SlideShare a Scribd company logo
1 of 5
Download to read offline
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 4 (Jul. - Aug. 2013), PP 38-42
www.iosrjournals.org
www.iosrjournals.org 38 | Page
On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal
Series
Aditya Kumar Raghuvanshi, Riperndra Kumar & B.K. Singh
Department of Mathematics IFTM University Moradabad (U.P.) India, 244001
Generalizing the theorem of Kransniqi [On absolute weighted mean summability of orthogonal series, Slecuk J.
Appl. Math. Vol. 12 (2011) pp 63-70], we have proved the following theorem which gives some interesting and
new results.
If the series
1 22 1
2 2
, ,
1 0
ˆ| | | | | | .
k
n
k
n n n j j
n j
a a c

    
 
 
  
 
  
 
Converges for 1 2k  then the orthogonal series
1
c ( )n n
n
x



is summable | , |kA  almost every where,
Abstract: In this paper we prove the theorems on absolute weighted mean | , |kA  -summability of orthogonal
series. These theorems are generalize results of Kransniqi [1].
Keywords: Orthogonal Series, Nörlund Matrix, Summability.
I. Introduction
Let
0
n
n
a


 be a given infinite series with its partial sums { }ns and Let ,( )n vA a be a normal matrix,
that is lower-semi matrix with non-zero entries. By ( )nA s we denote the A -transform of the sequence
{ }ns s , i.e.
0
( ) .n nv v
v
A s a s


 
The series
0
n
n
a


 is said to be summable | A |k , 1k  (Sarigöl [4]) if
1
1
0
| | | ( ) ( )|k k
nn n n
n
a A s A s




  
And the series
0
n
n
a


 is said to be summable | , |kA  1, 0k   if
1
0
| | | ( ) |k k k
nn n
n
a A s

  

  
where 1( ) ( ) ( )n n nA s A s A s  
In the special case when A is a generalized Nörlund matrix | A |k summability is the same as
| , , |kN p q summability (Sarigöl [5]).
By a generalized Nörlund matrix we mean one such that
n v
nv
n
p vq
a
R

 for 0 v n 
nva O for v n
On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series
www.iosrjournals.org 39 | Page
where for given sequences of positive real constant { }np p and { }nq q , the convolution ( )n nR p q  is
defined by
0 0
( * )n v n v v v v
v v
p q p q p q
 
 
 
  
where ( * ) 0np q  for all n, the generalized Nörlund transform of the sequence { }ns is the sequence
,
{ ( )}p q
nt s defined by
,
0
1
( )p q
n n m m m
mn
t s p q s
R



 
and | |kA summability reduces to the following definition:
The infinite series
0
n
n
a


 is absolutely summable | N,p,q | 1k k  if the series
1
, ,
1
0
| ( ) ( ) |
k
p q p q kn
n n
n n
R
t s t s
q




 
   
 

and we write
0
| ,p,q |n k
n
a N



Let { ( )}x be an orthonormal system defined in the interval ( , )a b . We assume that ( )f x belongs to
2
( , )L a b and
0
( ) ~ ( )n n
n
f z c f x


 (1.1)
where ( ) ( ) , 0,1,2...
b
n na
c f x x dx n 
we write 1 0
, 0,j n
n n v v n n n
v j
R p q R R R




  
and
0
( *1)n n v
v
P p p


   and
0
(1* )n n v
v
Q q q


  
Regarding to 1| , , | | , , |N p q N p q , summability of orthogonal series (1.1) the following two theorems are
proved.
Theorem 1.1 (Okuyama [3]) If the series
1/22
21
0 1 1
| |
j jn
n n
j
n j n n
R R
c
R R


  
   
    
   
 
then the orthogonal series ( )n nc x is summable | , , |N p q almost every where.
Theorem 1.2 (Okuyama [3]) Let { ( )}n be a positive sequence such that { (n) / n} is a non increasing
sequence and the series
1
1
( ( ))
n
n n



 converges. Let { }np and { }nq be non negative. If the series
2 (1)
1
| | ( ) ( )n
n
c n w n


 converges then the orthogonal series
0
( ) | , , |j j
j
c x N p q


 almost everywhere, where
(1)
( )nw is defined by
2
(1) 1 2 1
( )
1
.
j j
n n
j
n j n n
R R
w j n
R R

 
 
 
  
 

