SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 1 Ver. III (Jan. - Feb. 2017), PP 52-58
www.iosrjournals.org
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 52 | Page
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-
Fibonacci Matrices.
Sergio Falcon
University of Las Palmas de Gran Canaria, Department of Mathematics Las Palmas de Gran Canaria, Spain.
Abstract: In this paper we define the k-Fibonacci Hankel matrices and then we study the different norms of
these matrices. Next we find the relation between the Euclidean norm, the column norm and the spectral norm
of these special matrices. Finally, we study the 4x4 skew symmetric k-Fibonacci matrices and find an interesting
formula for a sum of the k-Fibonacci numbers.
Keywords: k-Fibonacci and k-Lucas numbers; Skew symmetric and Hankel matrices; Matrix Norms.
I. Introduction
One of the more studied sequences is the Fibonacci sequence [8, 9], and it has been generalized in many ways
[7]. Here, we use the following one-parameter generalization of the Fibonacci sequence [3, 4].
1.1. Definition of the k-Fibonacci numbers.
For any integer 1k  , the k-Fibonacci sequence, say  ,k n n N
F 
isdefined recurrently by: ,0 ,10, 1k kF F 
and , 1 , , 1k n k n k nF k F F  
Note that for k=$ the classical Fibonacci sequence is obtained and for k=2 it is the Pell sequence.
Characteristic equation of the definition is
2
1r k r  whose solutions are
2
1
4
2
k k

 
 and
2
2
4
2
k k

 
 . It is easy to prove that these solutions verify the following relations:
2 2
1 2 1 2 1 2· 1, , 4, 1,k r k                1 20, 0   .
For the properties of the k-Fibonacci numbers, see [3, 4].
In particular, the Binet Identity for the k-Fibonacci numbers is 1 2
,
1 2
n n
k nF
 
 



and the Catalan Identity is
2 1 2
, , , ,( 1)n r
k n r k n r k n k rF F F F 
     (0.1)
From the Catalan Identity, we find the Simson Identity:
2
, 1 , 1 , ( 1)n
k n k n k nF F F     (0.2)
Moreover,  , , 1 ,
0
1
1
n
k j k n k n
j
F F F
k


   and the sum of the odd k-Fibonacci numbers is
,2 1 ,2 2
0
1n
k j k n
j
F F
k
 


Finally, we define the k-Fibonacci numbers of negative index as
1
, ,( 1)n
k n k nF F
  
If ,0 2kF  instead 0, we obtain the k-Lucas numbers ,k nL . Among its properties, highlight the following:
, 1 2 , , 1 , 1 , ,, , ( 1)n n n
k n k n k n k n k n k nL L F F L L          . See [2] for the properties of these numbers.
1.2. Some formulas for the k-Fibonacci numbers.
In [1], the following theorem is proved: For 0h  , the sum of the products of two k-Fibonacci numbers is
, , , , 1 , ,
1
1 ( 1) 1
2
mm
m r k j k j r k m k m r k r
j
S F F F F F
k
  

  
   
 
 (0.3)
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices.
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 53 | Page
From this formula we will find an expression for the number ,k nF :
1
1 , , , , , , , 1 , , , ,
1 1
, 1 , , , , 1 , ,
1 ( 1) 1
,
2
1 ( 1) 1 1 ( 1) 1
( )
2 2
mm m
m k j k j r k j k j r k m k m r k m k m r k r k m k m r
j j
m m
k m k m k m r k r k m k m r k m r
S r F F F F F F F F F F F
k
F k F F F F F F
k k

      
 
    
  
      
 
      
       
   
 
But,
from the formula (1.3) and directly, it is
1
1, , , 1 ,
1 ( 1) 1
2
m
m r k m k m r k rS F F F
k

  
  
  
 
and equalizing these
expressions it is , , , 1 , 1 ,k r k m k m r k m k m rF F F F F     .
Particular cases:
2
,0 , , , 1
1
1m
m k j k m k m
j
S F F F
k


  (0.4)
1
1,1 , , 1 , 1 , 1
1
1 ( 1) 1
2
mm
m k j k j k m k m
j
S F F F F
k

   

  
   
 
 (0.5)
 
2 1
2
2 1,1 , , 1 ,2 1 ,2 1 ,2
1
1 1
1
m
m k j k j k m k m k m
j
S F F F F F
k k

   

    (0.6)
1.3. Matrix norms.
The following matrix norms are defined in [5, 10].
Let  ijA a be an m x nmatrix.
 The Frobenius or Euclidean norm of the matrix A is defined as
1/2
2
1 1
m n
ijE
i j
A a
 
 
  
 

 The column norm of A is defined as 1 1
1
max
m
ij
j n
i
A a
 

  , which is simply the maximum absolute column
sum of the matrix.
 The row norm of A is
1
1
max
m
ij
j m
j
A a  

  , which is simply the maximum absolute row sum of the
matrix.
 The spectral norm of A is the largest singular value of A i.e. the square root of the largest eigenvalue of the
positive-semidefinite matrix
*
A A where A*
denotes the conjugate transpose of A; that is
*
max max2
( ) ( )A A A A  
Evidently, if A is an x nsymmetric matrix, the column norm and the row norm coincide and the spectral norm is
the absolutely biggest eigenvalue of A called the spectral radius.
1.4. Principal minors of a matrix.
Let A be an m x nmatrix and h an integer with 0 h m  , and h n . Ah x h minor of A is the determinant of
a h x h matrix obtained from A by deleting m – h rows and n – hcolumns [11].
If A is an m x nmatrix, I is a subset of  1,2,...,m having h elements and J is a subset of  1,2,...,n with h
elements, then we write   ,I J
A for the h x hminor of A that corresponds to the rows with index in I and the
columns with index in J.
If I = J, then   ,I I
A is called a principal minor of A and we will indicate it as  h
A .
Characteristic polynomial of an n x nmatrix A is  
1
( ) ( 1)
n
n n n h
h
h
P A   

 
   
 
 . Evidently,
 1
( )A trace A and   det( )n
A A .
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices.
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 54 | Page
II. On The K-Fibonacci Hankel Matrices.
Let the sequence  l l N
t 
be. The Hankel matrix of this sequence is the n x nmatrix  ija such that 1ij i ja t   .
If all lt are the k-Fibonacci numbers, ,l k lt F , the k-Fibonacci Hankel matrix is defined as the n x nmatrix
 ija such that , 1ij k i ja F   ; i.e.
 
