SlideShare a Scribd company logo
1 of 29
8

Infinite Series &
Sequences
Infinite Series &
Sequences

Sequences
Sequences

3
Sequences
A sequence is defined as a function whose domain is the
set of positive integers. Although a sequence is a function,
it is common to represent sequences by subscript notation
rather than by the standard function notation. For instance,
in the sequence
Sequence

1 is mapped onto a1, 2 is mapped onto a2, and so on. The
numbers a1, a2, a3, . . ., an, . . . are the terms of the
sequence. The number an is the nth term of the sequence,
and the entire sequence is denoted by {an}.
4
Example 1 – Listing the Terms of a Sequence
a. The terms of the sequence {an} = {3 + (–1)n} are
3 + (–1)1, 3 + (–1)2, 3 + (–1)3, 3 + (–1)4, . . .
2,
4,
2,
4,
....
b. The terms of the sequence {bn}

are

5
Example 1 – Listing the Terms of a Sequence
c. The terms of the sequence {cn}

cont’d

are

d. The terms of the recursively defined sequence {dn},
where d1 = 25 and dn + 1 = dn – 5, are
25, 25 – 5 = 20, 20 – 5 = 15, 15 – 5 = 10,. . . . .
6
Limit of a Sequence

7
Limit of a Sequence
Sequences whose terms approach to limiting values, are
said to converge. For instance, the sequence {1/2n}

converges to 0, as indicated in the following definition.

8
Limit of a Sequence
Graphically, this definition says that eventually
(for n > M and ε > 0) the terms of a sequence that
converges to L will lie within the band between the lines
y = L + ε and y = L – ε as shown in Figure 1.
If a sequence {an} agrees with a
function f at every positive integer,
and if f(x) approaches a
limit L as
the sequence must
converge to the same limit L.
For n > M the terms of the sequence
all lie within ε units of L.
Figure 1

9
Limit of a Sequence

10
Example 2 – Finding the Limit of a Sequence
Find the limit of the sequence whose nth term is

Solution:
You learned that

So, you can apply Theorem 1 to conclude that

11
Limit of a Sequence

12
Limit of a Sequence
The symbol n! (read “n factorial”) is used to simplify some
of the formulas. Let n be a positive integer; then n factorial
is defined as n! = 1 • 2 • 3 • 4 . . . (n – 1) • n.
As a special case, zero factorial is defined as 0! = 1.
From this definition, you can see that 1! = 1, 2! = 1 • 2 = 2,
3! = 1 • 2 • 3 = 6, and so on.

13
Example 5 – Using the Squeeze Theorem
Show that the sequence
find its limit.

converges, and

Solution:
To apply the Squeeze Theorem, you must find two
convergent sequences that can be related to the given
sequence.
Two possibilities are an = –1/2n and bn = 1/2n, both of which
converge to 0.
By comparing the term n! with 2n, you can see that,
n! = 1 • 2 • 3 • 4 • 5 • 6 . . . n =
and
2n = 2 • 2 • 2 • 2 • 2 • 2 . . . 2 =

14
Example 5 – Solution

cont’d

This implies that for n ≥ 4, 2n < n!, and you have

as shown in Figure 2.
So, by the Squeeze Theorem
it follows that

For n ≥ 4, (–1)n /n! is squeezed between
–1/2n and 1/2n.
Figure 2

15
Limit of a Sequence

16
Pattern Recognition for
Sequences

17
Pattern Recognition for Sequences
Sometimes the terms of a sequence are generated by
some rule that does not explicitly identify the nth term of the
sequence.
In such cases, you may be required to discover a pattern in
the sequence and to describe the nth term.
Once the nth term has been specified, you can investigate
the convergence or divergence of the sequence.

18
Example 6 – Finding the nth Term of a Sequence
Find a sequence {an} whose first five terms are

and then determine whether the particular sequence you
have chosen converges or diverges.

19
Example 6 – Solution
First, note that the numerators are successive powers of 2,
and the denominators form the sequence of positive odd
integers.
By comparing an with n, you have the following pattern.

Using L’Hôpital’s Rule to evaluate the limit of
f(x) = 2x/(2x – 1), you obtain

So, the sequence diverges.
20
Monotonic Sequences and
Bounded Sequences

21
Monotonic Sequences and Bounded Sequences

22
Example 8 – Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given nth
term is monotonic.

Solution:
a. This sequence alternates between
2 and 4.
So, it is not monotonic.

Not monotonic
Figure 3(a)

23
Example 8 – Solution

cont’d

b. This sequence is monotonic because each successive
term is larger than its predecessor.
To see this, compare the terms
bn and bn + 1.

Monotonic
Figure 3(b)

24
Example 8 – Solution

cont’d

c. This sequence is not monotonic, because the second
term is larger than the first term, and larger than the
third.
(Note that if you drop the first term,
the remaining sequence c2, c3, c4, . . .
is monotonic.)

Not monotonic
Figure 3(c)

25
Monotonic Sequences and Bounded Sequences

26
Monotonic Sequences and Bounded Sequences
One important property of the real numbers is that they are
complete. This means that there are no holes or gaps on
the real number line. (The set of rational numbers does not
have the completeness property.)
The completeness axiom for real numbers can be used to
conclude that if a sequence has an upper bound, it must
have a least upper bound (an upper bound that is smaller
than all other upper bounds for the sequence).

27
Monotonic Sequences and Bounded Sequences
For example, the least upper bound of the sequence
{an} = {n/(n + 1)},

is 1.

28
Example 9 – Bounded and Monotonic Sequences
a. The sequence {an} = {1/n} is both bounded and
monotonic and so, by Theorem 5, must converge.

b. The divergent sequence {bn} = {n2/(n + 1)} is monotonic,
but not bounded. (It is bounded below.)
c. The divergent sequence {cn} = {(–1)n} is bounded, but
not monotonic.

29

More Related Content

What's hot

Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsSoma Shabbir
 
number theory
number theorynumber theory
number theoryklawdet
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Mohd. Noor Abdul Hamid
 
number theory.ppt
number theory.pptnumber theory.ppt
number theory.pptShishu
 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relationsnszakir
 
Lecture synthetic division
Lecture synthetic divisionLecture synthetic division
Lecture synthetic divisionHazel Joy Chong
 
Relations and functions
Relations and functionsRelations and functions
Relations and functionsHeather Scott
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
8.1 Law of Sines
8.1 Law of Sines8.1 Law of Sines
8.1 Law of Sinessmiller5
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variablesavb public school
 
GROUP AND SUBGROUP PPT 20By SONU KUMAR.pptx
GROUP AND SUBGROUP PPT 20By SONU KUMAR.pptxGROUP AND SUBGROUP PPT 20By SONU KUMAR.pptx
GROUP AND SUBGROUP PPT 20By SONU KUMAR.pptxSONU KUMAR
 
Rational Exponents
Rational ExponentsRational Exponents
Rational ExponentsPhil Saraspe
 
Introduction to Polynomial Functions
Introduction to Polynomial FunctionsIntroduction to Polynomial Functions
Introduction to Polynomial Functionskshoskey
 
20 sequences x
20 sequences x20 sequences x
20 sequences xmath266
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpointJuwileene Soriano
 

What's hot (20)

Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
number theory
number theorynumber theory
number theory
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
 
number theory.ppt
number theory.pptnumber theory.ppt
number theory.ppt
 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
 
Lecture synthetic division
Lecture synthetic divisionLecture synthetic division
Lecture synthetic division
 
Complex number
Complex numberComplex number
Complex number
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
8.1 Law of Sines
8.1 Law of Sines8.1 Law of Sines
8.1 Law of Sines
 
Unit i ppt (1)
Unit i   ppt (1)Unit i   ppt (1)
Unit i ppt (1)
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variables
 
GROUP AND SUBGROUP PPT 20By SONU KUMAR.pptx
GROUP AND SUBGROUP PPT 20By SONU KUMAR.pptxGROUP AND SUBGROUP PPT 20By SONU KUMAR.pptx
GROUP AND SUBGROUP PPT 20By SONU KUMAR.pptx
 
Rational Exponents
Rational ExponentsRational Exponents
Rational Exponents
 
Introduction to Polynomial Functions
Introduction to Polynomial FunctionsIntroduction to Polynomial Functions
Introduction to Polynomial Functions
 
20 sequences x
20 sequences x20 sequences x
20 sequences x
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Chap2
Chap2Chap2
Chap2
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpoint
 