The main purpose of this paper is studying of the | , |kA  summability of the orthogonal series (1.1),
for 1 2k  . Before starting the main result we introduce some further notations.
On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series
www.iosrjournals.org 40 | Page
Given a normal matrix nvA a , we associates two lower semi matrices ,n vA a and ,
ˆ ˆn vA a as follows
, , , 0,1,2n v ni
i v
a a n i


 
and 1,
ˆnv nv n va a a   , 00 00
ˆ , 1,2,...a a n  .
It ma be noted that A and ˆA are the well-known matrices of series-to-sequence and series-to-series
transformations resp.
Throughout this paper we denote by Ka constant that depends only on k and may be different in different
relations.
II. Main Results
We prove the following theorems:
Theorem 2.1 If the series
/2
1
2 1
2 2
, ,
1 0
ˆ| | | | | |
k
n
k
n n n j j
n j
a a c

    
 
 
  
 
  
 
Converges for 1 2k  , then the orthogonal series
0
( )n n
n
c x



is summable | , |kA  almost every where.
Proof. For the matrix transform (s)(x)nA of the partial sums of the orthogonal series
0
( )n n
n
c x


 we have
0
,
0 0
0 0
,
0
( )( ) ( )
( )
( )
( )
n
n nv v
v
n v
n v j n
v j
n n
j n nv
j v
n
n j j n
j
A s x a s x
a c x
c x a
a c x




 
 






 
 

where
0
( )
v
j n
j
c x

 is the partial sum of order v of the series (1.1)
Hence
1
, 1,
0 0
1
,n , 1,
0
1
,n ,
0
,
0
( )( ) ( ) ( )
( ) ( ) ( )
ˆ ˆ( ) ( )
ˆ ( )
n
n n j j j n j j j
j j
n
n j n n j n j j j
j
n
n j n n j j j
j
n
n j j j
j
A s x a c x a c x
a c x a a c x
a c x a c x
a c x
 
 
 

 

 






  
  
 

 



Using the Hölder’s inequality and orthogonality to the latter equality we have
On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series
www.iosrjournals.org 41 | Page
 1 222
1
2 2
1
2
,
0
| ( )( ) | ( ) | ( )( ) ( )( ) |
ˆ( ) ( )
Kk
b b
k
n n na a
K
k nb
n j j ja
j
A s x dx b a A s x A s x dx
b a a c x




   
 
  
 
 
 

Thus the series
1
1
| | | ( )( )|
b
k k k
nn na
n
a A s x dx

 

 
/22
2 2
2 2
,
1 0
ˆ| | | | | |
k
n
k
nn n j j
n j
k a a c
  
 
 
  
 
  (2.1)
Converges by the assumption.
From this fact and since the function | ( )( )|nA s x are non negative and by Lemma of Beppo-Levi [2] we have
1
1
| | | ( )( )|k k k
nn n
n
a A s x

 


Converges almost every where.
This completes the proof of theorem.
If we put
2 2
2 2
( ) 2
,2
1
1
ˆ( ; , ) | | | |k k k
nn n j
n jk
H A j n na a
j


  
 
  (2.2)
then the following theorem holds true.
Theorem 2.2: Let 1 2k  and { ( )}n be a positive sequence such that
( )n
n
 
 
 
is a non decreasing
sequence and the series
1
1
( )n n n

 
 converges. If the following series
2
1
2
1
| | ( ) ( , , )kk
n
n
c n H A n
 


converges, then the orthogonal series
0
( ) | , |n n k
n
c x A 


 almost every where, where ( , , )k
H A n is defined
by (2.2)
Proof. Applying Hölder’s inequality to inequality (2.1) we get
/2
1 1 2 2
,
1 1 1
/22 2
2 2 1
2 2
,2
1 02
2
2 22 2 2 1
1 1,
ˆ| | ( )( ) | | | | | |
1
ˆ| | ( ( )) | | | |
( ( ))
1
| | ( ( ))
( )
k
nb kk k k k
nn n nn n j ja
n n j
k
n
k k
nn n j jk
n j
k
k k
nn
n nn n
a A s x dx a a c
k a n n a c
n n
k a n n
a n
 


 
   
  
   

 

    
 
 
   
 
 
  
 
 
    
  
 
 
/2
2 2
,
0
/22 2
2 2 1
2 2
, ,
1
/22
1 2 2
2
2 2
,
1
/22
1
2
1
ˆ| | | |
ˆ| | | | ( ( ) | |
( )
ˆ| | | | | |
| | ( , , )
k
n
n j j
j
k
k k
j n n n j
j n j
k
k
k k
j nn n j
j n j
k
kk
j
j
a c
k c a n n a
j
k c n na a
j
k c j H A j

