions of organelles • Biochemistry and cytology help correlate cell function with structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 17. Fig. 6-5 Homogenization TECHNIQUE Homogenate Tissue cells 1,000 g (1,000 times the force of gravity) 10 min Differential centrifugation Supernatant poured into next tube 20,000 g 20 min 80,000 g 60 min Pellet rich in nuclei and cellular debris Pellet rich in mitochondria (and chloro- plasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) 150,000 g 3 hr Pellet rich in ribosomes
  • 19. Fig. 6-5b 1,000 g (1,000 times the force of gravity) 10 min Supernatant poured into next tube 20,000 g 20 min 80,000 g 60 min 150,000 g 3 hr Pellet rich in nuclei and cellular debris Pellet rich in mitochondria (and chloro- plasts if cells are from a plant) Pellet rich in “microsomes” (pieces of plasma membranes and cells’ internal membranes) Pellet rich in ribosomes TECHNIQUE (cont.)
  • 20. Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions • The basic structural and functional unit of every organism is one of two types of cells: prokaryotic or eukaryotic • Only organisms of the domains Bacteria and Archaea consist of prokaryotic cells • Protists, fungi, animals, and plants all consist of eukaryotic cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 21. Comparing Prokaryotic and Eukaryotic Cells • Basic features of all cells: – Plasma membrane – Semifluid substance called cytosol – Chromosomes (carry genes) – Ribosomes (make proteins) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 22. • Prokaryotic cells are characterized by having – No nucleus – DNA in an unbound region called the nucleoid – No membrane-bound organelles – Cytoplasm bound by the plasma membrane Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 23. Fig. 6-6 Fimbriae Nucleoid Ribosomes Plasma membrane Cell wall Capsule Flagella Bacterial chromosome (a) A typical rod-shaped bacterium (b) A thin section through the bacterium Bacillus coagulans (TEM) 0.5 µm
  • 24. • Eukaryotic cells are characterized by having – DNA in a nucleus that is bounded by a membranous nuclear envelope – Membrane-bound organelles – Cytoplasm in the region between the plasma membrane and nucleus • Eukaryotic cells are generally much larger than prokaryotic cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 25. • The plasma membrane is a selective barrier that allows sufficient passage of oxygen, nutrients, and waste to service the volume of every cell • The general structure of a biological membrane is a double layer of phospholipids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 26. Fig. 6-7 TEM of a plasma membrane (a) (b) Structure of the plasma membrane Outside of cell Inside of cell 0.1 µm Hydrophilic region Hydrophobic region Hydrophilic region Phospholipid Proteins Carbohydrate side chain
  • 27. • The logistics of carrying out cellular metabolism sets limits on the size of cells • The surface area to volume ratio of a cell is critical • As the surface area increases by a factor of n2, the volume increases by a factor of n3 • Small cells have a greater surface area relative to volume Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 28. Fig. 6-8 Surface area increases while total volume remains constant 5 1 1 6 150 750 125 125 1 6 6 1.2 Total surface area [Sum of the surface areas (height  width) of all boxes sides  number of boxes] Total volume [height  width  length  number of boxes] Surface-to-volume (S-to-V) ratio [surface area volume]
  • 29. A Panoramic View of the Eukaryotic Cell • A eukaryotic cell has internal membranes that partition the cell into organelles • Plant and animal cells have most of the same organelles BioFlix: Tour Of An Animal Cell BioFlix: Tour Of A Plant Cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 30. Fig. 6-9a ENDOPLASMIC RETICULUM (ER) Smooth ER Rough ER Flagellum Centrosome CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Microvilli Peroxisome Mitochondrion Lysosome Golgi apparatus Ribosomes Plasma membrane Nuclear envelope Nucleolus Chromatin NUCLEUS
  • 31. Fig. 6-9b NUCLEUS Nuclear envelope Nucleolus Chromatin Rough endoplasmic reticulum Smooth endoplasmic reticulum Ribosomes Central vacuole Microfilaments Intermediate filaments Microtubules CYTO- SKELETON Chloroplast Plasmodesmata Wall of adjacent cell Cell wall Plasma membrane Peroxisome Mitochondrion Golgi apparatus
  • 32. Concept 6.3: The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes • The nucleus contains most of the DNA in a eukaryotic cell • Ribosomes use the information from the DNA to make proteins Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 33. The Nucleus: Information Central • The nucleus contains most of the cell’s genes and is usually the most conspicuous organelle • The nuclear envelope encloses the nucleus, separating it from the cytoplasm • The nuclear membrane is a double membrane; each membrane consists of a lipid bilayer Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 34. Fig. 6-10 Nucleolus Nucleus Rough ER Nuclear lamina (TEM) Close-up of nuclear envelope 1 µm 1 µm 0.25 µm Ribosome Pore complex Nuclear pore Outer membrane Inner membrane Nuclear envelope: Chromatin Surface of nuclear envelope Pore complexes (TEM)
