SlideShare a Scribd company logo
1 of 4
Download to read offline
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 15, Issue 2 (Nov. - Dec. 2013), PP 50-53
www.iosrjournals.org
www.iosrjournals.org 50 | Page
Brain Bridge: A Comparative Study between Database Querying
and Human Memory Querying.
Suhas Suresh1
, Pavan Kumar B S2
, Aishwarya U3
1
(Computer Science and Engineering, R L Jalappa Institute of Technology, Bangalore, India)
2
(Computer Science and Engineering, Nagarjuna College of Engineering and Technology, Bangalore, India)
3
(Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bangalore, India)
Abstract: The human memory is always been subject to many innovations and research since a very long time.
As far as our knowledge exceeds, it is the fastest information retrieval system present. Further, the database
management systems are specially designed applications that interact with the user to retrieve and analyze data.
Its working can be best understood with the help of a human memory structure. While the database system itself
is conceptualized from the human memory, it is important to know the similarities and working principles
between these two. In this paper, we throw some light on the context of database structure, it working and we
refer it with respect to the human memory system.
Keywords: Brain mapping, database system, human memory, indexing, and information retrieval.
I. INTRODUCTION
In an article published in The New York Times, dated September 24, 1991, it stated as follows, “After
decades of research, scientists who study the brain are at last poised to explain how the brain is organized to
form long term, conscious memory and later to recall a particular memory and its various components”. This
serves as the main theme of our paper. Further stating, it is shown in detail, as to how the human memory is
understood with the help of a little example. In the same words, “In a paper published in the current Science,
they describe the anatomical components of the brain's conscious memory system and suggest how it operates in
connecting the many separate storage sites throughout the cortex that together represent a whole memory. The
organ known as the hippocampus, they suggest, links the separate parts of a memory as it is formed, so enabling
all to be evoked when the memory is recalled”, thus, showing us the basic working of it.
Following is the review on how our paper would flow. In the human memory system, an event is
cached back upon a basic principle. It takes the input from the external sensory information (sight, taste, touch,
hearing, smell) and it checks for the corresponding keyword in the Referral Memory. Using that as an index, it
searches for the main event in the Long Term Memory. Keeping this concept at the back of our minds, it is
easier to explain the working of the database systems. When an input is given, it searches the corresponding
keyword in the index table and thus, obtaining the relevant information from the secondary storage. While this is
the basic working of any database model, it can be understood with the human memory working’s perspective.
II. HUMAN MEMORY WORKING
In a recent article on Memory Retrieval by Richard C Mohs, he stated that we retrieve the information
at an unconscious level but bring it to our conscious at our own will. While most of the people think, they have
“good” or “bad” memory; it is an assumption that many people are good or bad at remembering things. But
actually, if anyone has a problem in remembering things, then it must be due to a physical disease rather than
any other difficulty.
Consider an example of placing a pair of sunglasses before we go to sleep. Before we go to bed, we
must register where we had placed our glasses, pay attention while placing them on any table, and this
information must be retained in order to retrieve it on a later time. The next morning, when we need to take the
glass, we go to the exact table and collect it back as we had placed it. What if we forget where we had kept the
glasses? The following can be the reasons for not being able to remember properly:
2.1 We may not have registered clearly where we put them down to begin with.
2.2 We may not have retained what we registered.
2.3 We may not be able to retrieve the memory accurately.
So in order to stop forgetting where we had left our sunglasses, we must take proper steps to make sure we
store the information properly. If we have forgotten something, it may be due to not being able to encode it
properly, because we were distracted while we were trying to encode it, or because we may have trouble
retrieving it. If we’ve forgotten where we’d kept our glasses, we may not have forgotten. Rather we would have
Brain Bridge: A Comparative Study Between Database Querying and Human Memory Querying
www.iosrjournals.org 51 | Page
forgotten the place where we had kept them. This is nothing but the illustration of importance of memory
indexing. And this is the main concern of our paper.