 


    
 

    
 
 

 
 
 
 
  
 
 
  
   
  
 
 
  
 

 
 

which is finite by virtue of the hypothesis of the theorem and completes the proof of the theorem.
On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series
www.iosrjournals.org 42 | Page
References:
[1] Kransniqi, Xhevat Z.; On absolute weighted mean summability of orthogonal series, Slecuk J. App. Math. Vol. 12 (2011) pp 63-70.
[2] Nantason, I.P.; Theory of functions of a real variable (2 vols), Frederick Ungar, New York 1955, 1961.
[3] Okuyama, Y.; On the absolute generalized, Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002) pp.
161-165.
[4] Sarigöl, M.A.; On absolute weighted mean summability methods, Proc. Amer. Math. Soc. Vol. 115 (1992).
[5] Sarigöl, M.A.; On some absolute summability methods, Proc. Amer. Math. Soc. Vol. 83 (1991), 421-426.

More Related Content

What's hot

Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18foxtrot jp R
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromfoxtrot jp R
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationinventy
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...ijrap
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Lake Como School of Advanced Studies
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
 
Gram-Schmidt process linear algbera
Gram-Schmidt process linear algberaGram-Schmidt process linear algbera
Gram-Schmidt process linear algberaPulakKundu1
 
Qausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds
Qausi Conformal Curvature Tensor on 푳푪푺 풏-ManifoldsQausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds
Qausi Conformal Curvature Tensor on 푳푪푺 풏-Manifoldsinventionjournals
 
Reachability Analysis "Control Of Dynamical Non-Linear Systems"
Reachability Analysis "Control Of Dynamical Non-Linear Systems" Reachability Analysis "Control Of Dynamical Non-Linear Systems"
Reachability Analysis "Control Of Dynamical Non-Linear Systems" M Reza Rahmati
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications Premier Publishers
 
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...ijrap
 

What's hot (18)

Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfrom
 
H0734651
H0734651H0734651
H0734651
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equation
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
 
Matrices i
Matrices iMatrices i
Matrices i
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
 
Gram-Schmidt process linear algbera
Gram-Schmidt process linear algberaGram-Schmidt process linear algbera
Gram-Schmidt process linear algbera
 
Qausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds
Qausi Conformal Curvature Tensor on 푳푪푺 풏-ManifoldsQausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds
Qausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds
 
Reachability Analysis "Control Of Dynamical Non-Linear Systems"
Reachability Analysis "Control Of Dynamical Non-Linear Systems" Reachability Analysis "Control Of Dynamical Non-Linear Systems"
Reachability Analysis "Control Of Dynamical Non-Linear Systems"
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications On the k-Riemann-Liouville fractional integral and applications
On the k-Riemann-Liouville fractional integral and applications
 
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
 

Viewers also liked

CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]
CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]
CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]legalservice
 
G012645256.iosr jmce p1
G012645256.iosr jmce p1G012645256.iosr jmce p1
G012645256.iosr jmce p1IOSR Journals
 
Sourcing, Recruitment Professional- Joy Labrador
Sourcing, Recruitment Professional- Joy LabradorSourcing, Recruitment Professional- Joy Labrador
Sourcing, Recruitment Professional- Joy LabradorJoy Labrador
 
Curriculum Vitae PARINITA HATI CHAUDHURI
Curriculum Vitae PARINITA HATI CHAUDHURICurriculum Vitae PARINITA HATI CHAUDHURI
Curriculum Vitae PARINITA HATI CHAUDHURIParinita Hati chaudhuri
 
Riscos i Beneficis d'Internet
Riscos i Beneficis d'InternetRiscos i Beneficis d'Internet
Riscos i Beneficis d'InternetArnau Guiu
 
PEN initiatives 2014
PEN initiatives 2014PEN initiatives 2014
PEN initiatives 2014Amir Qureshi
 
9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...
9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...
9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...affordablehousinggurgaon
 
Buy cheap mother of the bride dresses australia sydressau.com
Buy cheap mother of the bride dresses australia   sydressau.comBuy cheap mother of the bride dresses australia   sydressau.com
Buy cheap mother of the bride dresses australia sydressau.comGudeer Kitty
 
LordJeshuainheritanceapri2016.7007
LordJeshuainheritanceapri2016.7007LordJeshuainheritanceapri2016.7007
LordJeshuainheritanceapri2016.7007Lord Jesus Christ
 