  • 35. • Pores regulate the entry and exit of molecules from the nucleus • The shape of the nucleus is maintained by the nuclear lamina, which is composed of protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 36. • In the nucleus, DNA and proteins form genetic material called chromatin • Chromatin condenses to form discrete chromosomes • The nucleolus is located within the nucleus and is the site of ribosomal RNA (rRNA) synthesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 37. Ribosomes: Protein Factories • Ribosomes are particles made of ribosomal RNA and protein • Ribosomes carry out protein synthesis in two locations: – In the cytosol (free ribosomes) – On the outside of the endoplasmic reticulum or the nuclear envelope (bound ribosomes) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 38. Fig. 6-11 Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit Small subunit Diagram of a ribosome TEM showing ER and ribosomes 0.5 µm
  • 39. Concept 6.4: The endomembrane system regulates protein traffic and performs metabolic functions in the cell • Components of the endomembrane system: – Nuclear envelope – Endoplasmic reticulum – Golgi apparatus – Lysosomes – Vacuoles – Plasma membrane • These components are either continuous or connected via transfer by vesicles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 40. The Endoplasmic Reticulum: Biosynthetic Factory • The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells • The ER membrane is continuous with the nuclear envelope • There are two distinct regions of ER: – Smooth ER, which lacks ribosomes – Rough ER, with ribosomes studding its surface Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 41. Fig. 6-12 Smooth ER Rough ER Nuclear envelope Transitional ER Rough ER Smooth ER Transport vesicle Ribosomes Cisternae ER lumen 200 nm
  • 42. Functions of Smooth ER • The smooth ER – Synthesizes lipids – Metabolizes carbohydrates – Detoxifies poison – Stores calcium Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 43. Functions of Rough ER • The rough ER – Has bound ribosomes, which secrete glycoproteins (proteins covalently bonded to carbohydrates) – Distributes transport vesicles, proteins surrounded by membranes – Is a membrane factory for the cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 44. • The Golgi apparatus consists of flattened membranous sacs called cisternae • Functions of the Golgi apparatus: – Modifies products of the ER – Manufactures certain macromolecules – Sorts and packages materials into transport vesicles The Golgi Apparatus: Shipping and Receiving Center Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 45. Fig. 6-13 cis face (“receiving” side of Golgi apparatus) Cisternae trans face (“shipping” side of Golgi apparatus) TEM of Golgi apparatus 0.1 µm
  • 46. Lysosomes: Digestive Compartments • A lysosome is a membranous sac of hydrolytic enzymes that can digest macromolecules • Lysosomal enzymes can hydrolyze proteins, fats, polysaccharides, and nucleic acids Lysosome Formation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 47. • Some types of cell can engulf another cell by phagocytosis; this forms a food vacuole • A lysosome fuses with the food vacuole and digests the molecules • Lysosomes also use enzymes to recycle the cell’s own organelles and macromolecules, a process called autophagy Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 48. Fig. 6-14 Nucleus 1 µm Lysosome Digestive enzymes Lysosome Plasma membrane Food vacuole (a) Phagocytosis Digestion (b) Autophagy Peroxisome Vesicle Lysosome Mitochondrion Peroxisome fragment Mitochondrion fragment Vesicle containing two damaged organelles 1 µm Digestion
  • 49. Fig. 6-14a Nucleus 1 µm Lysosome Lysosome Digestive enzymes Plasma membrane Food vacuole Digestion (a) Phagocytosis
  • 50. Fig. 6-14b Vesicle containing two damaged organelles Mitochondrion fragment Peroxisome fragment Peroxisome Lysosome Digestion Mitochondrion Vesicle (b) Autophagy 1 µm
  • 51. Vacuoles: Diverse Maintenance Compartments • A plant cell or fungal cell may have one or several vacuoles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 52. • Food vacuoles are formed by phagocytosis • Contractile vacuoles, found in many freshwater protists, pump excess water out of cells • Central vacuoles, found in many mature plant cells, hold organic compounds and water Video: Paramecium Vacuole Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 54. The Endomembrane System: A Review • The endomembrane system is a complex and dynamic player in the cell’s compartmental organization Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 56. Fig. 6-16-2 Smooth ER Nucleus Rough ER Plasma membrane cis Golgi trans Golgi
  • 57. Fig. 6-16-3 Smooth ER Nucleus Rough ER Plasma membrane cis Golgi trans Golgi
  • 58. Concept 6.5: Mitochondria and chloroplasts change energy from one form to another • Mitochondria are the sites of cellular respiration, a metabolic process that generates ATP • Chloroplasts, found in plants and algae, are the sites of photosynthesis • Peroxisomes are oxidative organelles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 59. • Mitochondria and chloroplasts – Are not part of the endomembrane system – Have a double membrane – Have proteins made by free ribosomes – Contain their own DNA Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 60. Mitochondria: Chemical Energy Conversion • Mitochondria are in nearly all eukaryotic cells • They have a smooth outer membrane and an inner membrane folded into cristae • The inner membrane creates two compartments: intermembrane space and mitochondrial matrix • Some metabolic steps of cellular respiration are catalyzed in the mitochondrial matrix • Cristae present a large surface area for enzymes that synthesize ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 61. Fig. 6-17 Free ribosomes in the mitochondrial matrix Intermembrane space Outer membrane Inner membrane Cristae Matrix 0.1 µm