Another example which everyone can associate or relate to is—remembering an almost forgotten event
after a very long time. It so happens that, when we come across a bite of a cookie after decades or smell of a
perfume after a long time, we take time to recall what it is about and our association with it. After a short span
of recalling, we may come up with the actual events associated with it. Here, the taste, smell, touch, sound, etc
acts as an index to refer the long lost memory and its details. And the time taken to re-collect the events is
nothing but the traditional searching techniques that are employed everywhere. While linear search is most time
consuming, having a time complexity of O(n), it is rather discarded for being less efficient and more time-
consuming. However, the searching technique used in human memory system is super-efficient yet unknown
and a mystery till date.
III. WORKING OF DATABASE
In general a database is an organized collection of data. A database management system is an
application which allows the user to define, create, query, update, and administrate database. The database has
two main and important functions-- how the data is stored in the memory, and how that data can be retrieved
from it. Now let’s go on with the working of the database.
Firstly let’s see how data is stored. Whenever an input (data) is given to the database, it processes the
input and it generates a key also known as index key. This index key will be stored in the index table; here index
table is the primary search table, it acts just like a cache memory in computer system. After the key is generated,
the whole data is stored in the data table. This storage may be in the form of stack, heap or linked list depending
on the algorithm defined by the user.
Now let’s go on with how data can be retrieved from the database. When a user wants to retrieve the
data which he has previously stored, he queries the database which is the input. Now the database triggers the
index table to search for the key. Once the key is obtained, keeping this key as reference it searches the data
table for the relevant data. This search is carried out using search algorithms. Few search algorithms are linear
search, binary search and so on. The time taken for this search is the processing time. After all this steps, the
retrieved data is sent back to the ser as output.
Conceder an example— the database of a college. This database contains fields like name, class, marks of each
subject. When we give this as an input the name acts as the key and is stored in the index table. And the other
fields along with the name are stored in the data table. This is how data is stored. To retrieve the data we have to
just give name as the input. This name will be searched in the index table first. After the key is found, it directly
refers to the related data in the data table. Now this gives all the details related to that name which was
previously stored. Fig.1 illustrates the working of the database.
Fig.1: Basic structure of database.
IV. COMPARISON BETWEEN BRAIN AND DATABASE
There is a clash going on in every database and the same clash in every human brain. The clash is
simple memory verses CPU. Human brain either relay on indexes to recall the data or it counts on the CPU to
calculate the resulting data.
The human brain works the same way as the database, the problem is Database Administrators and
Developers alike constantly strive to increase the performance of the database. But humans do not make specific
efforts to strike the same balance within the inner tables of the brain database. Whenever an input is given to the
database, it processes the input and it generates a key called the index key. This key will be stored in the index
table, here the index table is the primary search table, it acts like a cache memory in the computer system. After
the key is generated the whole data is stored in the data table.
The human brain and database retrieve information using the index key. The human memory system
takes input from the external sensory information (sight, taste, touch, and hearing) and it checks for the keyword
in the referral memory and intern the keyword is used as an index and searched in the long term memory to
retrieve the information. But in database the user queries the database which is the input and the database
triggers the index table to search for the key, once the key is found it keeping the key as reference it searches the
relevant data. The retrieved data is sent to the user as output.
Brain Bridge: A Comparative Study Between Database Querying and Human Memory Querying
www.iosrjournals.org 52 | Page
An example shows the working of brain indexing and database indexing. In brain indexing, when a
person doesn’t know the words of a certain song until someone starts the song, then suddenly the person
continues to sing every word, that person started the song as a keyword which was searched in the brain. Hence
the person doesn’t have to remember the entire song but he has to remember the index which is searched in the
memory. Sometimes if the person loses the index of the song, then the entire song is gone. In database indexing,
it is similar to a phone book. In the front it tells you where in this massive book to find people in a certain city or
where to find only those with the last name that starts with Y or Z. Database do the same thing, internally the
index is stored in the memory for quick retrieval when a query for data retrieval is executed. Hence when
someone searches the database with an index the information is quickly retrieved. From the above examples we
can say that database indexing is much reliable than brain indexing as there are possibilities of losing data in
brain indexing if the index is lost.
V. IMPLEMENTATION
In this context, we mainly consider the way our brain identifies human faces. It should be noted that
along with faces, our brain can also very well recognize fragrance, smells, sense of touch, heat or cold, among
others. For better understanding and easy implementation, we consider faces here.
Our brain has a big data set. It may consist of faces, events, places, numbers, etc. Let us consider a few faces
from a large data set present in a human brain.
Fig 2. An illustration of face identification from a large data set.
In the figure 2, a participant is made to identify faces from a given data set. A noteworthy point here is that—the
brain functions more accurately in querying a face database than any other database. Here, we examine inter-
image variability, its relativity and association of images with certain events, etc. In the Vigilance Repeat, the
brain observes the first and third images thoroughly for querying. In the Memory Repeat, the brain repeats the
same querying activity until it deduces a relationship between the second image and the fifth image. Once a
relationship is establishes, corresponding activities that are chained/outlined to form a bountiful array of events.
Based upon the data present at the back of the brain, relevant output can be expected. The output might be an
association of that image with certain events. It can either be the first time they met or the assignment that any
had done together or a project/ paper that they had worked upon or classes they had attended, etc. It should,
however be noted that not all images can yield a positive result. Some associativity (read: data) may have gotten
erased as the passage of time. A positive result is named as Hit Rate and False Alarm Rate. Hit rate is the
positive outcome of a query while False Alarm Rate is the irrelevant or negative outcome of the querying. False
alarm rate is the output when an image (or a face) is identical to another image. Given below is figure 3, a graph
which shows the hit rate and false alarm rate for the data set that we had taken in Figure 2.
Figure 3 a). Hit Rate Reliability graph
Brain Bridge: A Comparative Study Between Database Querying and Human Memory Querying
www.iosrjournals.org 53 | Page
Figure 3 b). False Alarm Rate Reliability graph.
How does Face identification relate to RDBMS? : in the above figure and the consecutive explanation, it can be
found that the image acts as an index that would lead us to a large data forum associated with it. Similarly, in
RDBMS, we make use of an index, using which we can access a specific or rather general data set. And this is
the main theme behind this paper.
VI. CONCLUSION
This study serves as an initial, empirical look at the comparison between human brain and database
systems. It draws parallel comparison between the traditional data base querying method and the human
memory querying. We have observed that both have a few things in common. Few of them that are worth
mentioning are—both have indexing mechanisms, both uses a vast set of data as their backdrop, etc. While it is
impossible to illustrate senses as an index in this paper, we have tried to implement faces (images) that serve as
an index in human memory querying. We have also obtained the hit rate and false alarm rate graphs for the data
set that we have utilized. This paper also heralds the time efficiency of brain querying as compared to the
database querying. This research opens the door to future investigation in various fields, from cognitive
psychology to cognitive neuroscience to computer vision, as to what makes some face images, facial features or
different senses more memorable than others [1]
.
REFERENCES
[1] Bainbridge W., Isola P., Blank I., & Oliva, A. (2012). Establishing a Database for Studying Human Face Photograph Memory.
Poster presented at the 34thAnnual Conference of the Cognitive Science Society. Sapporo, Japan
[2] Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object
details. Proceedings of the National Academy of Sciences, 105(38), 14325-14329
[3]. Philip J Hilts, A Brain unit Seen As Index For Recalling Memories, September 24, 1991, New York Times
[4]. Hans Moravec, When Will Computer Harware Match the human Brain, Journal of Evolution and Technology, 1998, Volume-1.

More Related Content

Viewers also liked

Enhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference System
Enhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference SystemEnhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference System
Enhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference SystemIOSR Journals
 
Role of Project Management Consultancy in Construction Project
Role of Project Management Consultancy in Construction ProjectRole of Project Management Consultancy in Construction Project
Role of Project Management Consultancy in Construction ProjectIOSR Journals
 
Structural analysis of multiplate clutch
Structural analysis of multiplate clutchStructural analysis of multiplate clutch
Structural analysis of multiplate clutchIOSR Journals
 
Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...IOSR Journals
 
Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...
Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...
Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...IOSR Journals
 

Viewers also liked (20)

Enhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference System
Enhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference SystemEnhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference System
Enhancement of New Channel Equalizer Using Adaptive Neuro Fuzzy Inference System
 
Q110304108111
Q110304108111Q110304108111
Q110304108111
 
M012329497
M012329497M012329497
M012329497
 
B011131018
B011131018B011131018
B011131018
 
Role of Project Management Consultancy in Construction Project
Role of Project Management Consultancy in Construction ProjectRole of Project Management Consultancy in Construction Project
Role of Project Management Consultancy in Construction Project
 
D018212428
D018212428D018212428
D018212428
 
N1802038292
N1802038292N1802038292
N1802038292
 
D010522934
D010522934D010522934
D010522934
 
A1803010105
A1803010105A1803010105
A1803010105
 
D1303021317
D1303021317D1303021317
D1303021317
 
G012325053
G012325053G012325053
G012325053
 
Structural analysis of multiplate clutch
Structural analysis of multiplate clutchStructural analysis of multiplate clutch
Structural analysis of multiplate clutch
 
N18030296105
N18030296105N18030296105
N18030296105
 
F010612830
F010612830F010612830
F010612830
 
Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...
 
M018147883
M018147883M018147883
M018147883
 
I017134347
I017134347I017134347
I017134347
 
I010626877
I010626877I010626877
I010626877
 
F1303023038
F1303023038F1303023038
F1303023038
 
Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...
Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...
Characteristics analysis of silicon carbide based 1-D Photonic crystal with 2...
 

Similar to Brain Bridge: A Comparative Study between Database Querying and Human Memory Querying.

Cognitive Psychology and Information processing in Computers
Cognitive Psychology and Information processing in ComputersCognitive Psychology and Information processing in Computers
Cognitive Psychology and Information processing in ComputersCol Mukteshwar Prasad
 
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural NetworksConversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural NetworksIJMER
 
Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain
Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain
Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain JinElias52
 
Intelligent information extraction based on artificial neural network
Intelligent information extraction based on artificial neural networkIntelligent information extraction based on artificial neural network
Intelligent information extraction based on artificial neural networkijfcstjournal
 
Outline And Evaluate The Memory Process
Outline And Evaluate The Memory ProcessOutline And Evaluate The Memory Process
Outline And Evaluate The Memory ProcessJamie Boyd
 
Blue brain document
Blue brain documentBlue brain document
Blue brain documentkoustuba
 
Blue Brain Technology
Blue Brain TechnologyBlue Brain Technology
Blue Brain Technologyijsrd.com
 
Things issue2 memory
Things issue2 memoryThings issue2 memory
Things issue2 memoryswaipnew
 
Advanced Essay Writing In English - IELTS Writing - H
Advanced Essay Writing In English - IELTS Writing - HAdvanced Essay Writing In English - IELTS Writing - H
Advanced Essay Writing In English - IELTS Writing - HRegina Louisianaspc
 
Extending the Mind with Cognitive Prosthetics?
Extending the Mind with Cognitive Prosthetics? Extending the Mind with Cognitive Prosthetics?
Extending the Mind with Cognitive Prosthetics? PhiloWeb
 
Blue brain bringing a virtual brain to life
Blue brain  bringing a virtual brain to lifeBlue brain  bringing a virtual brain to life
Blue brain bringing a virtual brain to lifeIJARIIT
 

Similar to Brain Bridge: A Comparative Study between Database Querying and Human Memory Querying. (20)

Cognitive Psychology and Information processing in Computers
Cognitive Psychology and Information processing in ComputersCognitive Psychology and Information processing in Computers
Cognitive Psychology and Information processing in Computers
 
Memory Essay
Memory EssayMemory Essay
Memory Essay
 
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural NetworksConversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
 
Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain
Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain
Chapter Outline8.1 How Memory Functions8.2 Parts of the Brain
 
14 562
14 56214 562
14 562
 
Seminar+of+blue+brain
Seminar+of+blue+brainSeminar+of+blue+brain
Seminar+of+blue+brain
 
Intelligent information extraction based on artificial neural network
Intelligent information extraction based on artificial neural networkIntelligent information extraction based on artificial neural network
Intelligent information extraction based on artificial neural network
 
Outline And Evaluate The Memory Process
Outline And Evaluate The Memory ProcessOutline And Evaluate The Memory Process
Outline And Evaluate The Memory Process
 
Blue brain document
Blue brain documentBlue brain document
Blue brain document
 
Blueeeeeeeee
BlueeeeeeeeeBlueeeeeeeee
Blueeeeeeeee
 
Blue Brain Technology
Blue Brain TechnologyBlue Brain Technology
Blue Brain Technology
 
Things issue2 memory
Things issue2 memoryThings issue2 memory
Things issue2 memory
 
BLUEBRAIN(J.S.R)
BLUEBRAIN(J.S.R)BLUEBRAIN(J.S.R)
BLUEBRAIN(J.S.R)
 
Bb 584.
Bb 584.Bb 584.
Bb 584.
 
Blue Brain Report
Blue Brain ReportBlue Brain Report
Blue Brain Report
 
Blue brain
Blue brainBlue brain
Blue brain
 
Advanced Essay Writing In English - IELTS Writing - H
Advanced Essay Writing In English - IELTS Writing - HAdvanced Essay Writing In English - IELTS Writing - H
Advanced Essay Writing In English - IELTS Writing - H
 
Extending the Mind with Cognitive Prosthetics?
Extending the Mind with Cognitive Prosthetics? Extending the Mind with Cognitive Prosthetics?
Extending the Mind with Cognitive Prosthetics?
 
Blue brain bringing a virtual brain to life
Blue brain  bringing a virtual brain to lifeBlue brain  bringing a virtual brain to life
Blue brain bringing a virtual brain to life
 
Memory
Memory Memory
Memory
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 

Brain Bridge: A Comparative Study between Database Querying and Human Memory Querying.

  • 1. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 15, Issue 2 (Nov. - Dec. 2013), PP 50-53 www.iosrjournals.org www.iosrjournals.org 50 | Page Brain Bridge: A Comparative Study between Database Querying and Human Memory Querying. Suhas Suresh1 , Pavan Kumar B S2 , Aishwarya U3 1 (Computer Science and Engineering, R L Jalappa Institute of Technology, Bangalore, India) 2 (Computer Science and Engineering, Nagarjuna College of Engineering and Technology, Bangalore, India) 3 (Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bangalore, India) Abstract: The human memory is always been subject to many innovations and research since a very long time. As far as our knowledge exceeds, it is the fastest information retrieval system present. Further, the database management systems are specially designed applications that interact with the user to retrieve and analyze data. Its working can be best understood with the help of a human memory structure. While the database system itself is conceptualized from the human memory, it is important to know the similarities and working principles between these two. In this paper, we throw some light on the context of database structure, it working and we refer it with respect to the human memory system. Keywords: Brain mapping, database system, human memory, indexing, and information retrieval. I. INTRODUCTION In an article published in The New York Times, dated September 24, 1991, it stated as follows, “After decades of research, scientists who study the brain are at last poised to explain how the brain is organized to form long term, conscious memory and later to recall a particular memory and its various components”. This serves as the main theme of our paper. Further stating, it is shown in detail, as to how the human memory is understood with the help of a little example. In the same words, “In a paper published in the current Science, they describe the anatomical components of the brain's conscious memory system and suggest how it operates in connecting the many separate storage sites throughout the cortex that together represent a whole memory. The organ known as the hippocampus, they suggest, links the separate parts of a memory as it is formed, so enabling all to be evoked when the memory is recalled”, thus, showing us the basic working of it. Following is the review on how our paper would flow. In the human memory system, an event is cached back upon a basic principle. It takes the input from the external sensory information (sight, taste, touch, hearing, smell) and it checks for the corresponding keyword in the Referral Memory. Using that as an index, it searches for the main event in the Long Term Memory. Keeping this concept at the back of our minds, it is easier to explain the working of the database systems. When an input is given, it searches the corresponding keyword in the index table and thus, obtaining the relevant information from the secondary storage. While this is the basic working of any database model, it can be understood with the human memory working’s perspective. II. HUMAN MEMORY WORKING In a recent article on Memory Retrieval by Richard C Mohs, he stated that we retrieve the information at an unconscious level but bring it to our conscious at our own will. While most of the people think, they have “good” or “bad” memory; it is an assumption that many people are good or bad at remembering things. But actually, if anyone has a problem in remembering things, then it must be due to a physical disease rather than any other difficulty. Consider an example of placing a pair of sunglasses before we go to sleep. Before we go to bed, we must register where we had placed our glasses, pay attention while placing them on any table, and this information must be retained in order to retrieve it on a later time. The next morning, when we need to take the glass, we go to the exact table and collect it back as we had placed it. What if we forget where we had kept the glasses? The following can be the reasons for not being able to remember properly: 2.1 We may not have registered clearly where we put them down to begin with. 2.2 We may not have retained what we registered. 2.3 We may not be able to retrieve the memory accurately. So in order to stop forgetting where we had left our sunglasses, we must take proper steps to make sure we store the information properly. If we have forgotten something, it may be due to not being able to encode it properly, because we were distracted while we were trying to encode it, or because we may have trouble retrieving it. If we’ve forgotten where we’d kept our glasses, we may not have forgotten. Rather we would have