,1 ,2 ,3 , 1 ,
,2 ,3 ,4 , , 1
,3 ,4 ,5 , 1 , 2
, , 1 , 2 ,2 2 ,2 1
k k k k n k n
k k k k n k n
k k k k n k nk n
k n k n k n k n k n
F F F F F
F F F F F
F F F F FF H
F F F F F


 
   
 
 
 
 
 
 
 
 
It is obvious that all k-Fibonacci Hankel matrix is symmetric. Moreover, 1 2( ) ( ) 1k kF H F H  , and for
3n  it is ( ) 0k nF H  because each row is a linear combination of the two preceding rows.
Moreover, the characteristic polynomial of 1( )kF H is 1( ) 1P    and that of 2( )kF H is
2 2
2 ( ) ( 2) 1P k      .
1.5. Theorem 1
For 1n  , the characteristic polynomial of the k-Fibonacci Hankel matrix ( )k nF H is
,22 2 2
,2
1 ( 1) 1
( ) ( 1)
2
n
k nn n
k n
F
P F
k k
   
   
      
  
(2.1)
Proof. For n=1,2, the preceding equations coincide with this last equation for n=1 and n= 2, respectively.
For 3n  , each row from the third is a linear combination of the two preceding rows. Then all principal minor
  0k h
F H  for 3h  and consequently, the only non-null coefficients of the characteristic polynomial (other
than λn
is 1) are those of
1n
 
and
2n
 
.
The coefficient of
1n
 
is the sum of the principal minors of order 1:
  ,2 1 ,21
1 1
1
( )
n n
k k k j k nj
j j
F H trace F H F F
k

 
    .
The coefficient of
1n
 
is the sum of the principal minors of order 2. To find this coefficient, we will apply the
Catalan Identity (1.1) to the principal minors of order two.
First row: The sum of the principal minors whose first entry is ,1kF , after applying the formula (1.3) is
 
1
,1 , 2 2
1 ,1 ,2 1 , , , 1 ,
2 2 1, ,2 1
1n n n
k k j
k k j k j k j k n k n
j j jk j k j
F F
S F F F F F F
F F k

 
  
      
Second row: The sum of the principal minors whose first entry is ,3kF , is
 
2
,1 , 2 2
2 ,3 ,2 1 , , , 2 , 1
4 4 1, ,2 1
1n n n
k k j
k k j k j k j k n k n
j j jk j k j
F F
S F F F F F F
F F k

  
  
      
The sum of the principal minors whose first entry is ,5kF , is 3 , 3 , 2
1
k n k nS F F
k
  , etc.
Finally, and taking into account the formula (1.3), the sum of all principal minors of order 2 of the k-Fibonacci
Hankel matrix is
2
2
, , 1 , 1
1
1 1 1 ( 1) 1
2
nn
k n j k n j k n
j
F F F
k k k

   

   
   
  
 , and this is the coefficient of
1n
 
.
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices.
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 55 | Page
1.6. Eigenvalues of  k n
F H
Evidently,  k n
F H has n – 2 null eigenvalues and the non-singular eigenvalues are
2 2
1,2 ,2 2 ,
1 ( 1) 1
4
2 2
n
k n n k nF F F
k

   
        
. Of course, taking into account this matrix is symmetric,
these two non-singular eigenvalues are real.
And the spectral norm of the k-Fibonacci Hankel matrix  k n
F H is
2 2
1 ,2 2 ,2
1 ( 1) 1
( ) 4
2 2
n
k n k n n k nF H F F F
k

   
         
1.7. Theorem 2
The Euclidean norm of the k-Fibonacci Hankel matrix is
2 2
,2 ,
1
( ) 2 ( 1) 1n
k n k n k nE
F H F F
k
    
Proof. Summing the squares of the entries by rows, and taking into account Formula (1.2) and later (1.4) and
(1.3), the Euclidean norm of the k-Fibonacci Hankel matrix is:
 
 
1 2 2 12 2 2 2 2
, , , ,
1 2 3
1 2 2 1 1
2 2 2 2 2
, , , , ,
1 1 1 1 1 1
, , 1 , 1 , 2 , 2 , 3 ,2 1 ,2
( )
1 1
n n n n
k n k j k j k j k jE
j j j j n
jn n n n n
k j k j k j k j k i
j j j j j i
k n k n k n k n k n k n k n k n
F H F F F F
F F F F F
F F F F F F F F
k
  
   
   
     
     
    
   
        
   
     
   
    
   
1
, , 1
1
2 1 1
2
, , 1 , , 1 ,2 , 1 , 1
1 1
2 2 2
,2 , 1 , 1 ,2 ,2 2
1 1 1 2 ( 1) 1
2
2
1 1
2 ( 1) 1 2 ( 1) 1
n
k j k j
j
nn n
k j k j k j k j k n k n k n
j j
n n
k n k n k n k n k n
F F
k
F F F F F F F
k k k k
F F F F F
k k



 
   
 
 
     
        
    
         

 
after applying the Simson Identity and the proof is complete.
If n = 1, then
2 2
1 ,2 ,1
1
( ) 2 2 1k k kE
F H F F
k
    .
Taking into account the expressions of the eigenvalues, it is easy to prove
2 2
1 2( )k n E
F H    and,
consequently, 2
( ) ( )k n k n E
F H F H .
1.8. Theorem 3
The column norm (or the row norm) of the k-Fibonacci Hankel matrix is
 ,2 1 ,2 , 1 ,1
1
( ) ( )k n k n k n k n k n k nF H F H F F F F
k
 
    
Proof. From the definition of k-Fibonacci numbers, 1k  , and consequently, the sequence  ,k k n n N
F F 
 is
positive and increasing. So, and taking into account the sum formula,
 
2 1 2 1 1
, , , ,2 1 ,2 , 1 ,1
1 1
1
( )
n n n
k n k j k j k j k n k n k n k n
j n j j
F H F F F F F F F
k
  
 
  
         .
In particular, for the classical Fibonacci numbers 2 1 11
( )n n nFH F F   .
And if n = 1, 1 ,1 ,2 ,0 ,11
1
( ) ( ) 1k k k k kF H F F F F
k
     .
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices.
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 56 | Page
1.9. Theorem 4
For n > 1,
1
( ) ( )k n k nE
F H F H
Proof. We must prove
2 2 2
,2 , ,2 1 ,2 , , 1
2 2 2 2
,2 1 ,2 , 1 , ,2 1 ,2 , 1 , ,2 1 ,2 , 1 ,
2 ( 1) 1 ( )
( ) 2 ( ) 2 ( )( )
n
k n k n k n k n k n k n
k n k n k n k n k n k n k n k n k n k n n k n
F F k F F F F
k F F F F k F F F F k F F F F
 
     
       
      
But taking into account
2 2
,2 ,2k n k nF k F and
2 2
, ,2 k n k nF k F  , the proof is complete.
In short: for n > 1, the relationship 2 1
( ) ( ) ( )k n k n k nE
F H F H F H  is verified.
III. On The 4 X 4 Skew Symmetric K-Fibonacci Matrices.
An x nmatrix  ,i ja is skew symmetric if for all i,j it is , ,i j j ia a  [12]. Consequently, all the elements of the
principal diagonal are null and then tr(A)=0. Moreover, if n is odd, det(A)=0.
Let us consider the skew symmetric matrix
0
0
0
0
a b c
a d e
M
b d f
c e f
 