  • 62. Chloroplasts: Capture of Light Energy • The chloroplast is a member of a family of organelles called plastids • Chloroplasts contain the green pigment chlorophyll, as well as enzymes and other molecules that function in photosynthesis • Chloroplasts are found in leaves and other green organs of plants and in algae Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 63. • Chloroplast structure includes: – Thylakoids, membranous sacs, stacked to form a granum – Stroma, the internal fluid Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 65. Peroxisomes: Oxidation • Peroxisomes are specialized metabolic compartments bounded by a single membrane • Peroxisomes produce hydrogen peroxide and convert it to water • Oxygen is used to break down different types of molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 67. Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell • The cytoskeleton is a network of fibers extending throughout the cytoplasm • It organizes the cell’s structures and activities, anchoring many organelles • It is composed of three types of molecular structures: – Microtubules – Microfilaments – Intermediate filaments Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 69. Roles of the Cytoskeleton: Support, Motility, and Regulation • The cytoskeleton helps to support the cell and maintain its shape • It interacts with motor proteins to produce motility • Inside the cell, vesicles can travel along “monorails” provided by the cytoskeleton • Recent evidence suggests that the cytoskeleton may help regulate biochemical activities Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 70. Fig. 6-21 Vesicle ATP Receptor for motor protein Microtubule of cytoskeleton Motor protein (ATP powered) (a) Microtubule Vesicles (b) 0.25 µm
  • 71. Components of the Cytoskeleton • Three main types of fibers make up the cytoskeleton: – Microtubules are the thickest of the three components of the cytoskeleton – Microfilaments, also called actin filaments, are the thinnest components – Intermediate filaments are fibers with diameters in a middle range Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 72. Table 6-1 10 µm 10 µm 10 µm Column of tubulin dimers Tubulin dimer Actin subunit   25 nm 7 nm Keratin proteins Fibrous subunit (keratins coiled together) 8–12 nm
  • 73. Table 6-1a 10 µm Column of tubulin dimers Tubulin dimer   25 nm
  • 75. Table 6-1c 5 µm Keratin proteins Fibrous subunit (keratins coiled together) 8–12 nm
  • 76. Microtubules • Microtubules are hollow rods about 25 nm in diameter and about 200 nm to 25 microns long • Functions of microtubules: – Shaping the cell – Guiding movement of organelles – Separating chromosomes during cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 77. Centrosomes and Centrioles • In many cells, microtubules grow out from a centrosome near the nucleus • The centrosome is a “microtubule-organizing center” • In animal cells, the centrosome has a pair of centrioles, each with nine triplets of microtubules arranged in a ring Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 78. Fig. 6-22 Centrosome Microtubule Centrioles 0.25 µm Longitudinal section of one centriole Microtubules Cross section of the other centriole
  • 79. Cilia and Flagella • Microtubules control the beating of cilia and flagella, locomotor appendages of some cells • Cilia and flagella differ in their beating patterns Video: Chlamydomonas Video: Paramecium Cilia Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 80. Fig. 6-23 5 µm Direction of swimming (a) Motion of flagella Direction of organism’s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm
  • 81. • Cilia and flagella share a common ultrastructure: – A core of microtubules sheathed by the plasma membrane – A basal body that anchors the cilium or flagellum – A motor protein called dynein, which drives the bending movements of a cilium or flagellum Cilia and Flagella Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 82. Fig. 6-24 0.1 µm Triplet (c) Cross section of basal body (a) Longitudinal section of cilium 0.5 µm Plasma membrane Basal body Microtubules (b) Cross section of cilium Plasma membrane Outer microtubule doublet Dynein proteins Central microtubule Radial spoke Protein cross- linking outer doublets 0.1 µm
  • 83. • How dynein “walking” moves flagella and cilia: − Dynein arms alternately grab, move, and release the outer microtubules – Protein cross-links limit sliding – Forces exerted by dynein arms cause doublets to curve, bending the cilium or flagellum Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 84. Fig. 6-25 Microtubule doublets Dynein protein ATP ATP (a) Effect of unrestrained dynein movement Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion
  • 85. Fig. 6-25a Microtubule doublets Dynein protein (a) Effect of unrestrained dynein movement ATP
  • 86. Fig. 6-25b Cross-linking proteins inside outer doublets Anchorage in cell ATP (b) Effect of cross-linking proteins (c) Wavelike motion 1 3 2
  • 87. Microfilaments (Actin Filaments) • Microfilaments are solid rods about 7 nm in diameter, built as a twisted double chain of actin subunits • The structural role of microfilaments is to bear tension, resisting pulling forces within the cell • They form a 3-D network called the cortex just inside the plasma membrane to help support the cell’s shape • Bundles of microfilaments make up the core of microvilli of intestinal cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 88. Fig. 6-26 Microvillus Plasma membrane Microfilaments (actin filaments) Intermediate filaments 0.25 µm
  • 89. • Microfilaments that function in cellular motility contain the protein myosin in addition to actin • In muscle cells, thousands of actin filaments are arranged parallel to one another • Thicker filaments composed of myosin interdigitate with the thinner actin fibers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 90. Fig. 6-27 Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Cell wall Parallel actin filaments (c) Cytoplasmic streaming in plant cells
  • 91. Fig, 6-27a Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction
  • 92. Fig. 6-27bc Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Cell wall Streaming cytoplasm (sol) Parallel actin filaments (c) Cytoplasmic streaming in plant cells Vacuole
  • 93. • Localized contraction brought about by actin and myosin also drives amoeboid movement • Pseudopodia (cellular extensions) extend and contract through the reversible assembly and contraction of actin subunits into microfilaments Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 94. • Cytoplasmic streaming is a circular flow of cytoplasm within cells • This streaming speeds distribution of materials within the cell • In plant cells, actin-myosin interactions and sol- gel transformations drive cytoplasmic streaming Video: Cytoplasmic Streaming Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 95. Intermediate Filaments • Intermediate filaments range in diameter from 8–12 nanometers, larger than microfilaments but smaller than microtubules • They support cell shape and fix organelles in place • Intermediate filaments are more permanent cytoskeleton fixtures than the other two classes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 96. Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities • Most cells synthesize and secrete materials that are external to the plasma membrane • These extracellular structures include: – Cell walls of plants – The extracellular matrix (ECM) of animal cells – Intercellular junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 97. Cell Walls of Plants • The cell wall is an extracellular structure that distinguishes plant cells from animal cells • Prokaryotes, fungi, and some protists also have cell walls • The cell wall protects the plant cell, maintains its shape, and prevents excessive uptake of water • Plant cell walls are made of cellulose fibers embedded in other polysaccharides and protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 98. • Plant cell walls may have multiple layers: – Primary cell wall: relatively thin and flexible – Middle lamella: thin layer between primary walls of adjacent cells – Secondary cell wall (in some cells): added between the plasma membrane and the primary cell wall • Plasmodesmata are channels between adjacent plant cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 99. Fig. 6-28 Secondary cell wall Primary cell wall Middle lamella Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata 1 µm
  • 100. Fig. 6-29 10 µm Distribution of cellulose synthase over time Distribution of microtubules over time RESULTS
  • 101. The Extracellular Matrix (ECM) of Animal Cells • Animal cells lack cell walls but are covered by an elaborate extracellular matrix (ECM) • The ECM is made up of glycoproteins such as collagen, proteoglycans, and fibronectin • ECM proteins bind to receptor proteins in the plasma membrane called integrins Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 105. • Functions of the ECM: – Support – Adhesion – Movement – Regulation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 106. Intercellular Junctions • Neighboring cells in tissues, organs, or organ systems often adhere, interact, and communicate through direct physical contact • Intercellular junctions facilitate this contact • There are several types of intercellular junctions – Plasmodesmata – Tight junctions – Desmosomes – Gap junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 107. Plasmodesmata in Plant Cells • Plasmodesmata are channels that perforate plant cell walls • Through plasmodesmata, water and small solutes (and sometimes proteins and RNA) can pass from cell to cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 108. Fig. 6-31 Interior of cell Interior of cell 0.5 µm Plasmodesmata Plasma membranes Cell walls