Arithmetic Sequence
Arithmetic SequenceArithmetic Sequence
Arithmetic Sequence
 

Similar to Infinite series & sequence lecture 2

Sequences and series
Sequences and seriesSequences and series
Sequences and seriesmstf mstf
 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docxGetachew Mulaw
 
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
An alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionAn alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionijscmcj
 
11.1 Sequences and Series
11.1 Sequences and Series11.1 Sequences and Series
11.1 Sequences and Seriessmiller5
 
Series_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdfSeries_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdfmohamedtawfik358886
 
Sequence formulas direct and recursive
Sequence formulas direct and recursiveSequence formulas direct and recursive
Sequence formulas direct and recursiveZohaib Khalid
 
Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremVer Louie Gautani
 
Infinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical GeometryInfinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical GeometryRabin BK
 
Unit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdfUnit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdfSagarPetwal
 
Arithmetic And Geometric Progressions
Arithmetic And Geometric ProgressionsArithmetic And Geometric Progressions
Arithmetic And Geometric ProgressionsFinni Rice
 
Chapter 1 sequences and series lesson
Chapter 1 sequences and series lessonChapter 1 sequences and series lesson
Chapter 1 sequences and series lessonLinden Ulysses Meyers
 

Similar to Infinite series & sequence lecture 2 (20)

Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
 
AYUSH.pptx
AYUSH.pptxAYUSH.pptx
AYUSH.pptx
 
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge6.sequences and series   Further Mathematics Zimbabwe Zimsec Cambridge
6.sequences and series Further Mathematics Zimbabwe Zimsec Cambridge
 
An alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionAn alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic function
 
Convergence
ConvergenceConvergence
Convergence
 
11.1 Sequences and Series
11.1 Sequences and Series11.1 Sequences and Series
11.1 Sequences and Series
 
Arithmetic sequences and series
Arithmetic sequences and seriesArithmetic sequences and series
Arithmetic sequences and series
 
1 1 number theory
1 1 number theory1 1 number theory
1 1 number theory
 
Series_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdfSeries_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdf
 
Sequence formulas direct and recursive
Sequence formulas direct and recursiveSequence formulas direct and recursive
Sequence formulas direct and recursive
 
Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial Theorem
 
Task 4
Task 4Task 4
Task 4
 
Infinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical GeometryInfinite series-Calculus and Analytical Geometry
Infinite series-Calculus and Analytical Geometry
 
Unit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdfUnit 05 - Limits and Continuity.pdf
Unit 05 - Limits and Continuity.pdf
 
Arithmetic And Geometric Progressions
Arithmetic And Geometric ProgressionsArithmetic And Geometric Progressions
Arithmetic And Geometric Progressions
 
Ap gp
Ap gpAp gp
Ap gp
 
Chapter 1 sequences and series lesson
Chapter 1 sequences and series lessonChapter 1 sequences and series lesson
Chapter 1 sequences and series lesson
 
Presentation4
Presentation4Presentation4
Presentation4
 

Recently uploaded

Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 

Recently uploaded (20)

Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 

Infinite series & sequence lecture 2

  • 4. Sequences A sequence is defined as a function whose domain is the set of positive integers. Although a sequence is a function, it is common to represent sequences by subscript notation rather than by the standard function notation. For instance, in the sequence Sequence 1 is mapped onto a1, 2 is mapped onto a2, and so on. The numbers a1, a2, a3, . . ., an, . . . are the terms of the sequence. The number an is the nth term of the sequence, and the entire sequence is denoted by {an}. 4
  • 5. Example 1 – Listing the Terms of a Sequence a. The terms of the sequence {an} = {3 + (–1)n} are 3 + (–1)1, 3 + (–1)2, 3 + (–1)3, 3 + (–1)4, . . . 2, 4, 2, 4, .... b. The terms of the sequence {bn} are 5
  • 6. Example 1 – Listing the Terms of a Sequence c. The terms of the sequence {cn} cont’d are d. The terms of the recursively defined sequence {dn}, where d1 = 25 and dn + 1 = dn – 5, are 25, 25 – 5 = 20, 20 – 5 = 15, 15 – 5 = 10,. . . . . 6
  • 7. Limit of a Sequence 7
  • 8. Limit of a Sequence Sequences whose terms approach to limiting values, are said to converge. For instance, the sequence {1/2n} converges to 0, as indicated in the following definition. 8
  • 9. Limit of a Sequence Graphically, this definition says that eventually (for n > M and ε > 0) the terms of a sequence that converges to L will lie within the band between the lines y = L + ε and y = L – ε as shown in Figure 1. If a sequence {an} agrees with a function f at every positive integer, and if f(x) approaches a limit L as the sequence must converge to the same limit L. For n > M the terms of the sequence all lie within ε units of L. Figure 1 9
  • 10. Limit of a Sequence 10
  • 11. Example 2 – Finding the Limit of a Sequence Find the limit of the sequence whose nth term is Solution: You learned that So, you can apply Theorem 1 to conclude that 11
  • 12. Limit of a Sequence 12
  • 13. Limit of a Sequence The symbol n! (read “n factorial”) is used to simplify some of the formulas. Let n be a positive integer; then n factorial is defined as n! = 1 • 2 • 3 • 4 . . . (n – 1) • n. As a special case, zero factorial is defined as 0! = 1. From this definition, you can see that 1! = 1, 2! = 1 • 2 = 2, 3! = 1 • 2 • 3 = 6, and so on. 13
  • 14. Example 5 – Using the Squeeze Theorem Show that the sequence find its limit. converges, and Solution: To apply the Squeeze Theorem, you must find two convergent sequences that can be related to the given sequence. Two possibilities are an = –1/2n and bn = 1/2n, both of which converge to 0. By comparing the term n! with 2n, you can see that, n! = 1 • 2 • 3 • 4 • 5 • 6 . . . n = and 2n = 2 • 2 • 2 • 2 • 2 • 2 . . . 2 = 14
  • 15. Example 5 – Solution cont’d This implies that for n ≥ 4, 2n < n!, and you have as shown in Figure 2. So, by the Squeeze Theorem it follows that For n ≥ 4, (–1)n /n! is squeezed between –1/2n and 1/2n. Figure 2 15
  • 16. Limit of a Sequence 16
  • 18. Pattern Recognition for Sequences Sometimes the terms of a sequence are generated by some rule that does not explicitly identify the nth term of the sequence. In such cases, you may be required to discover a pattern in the sequence and to describe the nth term. Once the nth term has been specified, you can investigate the convergence or divergence of the sequence. 18
  • 19. Example 6 – Finding the nth Term of a Sequence Find a sequence {an} whose first five terms are and then determine whether the particular sequence you have chosen converges or diverges. 19
  • 20. Example 6 – Solution First, note that the numerators are successive powers of 2, and the denominators form the sequence of positive odd integers. By comparing an with n, you have the following pattern. Using L’Hôpital’s Rule to evaluate the limit of f(x) = 2x/(2x – 1), you obtain So, the sequence diverges. 20
  • 22. Monotonic Sequences and Bounded Sequences 22
  • 23. Example 8 – Determining Whether a Sequence Is Monotonic Determine whether each sequence having the given nth term is monotonic. Solution: a. This sequence alternates between 2 and 4. So, it is not monotonic. Not monotonic Figure 3(a) 23
  • 24. Example 8 – Solution cont’d b. This sequence is monotonic because each successive term is larger than its predecessor. To see this, compare the terms bn and bn + 1. Monotonic Figure 3(b) 24
  • 25. Example 8 – Solution cont’d c. This sequence is not monotonic, because the second term is larger than the first term, and larger than the third. (Note that if you drop the first term, the remaining sequence c2, c3, c4, . . . is monotonic.) Not monotonic Figure 3(c) 25
  • 26. Monotonic Sequences and Bounded Sequences 26
  • 27. Monotonic Sequences and Bounded Sequences One important property of the real numbers is that they are complete. This means that there are no holes or gaps on the real number line. (The set of rational numbers does not have the completeness property.) The completeness axiom for real numbers can be used to conclude that if a sequence has an upper bound, it must have a least upper bound (an upper bound that is smaller than all other upper bounds for the sequence). 27
  • 28. Monotonic Sequences and Bounded Sequences For example, the least upper bound of the sequence {an} = {n/(n + 1)}, is 1. 28
  • 29. Example 9 – Bounded and Monotonic Sequences a. The sequence {an} = {1/n} is both bounded and monotonic and so, by Theorem 5, must converge. b. The divergent sequence {bn} = {n2/(n + 1)} is monotonic, but not bounded. (It is bounded below.) c. The divergent sequence {cn} = {(–1)n} is bounded, but not monotonic. 29