 
 
 
 
   
Then,
2
det( ) ( )M af be cd   , its Euclydean norm is
2 2 2 2 2 2
2( )E
M a b c d e f      , its
characteristic equation is
4 21
det( ) 0
2 E
M M    , and consequently, any eigenvalue is real.
1.10. On the 4 x 4 skew symmetric k-Fibonacci matrices.
Let us suppose the entries in the previous matrix are , 1k ra F  , , 2k rb F  , …, , 6k rf F  Then, the 4 x 4
skew symmetric k-Fibonacci matrix has the form
, 1 , 2 , 3
, 1 , 4 , 5
, 2 , 4 , 6
, 3 , 5 , 6
0
0
( )
0
0
k r k r k r
k r k r k r
k r k r k r
k r k r k r
F F F
F F F
FM
F F F
F F F
  
  
  
  
 
 
 
 
     
According to the above formula it is
2
, 1 , 6 , 2 , 5 , 3 , 4det( ) ( )k r k r k r k r k r k rFM F F F F F F        and it is easy to
prove ,2 13
2
,2 12
2
( ) ( )
( 4)
k r k rE
FM L L
k k
  

1.11. Determinant of the $4times4$ skew symmetric k-Fibonacci matrix.
We expand the formula of the determinant in order to obtain a more reduced formula. We will use the Binnet
Identity.
        
2
, 1 , 6 , 2 , 5 , 3 , 4
1 1 6 6 2 2 5 5 3 1 4 4
1 2 1 2 1 2 1 2 1 3 1 2
2 7 2 7 1 5 5 2 7 2 7 3 3 2 7
1 2 1 2 1 2 1 2 1
2 7 1
2 1
( 4)( )
( 1) ( ) ( 1) ( )
( 1) (
k r k r k r k r k r k r
r r r r r r r r r r r r
r r r r r r r
r r
k F F F F F F
           
        
 
     
           
     
 
  
        
          
   2
,2 7 ,5 ,3 ,1 ,2 7 ,6
)
3 ( 1) ( ) 3 ( 1)r r
k r k k k k r kL L L L L F

 

       
from where
 , 1 , 6 , 2 , 5 , 3 , 4 ,2 7 ,62
2
,2 7 ,6
2
1
3 ( 1)
4
3 ( 1)
det( )
4
r
k r k r k r k r k r k r k r k
r
k r k
F F F F F F L F
k
L F
FM
k
      

    

  
     
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices.
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 57 | Page
And finally,  , 1 , 6 , 2 , 5 , 3 , 4 ,2 7 ,62
1
3 ( 1)
4
r
k r k r k r k r k r k r k r kF F F F F F L F
k
          

(3.1)
For instance: for k = 1 nd r = 0, it is 1 6 2 5 3 4
1
(3·29 8) 19
5
F F F F F F    
1.12. Extension of this last formula.
Now we will try to find an extension of this last formula for a general case with the condition n is even. To
prove it, we need the following formulas [2]:
2 21 2
1 2 2 1
2 1
1 ( 1) and ( 1)
j j
j j j j 
   
 
    
         
   
(3.2)
, ( 1) , , ,
,
0 ,
( 1) ( 1) ( 1)
( 1)
( 1) 1
n a n rn
k a n r k an r k a r k rj
k aj r a
j k a
L L L L
L
L

   


     
 
  
 (3.3)
If a = 2 and r = – 2n – 1, then
 , ( 1) ,2 2 2 1 ,1( 1) ( 1) ( 1) ( 1)n n n n
k a n r k n n kL L L k          
 , ,2 2 1 , 1( 1) ( 1) ( 1) ( 1)a n n n n
k an r k n n kL L L k
          
 , ,2 2 1 ,2 3( 1)r
k a r k n k nL L L       
 , , 2 1 ,2 1k r k n k nL L L    

2
, ,2( 1) 1 1 1 4a
k a kL L k       
and the formula (3.3) takes the form
,2 2 1 ,2 3 ,2 12
0
1
( 1) ( )
4
n
j
k j n k n k n
j
L L L
k
   


  

 (3.4)
1.12.1. Lemma
For all n, it is
2 2
,2 1 ,2 3 ,2( 3) ( 4)k n k n k nk L L k F     (3.5)
Proof. The Left Hand Side of this formula is
     
  
2 2 1 2 1 2 3 2 3
1 2 1 2 1 2
2 2 2 1 2 1 2 3 2 3
1 2 1 2 1 2
2 3 2 2 1 2 3 2 2 1 2 1 2 1 2 3 2 3
1 1 2 1 2 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1
1 2 1 1
1
1
( ) ( )
n n n n
n n n n
n n n n n n n n
n n n n
LHS      
     
           
   
   
   
       
   
     
     
       
   
And the Right Hand Side is
 
2 2
2 2 21 2
1 2 1 2 1 2
1 2
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
1 1 2 2 2 1 1 2 1 2 1 2
( ) ( )
( ) ( )
n n
n n
n n n n n n n n
RHS
LHS
 
     
 
                  

    

        
Then we will prove the general formula
 , , 2 1 ,2 2 1 ,22
1
1
( 1)
4
n
r
k r j k r n j k r n k n
j
F F n L F
k
     

  

 (3.6)
Proof. Taking into account the Binet Identity and the formulas (3.2), (3.4), and (3.5):
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices.
DOI: 10.9790/5728-1301035258 www.iosrjournals.org 58 | Page
  
  
2 1 2 1
, , 2 1 1 2 1 22
1 1
2 2 1 2 2 1 2 1 2 12 1
1 2 1 22
1 1 2
2 2 1 2 2 1
,2 2 1 1 22
1
1
4
1
( 1) ( 1)
4
1
( 1) ( 1)
4
n n
r j r j r n j r n j
k r j k r n j
j j
j j
n
r n r n r n r n
j
n
r j n j n j
k r n
j
F F
k
k
L
k
   
 
   
 
 
       
   
 
     

   
 

  

    
               
    

 


 
 
 
,2 2 1 ,2 2 12
1
,2 2 1 ,2 2 12
1
,2 2 1 ,2 2 1 , 2 12
1 0
,2 2 1 ,2 1 ,2 32 2
1
( 1) ( 1)
4
1
( 1) ( 1)
4
1
( 1) ( 1)
4
1 1
( 1)
4 4
n
r j
k r n k n j
j
n
r j
k r n k j n
j
n n
r j
k r n k j n k n
j j
r
k r n k n k n
L L
k
L L
k
L L L
k
n L L L L
k k
   

   

     
 
   
   

   

  
          
     
 


 
  
 
,2 1
2
,2 2 1 ,2 1 ,2 32 2
,2 2 1 ,22
1 1
( 1) 3
4 4
1
( 1)
4
k n
r
k r n k n k n
r
k r n k n
n L k L L
k k
n L F
k

   
 
  
  
  
 
     
  
  