  • 109. Tight Junctions, Desmosomes, and Gap Junctions in Animal Cells • At tight junctions, membranes of neighboring cells are pressed together, preventing leakage of extracellular fluid • Desmosomes (anchoring junctions) fasten cells together into strong sheets • Gap junctions (communicating junctions) provide cytoplasmic channels between adjacent cells Tight Junctions Desmosomes Gap Junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 110. Fig. 6-32 Tight junction 0.5 µm 1 µm Desmosome Gap junction Extracellular matrix 0.1 µm Plasma membranes of adjacent cells Space between cells Gap junctions Desmosome Intermediate filaments Tight junction Tight junctions prevent fluid from moving across a layer of cells
  • 111. Fig. 6-32a Tight junctions prevent fluid from moving across a layer of cells Tight junction Intermediate filaments Desmosome Gap junctions Extracellular matrix Space between cells Plasma membranes of adjacent cells
  • 115. The Cell: A Living Unit Greater Than the Sum of Its Parts • Cells rely on the integration of structures and organelles in order to function • For example, a macrophage’s ability to destroy bacteria involves the whole cell, coordinating components such as the cytoskeleton, lysosomes, and plasma membrane Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 117. Fig. 6-UN1 Cell Component Structure Function Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit of materials. Nucleus (ER) Concept 6.3 The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes Ribosome Concept 6.4 Endoplasmic reticulum The endomembrane system regulates protein traffic and performs metabolic functions in the cell (Nuclear envelope) Concept 6.5 Mitochondria and chloro- plasts change energy from one form to another Golgi apparatus Lysosome Vacuole Mitochondrion Chloroplast Peroxisome Two subunits made of ribo- somal RNA and proteins; can be free in cytosol or bound to ER Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Membranous sac of hydrolytic enzymes (in animal cells) Large membrane-bounded vesicle in plants Bounded by double membrane; inner membrane has infoldings (cristae) Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Specialized metabolic compartment bounded by a single membrane Protein synthesis Smooth ER: synthesis of lipids, metabolism of carbohy- drates, Ca2+ storage, detoxifica- tion of drugs and poisons Rough ER: Aids in synthesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Modification of proteins, carbo- hydrates on proteins, and phos- pholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Breakdown of ingested substances, cell macromolecules, and damaged organelles for recycling Digestion, storage, waste disposal, water balance, cell growth, and protection Cellular respiration Photosynthesis Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome Stacks of flattened membranous sacs; has polarity (cis and trans faces) Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER).
  • 118. Fig. 6-UN1a Cell Component Structure Function Concept 6.3 The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes Nucleus Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). (ER) Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit os materials. Ribosome Two subunits made of ribo- somal RNA and proteins; can be free in cytosol or bound to ER Protein synthesis
  • 119. Fig. 6-UN1b Cell Component Structure Function Concept 6.4 The endomembrane system regulates protein traffic and performs metabolic functions in the cell Endoplasmic reticulum (Nuclear envelope) Golgi apparatus Lysosome Vacuole Large membrane-bounded vesicle in plants Membranous sac of hydrolytic enzymes (in animal cells) Stacks of flattened membranous sacs; has polarity (cis and trans faces) Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohy- drates, Ca2+ storage, detoxifica- tion of drugs and poisons Rough ER: Aids in sythesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Modification of proteins, carbo- hydrates on proteins, and phos- pholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Breakdown of ingested sub- stances cell macromolecules, and damaged organelles for recycling Digestion, storage, waste disposal, water balance, cell growth, and protection
  • 120. Fig. 6-UN1c Cell Component Concept 6.5 Mitochondria and chloro- plasts change energy from one form to another Mitochondrion Chloroplast Peroxisome Structure Function Bounded by double membrane; inner membrane has infoldings (cristae) Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Specialized metabolic compartment bounded by a single membrane Cellular respiration Photosynthesis Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome
  • 123. You should now be able to: 1. Distinguish between the following pairs of terms: magnification and resolution; prokaryotic and eukaryotic cell; free and bound ribosomes; smooth and rough ER 2. Describe the structure and function of the components of the endomembrane system 3. Briefly explain the role of mitochondria, chloroplasts, and peroxisomes 4. Describe the functions of the cytoskeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
  • 124. 5. Compare the structure and functions of microtubules, microfilaments, and intermediate filaments 6. Explain how the ultrastructure of cilia and flagella relate to their functions 7. Describe the structure of a plant cell wall 8. Describe the structure and roles of the extracellular matrix in animal cells 9. Describe four different intercellular junctions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings