SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 1 (May. - Jun. 2013), PP 05-11
www.iosrjournals.org
www.iosrjournals.org 5 | Page
Failure Analysis of Centre Pin Joint Used In Heavy Assault
Bridge
Dnyaneshwar J. Sushir1
, Prashant N. Ulhe2
1
(Mechanical Engg. Department, SSBT’s COET, Bambhori, Jalgaon / North Maharashtra University, India)
2
(Mechanical Engg. Department, SSBT’s COET, Bambhori, Jalgaon / North Maharashtra University, India)
Abstract : Strategy is important to win the war in army. Every army has two major divisions as infantry and
artillery. Artillery is dependent on the armored vehicles such as tanks, missile carriers and trucks. The
movement of armored vehicles has vital importance in war to win. In order to cross the obstacles such as rivers,
canals army has to build arrangement which will be quicker and faster to construct the bridge. These kinds of
quickly constructed bridges are known as Heavy Assault Bridge. Its job is to allow armored units to cross the
obstacles. The Heavy Assault bridge is rated for normal crossings of military load classification of 60 tons.
Centre Pin Joint is placed between modules of the girders in a single bridge span. The maximum
stresses will develop at centre pin joint only. Before failure of bridge centre pin joint will fail. So proper centre
pin design is the main criteria. The objective of this project is to perform a failure analysis of the centre pin
joint used in heavy assault bridge. So it is very important to determine high-stress areas of concern and to
increase its load carrying capacity by design modification. As previously centre pin joint is replaced by
modified pin joint, its load carrying capacity will be enhanced. Riveting of pin would be eliminated. Finally,
conclusions based on the results and recommendations which can be extensions of this project are also
presented.
Keywords - Heavy assault bridge, Centre pin joint, Ansys.
I. INTRODUCTION
1.1 BACKGROUND:
A “Heavy Assault Bridge (HAB)” is a combat support vehicle sometimes regarded as a subtype of
combat engineering vehicle designed to assist militaries in rapidly deploying tanks and other armored to cross
the obstacles. The HAB is usually a tracked vehicle converted from a tank chassis to carry a folding metal
bridge instead of a turret. The job of HAB is to allow armored or infantry units to cross obstacles when it is too
deep and no bridge is conveniently located.
The bridge layer unfolds and launches its cargo providing a ready-made bridge across the obstacle in
only minutes. Once the span has been put in place, the HAB vehicle detaches from the bridge and moves aside
to allow traffic to pass. Once all of the vehicles have crossed, it crosses the bridge itself and reattaches to the
bridge on the other side. It then retracts the span ready to move off again. A similar procedure can be employed
to allow crossings of similar obstructions.
Mostly today HAB can carry bridges of 60 feet (19 meters) or greater in length. By using a tank chassis
the bridge layer is able to cover the same terrain as main battle tanks and the provision of armor allows them to
operate even in the face of enemy fire. However this is not a universal attribute design, specification,
implementation changes according to terrain and area of implementation.
1.2 OBJECTIVES OF THE STUDY:
1.2.1 General Objective:
The objective of the study is to produce results which may help to rectify problems associated with the
centre pin joint used in heavy assault bridge and which also may be of significance during design of the centre
pin joint after carrying out static analysis, combining existing theoretical knowledge and advanced analytical
methods to improve the load carrying capacity of the centre pin joint by design modifications.
1.2.2 Specific Objectives:
I. To develop mathematical and finite element model of the major components of a centre pin joint
used in heavy assault bridge and carry out static analysis of the structures.
II. Based on the analysis, identify points and sections which are highly loaded (stressed) due to the
loads by means of which the overall intensity of loading in the structures is assessed.
III. Improve the load carrying capacity of the centre pin joint by design modifications.
Iv.Arrive at conclusions and propose recommendations.
1.3 METHODOLOGY: To fulfill the objectives of the study the following are used.
“Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge”
www.iosrjournals.org 6 | Page
I. Literature Review: Survey of books, journal articles, proceedings of international Conferences,
manufacturer catalogues, and other relevant literatures are done.