  • 2. Brain Bridge: A Comparative Study Between Database Querying and Human Memory Querying www.iosrjournals.org 51 | Page forgotten the place where we had kept them. This is nothing but the illustration of importance of memory indexing. And this is the main concern of our paper. Another example which everyone can associate or relate to is—remembering an almost forgotten event after a very long time. It so happens that, when we come across a bite of a cookie after decades or smell of a perfume after a long time, we take time to recall what it is about and our association with it. After a short span of recalling, we may come up with the actual events associated with it. Here, the taste, smell, touch, sound, etc acts as an index to refer the long lost memory and its details. And the time taken to re-collect the events is nothing but the traditional searching techniques that are employed everywhere. While linear search is most time consuming, having a time complexity of O(n), it is rather discarded for being less efficient and more time- consuming. However, the searching technique used in human memory system is super-efficient yet unknown and a mystery till date. III. WORKING OF DATABASE In general a database is an organized collection of data. A database management system is an application which allows the user to define, create, query, update, and administrate database. The database has two main and important functions-- how the data is stored in the memory, and how that data can be retrieved from it. Now let’s go on with the working of the database. Firstly let’s see how data is stored. Whenever an input (data) is given to the database, it processes the input and it generates a key also known as index key. This index key will be stored in the index table; here index table is the primary search table, it acts just like a cache memory in computer system. After the key is generated, the whole data is stored in the data table. This storage may be in the form of stack, heap or linked list depending on the algorithm defined by the user. Now let’s go on with how data can be retrieved from the database. When a user wants to retrieve the data which he has previously stored, he queries the database which is the input. Now the database triggers the index table to search for the key. Once the key is obtained, keeping this key as reference it searches the data table for the relevant data. This search is carried out using search algorithms. Few search algorithms are linear search, binary search and so on. The time taken for this search is the processing time. After all this steps, the retrieved data is sent back to the ser as output. Conceder an example— the database of a college. This database contains fields like name, class, marks of each subject. When we give this as an input the name acts as the key and is stored in the index table. And the other fields along with the name are stored in the data table. This is how data is stored. To retrieve the data we have to just give name as the input. This name will be searched in the index table first. After the key is found, it directly refers to the related data in the data table. Now this gives all the details related to that name which was previously stored. Fig.1 illustrates the working of the database. Fig.1: Basic structure of database. IV. COMPARISON BETWEEN BRAIN AND DATABASE There is a clash going on in every database and the same clash in every human brain. The clash is simple memory verses CPU. Human brain either relay on indexes to recall the data or it counts on the CPU to calculate the resulting data. The human brain works the same way as the database, the problem is Database Administrators and Developers alike constantly strive to increase the performance of the database. But humans do not make specific efforts to strike the same balance within the inner tables of the brain database. Whenever an input is given to the database, it processes the input and it generates a key called the index key. This key will be stored in the index table, here the index table is the primary search table, it acts like a cache memory in the computer system. After the key is generated the whole data is stored in the data table. The human brain and database retrieve information using the index key. The human memory system takes input from the external sensory information (sight, taste, touch, and hearing) and it checks for the keyword in the referral memory and intern the keyword is used as an index and searched in the long term memory to retrieve the information. But in database the user queries the database which is the input and the database triggers the index table to search for the key, once the key is found it keeping the key as reference it searches the relevant data. The retrieved data is sent to the user as output.
  • 3. Brain Bridge: A Comparative Study Between Database Querying and Human Memory Querying www.iosrjournals.org 52 | Page An example shows the working of brain indexing and database indexing. In brain indexing, when a person doesn’t know the words of a certain song until someone starts the song, then suddenly the person continues to sing every word, that person started the song as a keyword which was searched in the brain. Hence the person doesn’t have to remember the entire song but he has to remember the index which is searched in the memory. Sometimes if the person loses the index of the song, then the entire song is gone. In database indexing, it is similar to a phone book. In the front it tells you where in this massive book to find people in a certain city or where to find only those with the last name that starts with Y or Z. Database do the same thing, internally the index is stored in the memory for quick retrieval when a query for data retrieval is executed. Hence when someone searches the database with an index the information is quickly retrieved. From the above examples we can say that database indexing is much reliable than brain indexing as there are possibilities of losing data in brain indexing if the index is lost. V. IMPLEMENTATION In this context, we mainly consider the way our brain identifies human faces. It should be noted that along with faces, our brain can also very well recognize fragrance, smells, sense of touch, heat or cold, among others. For better understanding and easy implementation, we consider faces here. Our brain has a big data set. It may consist of faces, events, places, numbers, etc. Let us consider a few faces from a large data set present in a human brain. Fig 2. An illustration of face identification from a large data set. In the figure 2, a participant is made to identify faces from a given data set. A noteworthy point here is that—the brain functions more accurately in querying a face database than any other database. Here, we examine inter- image variability, its relativity and association of images with certain events, etc. In the Vigilance Repeat, the brain observes the first and third images thoroughly for querying. In the Memory Repeat, the brain repeats the same querying activity until it deduces a relationship between the second image and the fifth image. Once a relationship is establishes, corresponding activities that are chained/outlined to form a bountiful array of events. Based upon the data present at the back of the brain, relevant output can be expected. The output might be an association of that image with certain events. It can either be the first time they met or the assignment that any had done together or a project/ paper that they had worked upon or classes they had attended, etc. It should, however be noted that not all images can yield a positive result. Some associativity (read: data) may have gotten erased as the passage of time. A positive result is named as Hit Rate and False Alarm Rate. Hit rate is the positive outcome of a query while False Alarm Rate is the irrelevant or negative outcome of the querying. False alarm rate is the output when an image (or a face) is identical to another image. Given below is figure 3, a graph which shows the hit rate and false alarm rate for the data set that we had taken in Figure 2. Figure 3 a). Hit Rate Reliability graph
  • 4. Brain Bridge: A Comparative Study Between Database Querying and Human Memory Querying www.iosrjournals.org 53 | Page Figure 3 b). False Alarm Rate Reliability graph. How does Face identification relate to RDBMS? : in the above figure and the consecutive explanation, it can be found that the image acts as an index that would lead us to a large data forum associated with it. Similarly, in RDBMS, we make use of an index, using which we can access a specific or rather general data set. And this is the main theme behind this paper. VI. CONCLUSION This study serves as an initial, empirical look at the comparison between human brain and database systems. It draws parallel comparison between the traditional data base querying method and the human memory querying. We have observed that both have a few things in common. Few of them that are worth mentioning are—both have indexing mechanisms, both uses a vast set of data as their backdrop, etc. While it is impossible to illustrate senses as an index in this paper, we have tried to implement faces (images) that serve as an index in human memory querying. We have also obtained the hit rate and false alarm rate graphs for the data set that we have utilized. This paper also heralds the time efficiency of brain querying as compared to the database querying. This research opens the door to future investigation in various fields, from cognitive psychology to cognitive neuroscience to computer vision, as to what makes some face images, facial features or different senses more memorable than others [1] . REFERENCES [1] Bainbridge W., Isola P., Blank I., & Oliva, A. (2012). Establishing a Database for Studying Human Face Photograph Memory. Poster presented at the 34thAnnual Conference of the Cognitive Science Society. Sapporo, Japan [2] Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 14325-14329 [3]. Philip J Hilts, A Brain unit Seen As Index For Recalling Memories, September 24, 1991, New York Times [4]. Hans Moravec, When Will Computer Harware Match the human Brain, Journal of Evolution and Technology, 1998, Volume-1.