PERSETUJUAN EKSPOR
PERSETUJUAN EKSPORPERSETUJUAN EKSPOR
PERSETUJUAN EKSPORlegalservice
 
Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...
Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...
Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...IOSR Journals
 

Viewers also liked (14)

CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]
CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]
CERTIFICATE OF ADDRESS REGISTRATION [ SKTTS ]
 
G012645256.iosr jmce p1
G012645256.iosr jmce p1G012645256.iosr jmce p1
G012645256.iosr jmce p1
 
Sourcing, Recruitment Professional- Joy Labrador
Sourcing, Recruitment Professional- Joy LabradorSourcing, Recruitment Professional- Joy Labrador
Sourcing, Recruitment Professional- Joy Labrador
 
Curriculum Vitae PARINITA HATI CHAUDHURI
Curriculum Vitae PARINITA HATI CHAUDHURICurriculum Vitae PARINITA HATI CHAUDHURI
Curriculum Vitae PARINITA HATI CHAUDHURI
 
Riscos i Beneficis d'Internet
Riscos i Beneficis d'InternetRiscos i Beneficis d'Internet
Riscos i Beneficis d'Internet
 
PEN initiatives 2014
PEN initiatives 2014PEN initiatives 2014
PEN initiatives 2014
 
9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...
9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...
9555569222 Supertech Basera Affordable Housing Sector 79 Gurgaon, Haryana Aff...
 
M012139397
M012139397M012139397
M012139397
 
Buy cheap mother of the bride dresses australia sydressau.com
Buy cheap mother of the bride dresses australia   sydressau.comBuy cheap mother of the bride dresses australia   sydressau.com
Buy cheap mother of the bride dresses australia sydressau.com
 
LordJeshuainheritanceapri2016.7007
LordJeshuainheritanceapri2016.7007LordJeshuainheritanceapri2016.7007
LordJeshuainheritanceapri2016.7007
 
PERSETUJUAN EKSPOR
PERSETUJUAN EKSPORPERSETUJUAN EKSPOR
PERSETUJUAN EKSPOR
 
D0731218
D0731218D0731218
D0731218
 
Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...
Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...
Assess The Effect of Resistance Training Compared To a Weight Loss Diet Progr...
 
CV_Rakesh
CV_RakeshCV_Rakesh
CV_Rakesh
 

Similar to H0743842

Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...inventionjournals
 
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...ijrap
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
 
Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...
Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...
Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...ijrap
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valueseSAT Journals
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeeSAT Publishing House
 
Compósitos de Polimeros - Artigo
Compósitos de Polimeros - ArtigoCompósitos de Polimeros - Artigo
Compósitos de Polimeros - ArtigoRubens Junior
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
 
Discrete Signal Processing
Discrete Signal ProcessingDiscrete Signal Processing
Discrete Signal Processingmargretrosy
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...ijrap
 
Reachability Analysis Control of Non-Linear Dynamical Systems
Reachability Analysis Control of Non-Linear Dynamical SystemsReachability Analysis Control of Non-Linear Dynamical Systems
Reachability Analysis Control of Non-Linear Dynamical SystemsM Reza Rahmati
 
Csr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCsr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCSR2011
 

Similar to H0743842 (20)

Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
 
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
Bound- State Solution of Schrodinger Equation with Hulthen Plus Generalized E...
 
lec12.ppt
lec12.pptlec12.ppt
lec12.ppt
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
lec25.ppt
lec25.pptlec25.ppt
lec25.ppt
 
H023078082
H023078082H023078082
H023078082
 
H023078082
H023078082H023078082
H023078082
 
A05330107
A05330107A05330107
A05330107
 
Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...
Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...
Exact Bound State Solution of Qdeformed Woods-Saxon Plus Modified Coulomb Pot...
 
Relative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer valuesRelative superior mandelbrot and julia sets for integer and non integer values
Relative superior mandelbrot and julia sets for integer and non integer values
 
Relative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relativeRelative superior mandelbrot sets and relative
Relative superior mandelbrot sets and relative
 
Compósitos de Polimeros - Artigo
Compósitos de Polimeros - ArtigoCompósitos de Polimeros - Artigo
Compósitos de Polimeros - Artigo
 
lec10.ppt
lec10.pptlec10.ppt
lec10.ppt
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
Discrete Signal Processing
Discrete Signal ProcessingDiscrete Signal Processing
Discrete Signal Processing
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
 
Reachability Analysis Control of Non-Linear Dynamical Systems
Reachability Analysis Control of Non-Linear Dynamical SystemsReachability Analysis Control of Non-Linear Dynamical Systems
Reachability Analysis Control of Non-Linear Dynamical Systems
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
 