In particular, for n = 3, formula (3.1) is obtained.
Finally, similarly to the above formula it can be shown
 , , 2 ,2 2 ,2 12
1
1
( 1) ( 1)
4
n
r r n
k r j k r n j k r n k n
j
F F n L F
k

    

    


References
[1]. S. Falcon, On the sequences of products of two k-Fibonacci numbers, American Review of Mathematics and Statistics, Vol 2(1)
(2014), 111 – 120.
[2]. S. Falcon, On the k-Lucas numbers, Int. J. Contemp. Math. Sciences, Vol. 6(21) (2011), 1039 – 1050.
[3]. S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos, Solit. &Fract. 32(5) (2007) 1615 – 24.
[4]. S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solit. &Fract. 33(1) (2007) 38 – 49.
[5]. Simon Foucart, http://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
[6]. Serpil Halici, On some inequalities and Hankel Matrices involving Pell, Pell-Lucas numbers, Math. Reports 15(65), 1 (2013), 1 –
10.
[7]. V.E. Hoggat, Fibonacci and Lucas numbers, Palo Alto, CA: Houghton-Mifflin; 1969.
[8]. A.F. Horadam, A generalized Fibonacci sequence, Math. Mag. 68 (1961) 455 – 9.
[9]. S. Vajda, Fibonacci& Lucas Numbers, and the Golden Section, Theory and Applications. Ellis Horwood limited; 1989.
[10]. http://en.wikipedia.org/wiki/Matrix_norm
[11]. http://en.wikipedia.org/wiki/Minor_(linear_algebra)
[12]. http://en.wikipedia.org/wiki/Skew--symmetric_matrix

More Related Content

What's hot

IIT JEE - 2008 ii- mathematics
IIT JEE  - 2008  ii- mathematicsIIT JEE  - 2008  ii- mathematics
IIT JEE - 2008 ii- mathematicsVasista Vinuthan
 
QFP k=2 paper write-up
QFP k=2 paper write-upQFP k=2 paper write-up
QFP k=2 paper write-upBrice Merwine
 
05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for websiteVarun Kumar
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressionsHazel Joy Chong
 
Finding eigenvalues, char poly
Finding eigenvalues, char polyFinding eigenvalues, char poly
Finding eigenvalues, char polyPrasanth George
 
Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Darren Kuropatwa
 
Radical and exponents (2)
Radical and exponents (2)Radical and exponents (2)
Radical and exponents (2)Nurul Atiyah
 
Real number by G R Ahmed of KVK
Real number by G R Ahmed of KVKReal number by G R Ahmed of KVK
Real number by G R Ahmed of KVKMD. G R Ahmed
 
Infinite series & sequence lecture 2
Infinite series & sequence lecture 2Infinite series & sequence lecture 2
Infinite series & sequence lecture 2Mohsin Ramay
 
Introduction to Set theory
Introduction to Set theoryIntroduction to Set theory
Introduction to Set theorySherwin Labadan
 
LApreC2010-103matrixquiz11c.4rq
LApreC2010-103matrixquiz11c.4rqLApreC2010-103matrixquiz11c.4rq
LApreC2010-103matrixquiz11c.4rqA Jorge Garcia
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressionselem-alg-sample
 

What's hot (19)

IIT JEE - 2008 ii- mathematics
IIT JEE  - 2008  ii- mathematicsIIT JEE  - 2008  ii- mathematics
IIT JEE - 2008 ii- mathematics
 
QFP k=2 paper write-up
QFP k=2 paper write-upQFP k=2 paper write-up
QFP k=2 paper write-up
 
Number theory
Number theoryNumber theory
Number theory
 
05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
 
Gg
GgGg
Gg
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressions
 
Finding eigenvalues, char poly
Finding eigenvalues, char polyFinding eigenvalues, char poly
Finding eigenvalues, char poly
 
Quiz maths reasoning
Quiz maths reasoningQuiz maths reasoning
Quiz maths reasoning
 
Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008
 
Radical and exponents (2)
Radical and exponents (2)Radical and exponents (2)
Radical and exponents (2)
 
Real number by G R Ahmed of KVK
Real number by G R Ahmed of KVKReal number by G R Ahmed of KVK
Real number by G R Ahmed of KVK
 
Infinite series & sequence lecture 2
Infinite series & sequence lecture 2Infinite series & sequence lecture 2
Infinite series & sequence lecture 2
 
Introduction to Set theory
Introduction to Set theoryIntroduction to Set theory
Introduction to Set theory
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
 
Roots and Radicals
Roots and RadicalsRoots and Radicals
Roots and Radicals
 
Ch06 se
Ch06 seCh06 se
Ch06 se
 
LApreC2010-103matrixquiz11c.4rq
LApreC2010-103matrixquiz11c.4rqLApreC2010-103matrixquiz11c.4rq
LApreC2010-103matrixquiz11c.4rq
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
 

Similar to On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric KFibonacci Matrices.

TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxragavvelmurugan
 
On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications Premier Publishers
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 
A Note on the Asymptotic Convergence of Bernoulli Distribution
A Note on the Asymptotic Convergence of Bernoulli DistributionA Note on the Asymptotic Convergence of Bernoulli Distribution
A Note on the Asymptotic Convergence of Bernoulli DistributionBRNSS Publication Hub
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.pptRadhyesham
 
On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...IJERA Editor
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetDhaval Shukla
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier seriesUmang Gupta
 
On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F inventionjournals
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...inventionjournals
 
On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...IJERA Editor
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsIJERA Editor
 
E041046051
E041046051E041046051
E041046051inventy
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
 

Similar to On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric KFibonacci Matrices. (20)

TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
 
On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
 
A Note on the Asymptotic Convergence of Bernoulli Distribution
A Note on the Asymptotic Convergence of Bernoulli DistributionA Note on the Asymptotic Convergence of Bernoulli Distribution
A Note on the Asymptotic Convergence of Bernoulli Distribution
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.ppt
 
maths convergence.pdf
maths convergence.pdfmaths convergence.pdf
maths convergence.pdf
 
On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...
 
01_AJMS_158_18_RA.pdf
01_AJMS_158_18_RA.pdf01_AJMS_158_18_RA.pdf
01_AJMS_158_18_RA.pdf
 
01_AJMS_158_18_RA.pdf
01_AJMS_158_18_RA.pdf01_AJMS_158_18_RA.pdf
01_AJMS_158_18_RA.pdf
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
 
On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F On The Structure Equation 2 0 p F F 
On The Structure Equation 2 0 p F F 
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...On approximations of trigonometric Fourier series as transformed to alternati...
On approximations of trigonometric Fourier series as transformed to alternati...
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
E041046051
E041046051E041046051
E041046051
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 

More from IOSRJM

Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...
Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...
Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...IOSRJM
 
Existence of Solutions for a Three-Order P-Laplacian BVP on Time Scales
Existence of Solutions for a Three-Order P-Laplacian BVP on Time ScalesExistence of Solutions for a Three-Order P-Laplacian BVP on Time Scales
Existence of Solutions for a Three-Order P-Laplacian BVP on Time ScalesIOSRJM
 
Exploring 3D-Virtual Learning Environments with Adaptive Repetitions
Exploring 3D-Virtual Learning Environments with Adaptive RepetitionsExploring 3D-Virtual Learning Environments with Adaptive Repetitions
Exploring 3D-Virtual Learning Environments with Adaptive RepetitionsIOSRJM
 
Mathematical Model on Branch Canker Disease in Sylhet, Bangladesh
Mathematical Model on Branch Canker Disease in Sylhet, BangladeshMathematical Model on Branch Canker Disease in Sylhet, Bangladesh
Mathematical Model on Branch Canker Disease in Sylhet, BangladeshIOSRJM
 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...IOSRJM
 
A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...
A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...
A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...IOSRJM
 
Fibonacci and Lucas Identities with the Coefficients in Arithmetic Progression
Fibonacci and Lucas Identities with the Coefficients in Arithmetic ProgressionFibonacci and Lucas Identities with the Coefficients in Arithmetic Progression
Fibonacci and Lucas Identities with the Coefficients in Arithmetic ProgressionIOSRJM
 
A Note on Hessen berg of Trapezoidal Fuzzy Number Matrices
A Note on Hessen berg of Trapezoidal Fuzzy Number MatricesA Note on Hessen berg of Trapezoidal Fuzzy Number Matrices
A Note on Hessen berg of Trapezoidal Fuzzy Number MatricesIOSRJM
 
Enumeration Class of Polyominoes Defined by Two Column
Enumeration Class of Polyominoes Defined by Two ColumnEnumeration Class of Polyominoes Defined by Two Column
Enumeration Class of Polyominoes Defined by Two ColumnIOSRJM
 
A New Method for Solving Transportation Problems Considering Average Penalty
A New Method for Solving Transportation Problems Considering Average PenaltyA New Method for Solving Transportation Problems Considering Average Penalty
A New Method for Solving Transportation Problems Considering Average PenaltyIOSRJM
 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...IOSRJM
 
Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...
Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...
Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...IOSRJM
 
Devaney Chaos Induced by Turbulent and Erratic Functions
Devaney Chaos Induced by Turbulent and Erratic FunctionsDevaney Chaos Induced by Turbulent and Erratic Functions
Devaney Chaos Induced by Turbulent and Erratic FunctionsIOSRJM
 
Bayesian Hierarchical Model of Width of Keratinized Gingiva
Bayesian Hierarchical Model of Width of Keratinized GingivaBayesian Hierarchical Model of Width of Keratinized Gingiva
Bayesian Hierarchical Model of Width of Keratinized GingivaIOSRJM
 
A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...
A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...
A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...IOSRJM
 
WHAT ARE QUARKS?
WHAT ARE QUARKS?WHAT ARE QUARKS?
WHAT ARE QUARKS?IOSRJM
 
Connected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 HConnected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 HIOSRJM
 
Classification of MR medical images Based Rough-Fuzzy KMeans
Classification of MR medical images Based Rough-Fuzzy KMeansClassification of MR medical images Based Rough-Fuzzy KMeans
Classification of MR medical images Based Rough-Fuzzy KMeansIOSRJM
 
A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...
A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...
A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...IOSRJM
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...IOSRJM
 

More from IOSRJM (20)

Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...
Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...
Application of Semiparametric Non-Linear Model on Panel Data with Very Small ...
 
Existence of Solutions for a Three-Order P-Laplacian BVP on Time Scales
Existence of Solutions for a Three-Order P-Laplacian BVP on Time ScalesExistence of Solutions for a Three-Order P-Laplacian BVP on Time Scales
Existence of Solutions for a Three-Order P-Laplacian BVP on Time Scales
 
Exploring 3D-Virtual Learning Environments with Adaptive Repetitions
Exploring 3D-Virtual Learning Environments with Adaptive RepetitionsExploring 3D-Virtual Learning Environments with Adaptive Repetitions
Exploring 3D-Virtual Learning Environments with Adaptive Repetitions
 
Mathematical Model on Branch Canker Disease in Sylhet, Bangladesh
Mathematical Model on Branch Canker Disease in Sylhet, BangladeshMathematical Model on Branch Canker Disease in Sylhet, Bangladesh
Mathematical Model on Branch Canker Disease in Sylhet, Bangladesh
 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
 
A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...
A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...
A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffus...
 
Fibonacci and Lucas Identities with the Coefficients in Arithmetic Progression
Fibonacci and Lucas Identities with the Coefficients in Arithmetic ProgressionFibonacci and Lucas Identities with the Coefficients in Arithmetic Progression
Fibonacci and Lucas Identities with the Coefficients in Arithmetic Progression
 
A Note on Hessen berg of Trapezoidal Fuzzy Number Matrices
A Note on Hessen berg of Trapezoidal Fuzzy Number MatricesA Note on Hessen berg of Trapezoidal Fuzzy Number Matrices
A Note on Hessen berg of Trapezoidal Fuzzy Number Matrices
 
Enumeration Class of Polyominoes Defined by Two Column
Enumeration Class of Polyominoes Defined by Two ColumnEnumeration Class of Polyominoes Defined by Two Column
Enumeration Class of Polyominoes Defined by Two Column
 
A New Method for Solving Transportation Problems Considering Average Penalty
A New Method for Solving Transportation Problems Considering Average PenaltyA New Method for Solving Transportation Problems Considering Average Penalty
A New Method for Solving Transportation Problems Considering Average Penalty
 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
 
Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...
Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...
Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion E...
 
Devaney Chaos Induced by Turbulent and Erratic Functions
Devaney Chaos Induced by Turbulent and Erratic FunctionsDevaney Chaos Induced by Turbulent and Erratic Functions
Devaney Chaos Induced by Turbulent and Erratic Functions
 
Bayesian Hierarchical Model of Width of Keratinized Gingiva
Bayesian Hierarchical Model of Width of Keratinized GingivaBayesian Hierarchical Model of Width of Keratinized Gingiva
Bayesian Hierarchical Model of Width of Keratinized Gingiva
 
A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...
A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...
A Novel Approach for the Solution of a Love’s Integral Equations Using Bernst...
 
WHAT ARE QUARKS?
WHAT ARE QUARKS?WHAT ARE QUARKS?
WHAT ARE QUARKS?
 
Connected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 HConnected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 H
 
Classification of MR medical images Based Rough-Fuzzy KMeans
Classification of MR medical images Based Rough-Fuzzy KMeansClassification of MR medical images Based Rough-Fuzzy KMeans
Classification of MR medical images Based Rough-Fuzzy KMeans
 
A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...
A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...
A Trivariate Weibull Model for Oestradiol Plus Progestrone Treatment Increase...
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
 

Recently uploaded

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 

Recently uploaded (20)

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 

On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric KFibonacci Matrices.