Csr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCsr2011 june15 11_00_sima
Csr2011 june15 11_00_sima
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

H0743842

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 4 (Jul. - Aug. 2013), PP 38-42 www.iosrjournals.org www.iosrjournals.org 38 | Page On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series Aditya Kumar Raghuvanshi, Riperndra Kumar & B.K. Singh Department of Mathematics IFTM University Moradabad (U.P.) India, 244001 Generalizing the theorem of Kransniqi [On absolute weighted mean summability of orthogonal series, Slecuk J. Appl. Math. Vol. 12 (2011) pp 63-70], we have proved the following theorem which gives some interesting and new results. If the series 1 22 1 2 2 , , 1 0 ˆ| | | | | | . k n k n n n j j n j a a c                     Converges for 1 2k  then the orthogonal series 1 c ( )n n n x    is summable | , |kA  almost every where, Abstract: In this paper we prove the theorems on absolute weighted mean | , |kA  -summability of orthogonal series. These theorems are generalize results of Kransniqi [1]. Keywords: Orthogonal Series, Nörlund Matrix, Summability. I. Introduction Let 0 n n a    be a given infinite series with its partial sums { }ns and Let ,( )n vA a be a normal matrix, that is lower-semi matrix with non-zero entries. By ( )nA s we denote the A -transform of the sequence { }ns s , i.e. 0 ( ) .n nv v v A s a s     The series 0 n n a    is said to be summable | A |k , 1k  (Sarigöl [4]) if 1 1 0 | | | ( ) ( )|k k nn n n n a A s A s        And the series 0 n n a    is said to be summable | , |kA  1, 0k   if 1 0 | | | ( ) |k k k nn n n a A s         where 1( ) ( ) ( )n n nA s A s A s   In the special case when A is a generalized Nörlund matrix | A |k summability is the same as | , , |kN p q summability (Sarigöl [5]). By a generalized Nörlund matrix we mean one such that n v nv n p vq a R   for 0 v n  nva O for v n
  • 2. On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series www.iosrjournals.org 39 | Page where for given sequences of positive real constant { }np p and { }nq q , the convolution ( )n nR p q  is defined by 0 0 ( * )n v n v v v v v v p q p q p q          where ( * ) 0np q  for all n, the generalized Nörlund transform of the sequence { }ns is the sequence , { ( )}p q nt s defined by , 0 1 ( )p q n n m m m mn t s p q s R      and | |kA summability reduces to the following definition: The infinite series 0 n n a    is absolutely summable | N,p,q | 1k k  if the series 1 , , 1 0 | ( ) ( ) | k p q p q kn n n n n R t s t s q              and we write 0 | ,p,q |n k n a N    Let { ( )}x be an orthonormal system defined in the interval ( , )a b . We assume that ( )f x belongs to 2 ( , )L a b and 0 ( ) ~ ( )n n n f z c f x    (1.1) where ( ) ( ) , 0,1,2... b n na c f x x dx n  we write 1 0 , 0,j n n n v v n n n v j R p q R R R        and 0 ( *1)n n v v P p p      and 0 (1* )n n v v Q q q      Regarding to 1| , , | | , , |N p q N p q , summability of orthogonal series (1.1) the following two theorems are proved. Theorem 1.1 (Okuyama [3]) If the series 1/22 21 0 1 1 | | j jn n n j n j n n R R c R R                     then the orthogonal series ( )n nc x is summable | , , |N p q almost every where. Theorem 1.2 (Okuyama [3]) Let { ( )}n be a positive sequence such that { (n) / n} is a non increasing sequence and the series 1 1 ( ( )) n n n     converges. Let { }np and { }nq be non negative. If the series 2 (1) 1 | | ( ) ( )n n c n w n    converges then the orthogonal series 0 ( ) | , , |j j j c x N p q    almost everywhere, where (1) ( )nw is defined by 2 (1) 1 2 1 ( ) 1 . j j n n j n j n n R R w j n R R              The main purpose of this paper is studying of the | , |kA  summability of the orthogonal series (1.1), for 1 2k  . Before starting the main result we introduce some further notations.
  • 3. On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series www.iosrjournals.org 40 | Page Given a normal matrix nvA a , we associates two lower semi matrices ,n vA a and , ˆ ˆn vA a as follows , , , 0,1,2n v ni i v a a n i     and 1, ˆnv nv n va a a   , 00 00 ˆ , 1,2,...a a n  . It ma be noted that A and ˆA are the well-known matrices of series-to-sequence and series-to-series transformations resp. Throughout this paper we denote by Ka constant that depends only on k and may be different in different relations. II. Main Results We prove the following theorems: Theorem 2.1 If the series /2 1 2 1 2 2 , , 1 0 ˆ| | | | | | k n k n n n j j n j a a c                     Converges for 1 2k  , then the orthogonal series 0 ( )n n n c x    is summable | , |kA  almost every where. Proof. For the matrix transform (s)(x)nA of the partial sums of the orthogonal series 0 ( )n n n c x    we have 0 , 0 0 0 0 , 0 ( )( ) ( ) ( ) ( ) ( ) n n nv v v n v n v j n v j n n j n nv j v n n j j n j A s x a s x a c x c x a a c x                    where 0 ( ) v j n j c x   is the partial sum of order v of the series (1.1) Hence 1 , 1, 0 0 1 ,n , 1, 0 1 ,n , 0 , 0 ( )( ) ( ) ( ) ( ) ( ) ( ) ˆ ˆ( ) ( ) ˆ ( ) n n n j j j n j j j j j n n j n n j n j j j j n n j n n j j j j n n j j j j A s x a c x a c x a c x a a c x a c x a c x a c x                                 Using the Hölder’s inequality and orthogonality to the latter equality we have
  • 4. On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series www.iosrjournals.org 41 | Page  1 222 1 2 2 1 2 , 0 | ( )( ) | ( ) | ( )( ) ( )( ) | ˆ( ) ( ) Kk b b k n n na a K k nb n j j ja j A s x dx b a A s x A s x dx b a a c x                     Thus the series 1 1 | | | ( )( )| b k k k nn na n a A s x dx       /22 2 2 2 2 , 1 0 ˆ| | | | | | k n k nn n j j n j k a a c               (2.1) Converges by the assumption. From this fact and since the function | ( )( )|nA s x are non negative and by Lemma of Beppo-Levi [2] we have 1 1 | | | ( )( )|k k k nn n n a A s x      Converges almost every where. This completes the proof of theorem. If we put 2 2 2 2 ( ) 2 ,2 1 1 ˆ( ; , ) | | | |k k k nn n j n jk H A j n na a j          (2.2) then the following theorem holds true. Theorem 2.2: Let 1 2k  and { ( )}n be a positive sequence such that ( )n n       is a non decreasing sequence and the series 1 1 ( )n n n     converges. If the following series 2 1 2 1 | | ( ) ( , , )kk n n c n H A n     converges, then the orthogonal series 0 ( ) | , |n n k n c x A     almost every where, where ( , , )k H A n is defined by (2.2) Proof. Applying Hölder’s inequality to inequality (2.1) we get /2 1 1 2 2 , 1 1 1 /22 2 2 2 1 2 2 ,2 1 02 2 2 22 2 2 1 1 1, ˆ| | ( )( ) | | | | | | 1 ˆ| | ( ( )) | | | | ( ( )) 1 | | ( ( )) ( ) k nb kk k k k nn n nn n j ja n n j k n k k nn n j jk n j k k k nn n nn n a A s x dx a a c k a n n a c n n k a n n a n                                                          /2 2 2 , 0 /22 2 2 2 1 2 2 , , 1 /22 1 2 2 2 2 2 , 1 /22 1 2 1 ˆ| | | | ˆ| | | | ( ( ) | | ( ) ˆ| | | | | | | | ( , , ) k n n j j j k k k j n n n j j n j k k k k j nn n j j n j k kk j j a c k c a n n a j k c n na a j k c j H A j                                                                which is finite by virtue of the hypothesis of the theorem and completes the proof of the theorem.
  • 5. On Absolute Weighted Mean | , |kA  -Summability Of Orthogonal Series www.iosrjournals.org 42 | Page References: [1] Kransniqi, Xhevat Z.; On absolute weighted mean summability of orthogonal series, Slecuk J. App. Math. Vol. 12 (2011) pp 63-70. [2] Nantason, I.P.; Theory of functions of a real variable (2 vols), Frederick Ungar, New York 1955, 1961. [3] Okuyama, Y.; On the absolute generalized, Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002) pp. 161-165. [4] Sarigöl, M.A.; On absolute weighted mean summability methods, Proc. Amer. Math. Soc. Vol. 115 (1992). [5] Sarigöl, M.A.; On some absolute summability methods, Proc. Amer. Math. Soc. Vol. 83 (1991), 421-426.