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 1 Ver. III (Jan. - Feb. 2017), PP 52-58 www.iosrjournals.org DOI: 10.9790/5728-1301035258 www.iosrjournals.org 52 | Page On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K- Fibonacci Matrices. Sergio Falcon University of Las Palmas de Gran Canaria, Department of Mathematics Las Palmas de Gran Canaria, Spain. Abstract: In this paper we define the k-Fibonacci Hankel matrices and then we study the different norms of these matrices. Next we find the relation between the Euclidean norm, the column norm and the spectral norm of these special matrices. Finally, we study the 4x4 skew symmetric k-Fibonacci matrices and find an interesting formula for a sum of the k-Fibonacci numbers. Keywords: k-Fibonacci and k-Lucas numbers; Skew symmetric and Hankel matrices; Matrix Norms. I. Introduction One of the more studied sequences is the Fibonacci sequence [8, 9], and it has been generalized in many ways [7]. Here, we use the following one-parameter generalization of the Fibonacci sequence [3, 4]. 1.1. Definition of the k-Fibonacci numbers. For any integer 1k  , the k-Fibonacci sequence, say  ,k n n N F  isdefined recurrently by: ,0 ,10, 1k kF F  and , 1 , , 1k n k n k nF k F F   Note that for k=$ the classical Fibonacci sequence is obtained and for k=2 it is the Pell sequence. Characteristic equation of the definition is 2 1r k r  whose solutions are 2 1 4 2 k k     and 2 2 4 2 k k     . It is easy to prove that these solutions verify the following relations: 2 2 1 2 1 2 1 2· 1, , 4, 1,k r k                1 20, 0   . For the properties of the k-Fibonacci numbers, see [3, 4]. In particular, the Binet Identity for the k-Fibonacci numbers is 1 2 , 1 2 n n k nF        and the Catalan Identity is 2 1 2 , , , ,( 1)n r k n r k n r k n k rF F F F       (0.1) From the Catalan Identity, we find the Simson Identity: 2 , 1 , 1 , ( 1)n k n k n k nF F F     (0.2) Moreover,  , , 1 , 0 1 1 n k j k n k n j F F F k      and the sum of the odd k-Fibonacci numbers is ,2 1 ,2 2 0 1n k j k n j F F k     Finally, we define the k-Fibonacci numbers of negative index as 1 , ,( 1)n k n k nF F    If ,0 2kF  instead 0, we obtain the k-Lucas numbers ,k nL . Among its properties, highlight the following: , 1 2 , , 1 , 1 , ,, , ( 1)n n n k n k n k n k n k n k nL L F F L L          . See [2] for the properties of these numbers. 1.2. Some formulas for the k-Fibonacci numbers. In [1], the following theorem is proved: For 0h  , the sum of the products of two k-Fibonacci numbers is , , , , 1 , , 1 1 ( 1) 1 2 mm m r k j k j r k m k m r k r j S F F F F F k               (0.3)
  • 2. On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. DOI: 10.9790/5728-1301035258 www.iosrjournals.org 53 | Page From this formula we will find an expression for the number ,k nF : 1 1 , , , , , , , 1 , , , , 1 1 , 1 , , , , 1 , , 1 ( 1) 1 , 2 1 ( 1) 1 1 ( 1) 1 ( ) 2 2 mm m m k j k j r k j k j r k m k m r k m k m r k r k m k m r j j m m k m k m k m r k r k m k m r k m r S r F F F F F F F F F F F k F k F F F F F F k k                                                 But, from the formula (1.3) and directly, it is 1 1, , , 1 , 1 ( 1) 1 2 m m r k m k m r k rS F F F k             and equalizing these expressions it is , , , 1 , 1 ,k r k m k m r k m k m rF F F F F     . Particular cases: 2 ,0 , , , 1 1 1m m k j k m k m j S F F F k     (0.4) 1 1,1 , , 1 , 1 , 1 1 1 ( 1) 1 2 mm m k j k j k m k m j S F F F F k                 (0.5)   2 1 2 2 1,1 , , 1 ,2 1 ,2 1 ,2 1 1 1 1 m m k j k j k m k m k m j S F F F F F k k           (0.6) 1.3. Matrix norms. The following matrix norms are defined in [5, 10]. Let  ijA a be an m x nmatrix.  The Frobenius or Euclidean norm of the matrix A is defined as 1/2 2 1 1 m n ijE i j A a            The column norm of A is defined as 1 1 1 max m ij j n i A a      , which is simply the maximum absolute column sum of the matrix.  The row norm of A is 1 1 max m ij j m j A a      , which is simply the maximum absolute row sum of the matrix.  The spectral norm of A is the largest singular value of A i.e. the square root of the largest eigenvalue of the positive-semidefinite matrix * A A where A* denotes the conjugate transpose of A; that is * max max2 ( ) ( )A A A A   Evidently, if A is an x nsymmetric matrix, the column norm and the row norm coincide and the spectral norm is the absolutely biggest eigenvalue of A called the spectral radius. 1.4. Principal minors of a matrix. Let A be an m x nmatrix and h an integer with 0 h m  , and h n . Ah x h minor of A is the determinant of a h x h matrix obtained from A by deleting m – h rows and n – hcolumns [11]. If A is an m x nmatrix, I is a subset of  1,2,...,m having h elements and J is a subset of  1,2,...,n with h elements, then we write   ,I J A for the h x hminor of A that corresponds to the rows with index in I and the columns with index in J. If I = J, then   ,I I A is called a principal minor of A and we will indicate it as  h A . Characteristic polynomial of an n x nmatrix A is   1 ( ) ( 1) n n n n h h h P A              . Evidently,  1 ( )A trace A and   det( )n A A .
  • 3. On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. DOI: 10.9790/5728-1301035258 www.iosrjournals.org 54 | Page II. On The K-Fibonacci Hankel Matrices. Let the sequence  l l N t  be. The Hankel matrix of this sequence is the n x nmatrix  ija such that 1ij i ja t   . If all lt are the k-Fibonacci numbers, ,l k lt F , the k-Fibonacci Hankel matrix is defined as the n x nmatrix  ija such that , 1ij k i ja F   ; i.e.   ,1 ,2 ,3 , 1 , ,2 ,3 ,4 , , 1 ,3 ,4 ,5 , 1 , 2 , , 1 , 2 ,2 2 ,2 1 k k k k n k n k k k k n k n k k k k n k nk n k n k n k n k n k n F F F F F F F F F F F F F F FF H F F F F F                         It is obvious that all k-Fibonacci Hankel matrix is symmetric. Moreover, 1 2( ) ( ) 1k kF H F H  , and for 3n  it is ( ) 0k nF H  because each row is a linear combination of the two preceding rows. Moreover, the characteristic polynomial of 1( )kF H is 1( ) 1P    and that of 2( )kF H is 2 2 2 ( ) ( 2) 1P k      . 1.5. Theorem 1 For 1n  , the characteristic polynomial of the k-Fibonacci Hankel matrix ( )k nF H is ,22 2 2 ,2 1 ( 1) 1 ( ) ( 1) 2 n k nn n k n F P F k k                   (2.1) Proof. For n=1,2, the preceding equations coincide with this last equation for n=1 and n= 2, respectively. For 3n  , each row from the third is a linear combination of the two preceding rows. Then all principal minor   0k h F H  for 3h  and consequently, the only non-null coefficients of the characteristic polynomial (other than λn is 1) are those of 1n   and 2n   . The coefficient of 1n   is the sum of the principal minors of order 1:   ,2 1 ,21 1 1 1 ( ) n n k k k j k nj j j F H trace F H F F k        . The coefficient of 1n   is the sum of the principal minors of order 2. To find this coefficient, we will apply the Catalan Identity (1.1) to the principal minors of order two. First row: The sum of the principal minors whose first entry is ,1kF , after applying the formula (1.3) is   1 ,1 , 2 2 1 ,1 ,2 1 , , , 1 , 2 2 1, ,2 1 1n n n k k j k k j k j k j k n k n j j jk j k j F F S F F F F F F F F k              Second row: The sum of the principal minors whose first entry is ,3kF , is   2 ,1 , 2 2 2 ,3 ,2 1 , , , 2 , 1 4 4 1, ,2 1 1n n n k k j k k j k j k j k n k n j j jk j k j F F S F F F F F F F F k               The sum of the principal minors whose first entry is ,5kF , is 3 , 3 , 2 1 k n k nS F F k   , etc. Finally, and taking into account the formula (1.3), the sum of all principal minors of order 2 of the k-Fibonacci Hankel matrix is 2 2 , , 1 , 1 1 1 1 1 ( 1) 1 2 nn k n j k n j k n j F F F k k k                   , and this is the coefficient of 1n   .
  • 4. On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. DOI: 10.9790/5728-1301035258 www.iosrjournals.org 55 | Page 1.6. Eigenvalues of  k n F H Evidently,  k n F H has n – 2 null eigenvalues and the non-singular eigenvalues are 2 2 1,2 ,2 2 , 1 ( 1) 1 4 2 2 n k n n k nF F F k               . Of course, taking into account this matrix is symmetric, these two non-singular eigenvalues are real. And the spectral norm of the k-Fibonacci Hankel matrix  k n F H is 2 2 1 ,2 2 ,2 1 ( 1) 1 ( ) 4 2 2 n k n k n n k nF H F F F k                1.7. Theorem 2 The Euclidean norm of the k-Fibonacci Hankel matrix is 2 2 ,2 , 1 ( ) 2 ( 1) 1n k n k n k nE F H F F k      Proof. Summing the squares of the entries by rows, and taking into account Formula (1.2) and later (1.4) and (1.3), the Euclidean norm of the k-Fibonacci Hankel matrix is:     1 2 2 12 2 2 2 2 , , , , 1 2 3 1 2 2 1 1 2 2 2 2 2 , , , , , 1 1 1 1 1 1 , , 1 , 1 , 2 , 2 , 3 ,2 1 ,2 ( ) 1 1 n n n n k n k j k j k j k jE j j j j n jn n n n n k j k j k j k j k i j j j j j i k n k n k n k n k n k n k n k n F H F F F F F F F F F F F F F F F F F k                                                                 1 , , 1 1 2 1 1 2 , , 1 , , 1 ,2 , 1 , 1 1 1 2 2 2 ,2 , 1 , 1 ,2 ,2 2 1 1 1 2 ( 1) 1 2 2 1 1 2 ( 1) 1 2 ( 1) 1 n k j k j j nn n k j k j k j k j k n k n k n j j n n k n k n k n k n k n F F k F F F F F F F k k k k F F F F F k k                                               after applying the Simson Identity and the proof is complete. If n = 1, then 2 2 1 ,2 ,1 1 ( ) 2 2 1k k kE F H F F k     . Taking into account the expressions of the eigenvalues, it is easy to prove 2 2 1 2( )k n E F H    and, consequently, 2 ( ) ( )k n k n E F H F H . 1.8. Theorem 3 The column norm (or the row norm) of the k-Fibonacci Hankel matrix is  ,2 1 ,2 , 1 ,1 1 ( ) ( )k n k n k n k n k n k nF H F H F F F F k        Proof. From the definition of k-Fibonacci numbers, 1k  , and consequently, the sequence  ,k k n n N F F   is positive and increasing. So, and taking into account the sum formula,   2 1 2 1 1 , , , ,2 1 ,2 , 1 ,1 1 1 1 ( ) n n n k n k j k j k j k n k n k n k n j n j j F H F F F F F F F k                  . In particular, for the classical Fibonacci numbers 2 1 11 ( )n n nFH F F   . And if n = 1, 1 ,1 ,2 ,0 ,11 1 ( ) ( ) 1k k k k kF H F F F F k      .
  • 5. On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. DOI: 10.9790/5728-1301035258 www.iosrjournals.org 56 | Page 1.9. Theorem 4 For n > 1, 1 ( ) ( )k n k nE F H F H Proof. We must prove 2 2 2 ,2 , ,2 1 ,2 , , 1 2 2 2 2 ,2 1 ,2 , 1 , ,2 1 ,2 , 1 , ,2 1 ,2 , 1 , 2 ( 1) 1 ( ) ( ) 2 ( ) 2 ( )( ) n k n k n k n k n k n k n k n k n k n k n k n k n k n k n k n k n n k n F F k F F F F k F F F F k F F F F k F F F F                        But taking into account 2 2 ,2 ,2k n k nF k F and 2 2 , ,2 k n k nF k F  , the proof is complete. In short: for n > 1, the relationship 2 1 ( ) ( ) ( )k n k n k nE F H F H F H  is verified. III. On The 4 X 4 Skew Symmetric K-Fibonacci Matrices. An x nmatrix  ,i ja is skew symmetric if for all i,j it is , ,i j j ia a  [12]. Consequently, all the elements of the principal diagonal are null and then tr(A)=0. Moreover, if n is odd, det(A)=0. Let us consider the skew symmetric matrix 0 0 0 0 a b c a d e M b d f c e f               Then, 2 det( ) ( )M af be cd   , its Euclydean norm is 2 2 2 2 2 2 2( )E M a b c d e f      , its characteristic equation is 4 21 det( ) 0 2 E M M    , and consequently, any eigenvalue is real. 1.10. On the 4 x 4 skew symmetric k-Fibonacci matrices. Let us suppose the entries in the previous matrix are , 1k ra F  , , 2k rb F  , …, , 6k rf F  Then, the 4 x 4 skew symmetric k-Fibonacci matrix has the form , 1 , 2 , 3 , 1 , 4 , 5 , 2 , 4 , 6 , 3 , 5 , 6 0 0 ( ) 0 0 k r k r k r k r k r k r k r k r k r k r k r k r F F F F F F FM F F F F F F                           According to the above formula it is 2 , 1 , 6 , 2 , 5 , 3 , 4det( ) ( )k r k r k r k r k r k rFM F F F F F F        and it is easy to prove ,2 13 2 ,2 12 2 ( ) ( ) ( 4) k r k rE FM L L k k     1.11. Determinant of the $4times4$ skew symmetric k-Fibonacci matrix. We expand the formula of the determinant in order to obtain a more reduced formula. We will use the Binnet Identity.          2 , 1 , 6 , 2 , 5 , 3 , 4 1 1 6 6 2 2 5 5 3 1 4 4 1 2 1 2 1 2 1 2 1 3 1 2 2 7 2 7 1 5 5 2 7 2 7 3 3 2 7 1 2 1 2 1 2 1 2 1 2 7 1 2 1 ( 4)( ) ( 1) ( ) ( 1) ( ) ( 1) ( k r k r k r k r k r k r r r r r r r r r r r r r r r r r r r r r r k F F F F F F                                                                            2 ,2 7 ,5 ,3 ,1 ,2 7 ,6 ) 3 ( 1) ( ) 3 ( 1)r r k r k k k k r kL L L L L F             from where  , 1 , 6 , 2 , 5 , 3 , 4 ,2 7 ,62 2 ,2 7 ,6 2 1 3 ( 1) 4 3 ( 1) det( ) 4 r k r k r k r k r k r k r k r k r k r k F F F F F F L F k L F FM k                       
  • 6. On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. DOI: 10.9790/5728-1301035258 www.iosrjournals.org 57 | Page And finally,  , 1 , 6 , 2 , 5 , 3 , 4 ,2 7 ,62 1 3 ( 1) 4 r k r k r k r k r k r k r k r kF F F F F F L F k             (3.1) For instance: for k = 1 nd r = 0, it is 1 6 2 5 3 4 1 (3·29 8) 19 5 F F F F F F     1.12. Extension of this last formula. Now we will try to find an extension of this last formula for a general case with the condition n is even. To prove it, we need the following formulas [2]: 2 21 2 1 2 2 1 2 1 1 ( 1) and ( 1) j j j j j j                           (3.2) , ( 1) , , , , 0 , ( 1) ( 1) ( 1) ( 1) ( 1) 1 n a n rn k a n r k an r k a r k rj k aj r a j k a L L L L L L                    (3.3) If a = 2 and r = – 2n – 1, then  , ( 1) ,2 2 2 1 ,1( 1) ( 1) ( 1) ( 1)n n n n k a n r k n n kL L L k            , ,2 2 1 , 1( 1) ( 1) ( 1) ( 1)a n n n n k an r k n n kL L L k             , ,2 2 1 ,2 3( 1)r k a r k n k nL L L         , , 2 1 ,2 1k r k n k nL L L      2 , ,2( 1) 1 1 1 4a k a kL L k        and the formula (3.3) takes the form ,2 2 1 ,2 3 ,2 12 0 1 ( 1) ( ) 4 n j k j n k n k n j L L L k            (3.4) 1.12.1. Lemma For all n, it is 2 2 ,2 1 ,2 3 ,2( 3) ( 4)k n k n k nk L L k F     (3.5) Proof. The Left Hand Side of this formula is          2 2 1 2 1 2 3 2 3 1 2 1 2 1 2 2 2 2 1 2 1 2 3 2 3 1 2 1 2 1 2 2 3 2 2 1 2 3 2 2 1 2 1 2 1 2 3 2 3 1 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 1 1 1 ( ) ( ) n n n n n n n n n n n n n n n n n n n n LHS                                                                         And the Right Hand Side is   2 2 2 2 21 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 2 1 1 2 1 2 1 2 ( ) ( ) ( ) ( ) n n n n n n n n n n n n RHS LHS                                              Then we will prove the general formula  , , 2 1 ,2 2 1 ,22 1 1 ( 1) 4 n r k r j k r n j k r n k n j F F n L F k             (3.6) Proof. Taking into account the Binet Identity and the formulas (3.2), (3.4), and (3.5):
  • 7. On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-Fibonacci Matrices. DOI: 10.9790/5728-1301035258 www.iosrjournals.org 58 | Page       2 1 2 1 , , 2 1 1 2 1 22 1 1 2 2 1 2 2 1 2 1 2 12 1 1 2 1 22 1 1 2 2 2 1 2 2 1 ,2 2 1 1 22 1 1 4 1 ( 1) ( 1) 4 1 ( 1) ( 1) 4 n n r j r j r n j r n j k r j k r n j j j j j n r n r n r n r n j n r j n j n j k r n j F F k k L k                                                                                    ,2 2 1 ,2 2 12 1 ,2 2 1 ,2 2 12 1 ,2 2 1 ,2 2 1 , 2 12 1 0 ,2 2 1 ,2 1 ,2 32 2 1 ( 1) ( 1) 4 1 ( 1) ( 1) 4 1 ( 1) ( 1) 4 1 1 ( 1) 4 4 n r j k r n k n j j n r j k r n k j n j n n r j k r n k j n k n j j r k r n k n k n L L k L L k L L L k n L L L L k k                                                                ,2 1 2 ,2 2 1 ,2 1 ,2 32 2 ,2 2 1 ,22 1 1 ( 1) 3 4 4 1 ( 1) 4 k n r k r n k n k n r k r n k n n L k L L k k n L F k                                In particular, for n = 3, formula (3.1) is obtained. Finally, similarly to the above formula it can be shown  , , 2 ,2 2 ,2 12 1 1 ( 1) ( 1) 4 n r r n k r j k r n j k r n k n j F F n L F k               References [1]. S. Falcon, On the sequences of products of two k-Fibonacci numbers, American Review of Mathematics and Statistics, Vol 2(1) (2014), 111 – 120. [2]. S. Falcon, On the k-Lucas numbers, Int. J. Contemp. Math. Sciences, Vol. 6(21) (2011), 1039 – 1050. [3]. S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos, Solit. &Fract. 32(5) (2007) 1615 – 24. [4]. S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solit. &Fract. 33(1) (2007) 38 – 49. [5]. Simon Foucart, http://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf [6]. Serpil Halici, On some inequalities and Hankel Matrices involving Pell, Pell-Lucas numbers, Math. Reports 15(65), 1 (2013), 1 – 10. [7]. V.E. Hoggat, Fibonacci and Lucas numbers, Palo Alto, CA: Houghton-Mifflin; 1969. [8]. A.F. Horadam, A generalized Fibonacci sequence, Math. Mag. 68 (1961) 455 – 9. [9]. S. Vajda, Fibonacci& Lucas Numbers, and the Golden Section, Theory and Applications. Ellis Horwood limited; 1989. [10]. http://en.wikipedia.org/wiki/Matrix_norm [11]. http://en.wikipedia.org/wiki/Minor_(linear_algebra) [12]. http://en.wikipedia.org/wiki/Skew--symmetric_matrix