II. Data Collection: Data regarding the centre pin and the heavy assault bridge are collected. The data
include dimensions of the structure, material used to construct the structure and construction methods.
III. Modeling and Analysis: The finite element model development as well as the corresponding static
analysis is performed using ANSYS software.
IV. Conclusions and Recommendations.
1.4 ORGANIZATION OF THE THESIS:
The body of this thesis is divided into eight main chapters. The first chapter discusses background and
objectives of the study. In addition, the details of the Indian bridges are used in the analysis are also discussed in
the same chapter. The second chapter covers the review of some of the journal articles, proceedings and
publications which were referred during the course of the thesis. Also, in relation and comparison with previous
works, what is done in this thesis will be stated. The mathematical and finite element modeling is discussed in
the sixth chapter. Also, covered in this chapter is meshing of the solid model of the centre pin joint used for the
analysis into finite elements and the mathematical formulation of these elements. The results obtained from the
static analysis of the centre pin joint and discussions based on these results are included in the eighth chapter.
Finally, the eighth chapter covers conclusions drawn based on the results of the analysis and recommendations
for future work.
II. LITERATURE REVEIW
2.1 Origin:
The roots of the modern HAB can be found in World War I, at the dawn of tank warfare. Having
developed tanks, the UK and France were confronted with the problem of mounting tank advances in the face of
the trenches that dominated the battlefields. Early engagements, such as at Cambria demonstrated the tank's
utility, but also highlighted its vulnerability to battlefield geography many early tanks found themselves
ignominiously stuck in the trenches, having insufficiently long tracks to cross them. To counter this
disadvantage, tanks (especially the common British Mark series) began to go into battle with fascines hanging
over their bows, sometimes as simple as a bundle of heavy sticks. By dropping these into the trenches, they were
able to create a wedge over which the tank could drive. Later, some tanks began to carry rails on their decks the
first HAB.
2.2 WORLD WAR II:
It was in the World War II era that the importance of armored bridge layers, as well as combat
engineering vehicles and armored became fully clear. With the advent of Blitzkrieg warfare, whole divisions
had to advance along with tanks, which were suddenly far out-pacing the speed of infantry soldiers. Besides
leading to the advent of self-propelled artillery/assault guns, mobile anti-aircraft and armored cars, it became
clear that functions like vehicle repair, mine-clearing, and the like would have to be carried out by armored
vehicles advancing along with tanks. Moreover, these forces would have to be able to cross all forms of terrain
without losing speed and without having to concentrate their thrusts over certain bridges (and the rising weight
of armored vehicles meant that fewer and fewer bridges could support these massed crossings). The only
feasible solution to the dilemma posed by the mobility of all mechanized armed forces was a dedicated platform
that could improvise river and obstacle crossings at short notice and in otherwise inconvenient locations.
Tracked and armored, it was capable of operating right alongside combat units, crossing rough terrain and
advancing in the face of light fire. To maximize on common parts and ease maintenance complications, they
were usually based on existing tank chassis.
2.3 INDIAN HAB:
The Indian military bridging program is notable for several reasons. One is that it is in every sense a
program & not just a series of isolated projects carried out simultaneously. Almost every aspect of military
bridging is being tackled from assault bridging to lines of communication structures bringing an opportunity to
make maximum use of common components, materials, operating methods and other cost-saving measures. It is
also interesting to note that not just bridging is included. Also involved in the program is an Armored
Amphibious Dozer & an Engineer Reconnaissance Vehicle (both based on the locally built BMP-2 Infantry
Combat Vehicle chassis). Both are still comparative rarities elsewhere as few armies seem to take the trouble to
procure such specialized vehicles.
One further aspect of the Indian bridging program is the involvement of industrial concerns in the
design, development and learning curve relating to the program. From the earliest stages of the program those
expected to manufacture the final products have been involved at every stage of the development process. Once
“Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge”
www.iosrjournals.org 7 | Page
again the cost-effectiveness advantages of such a process are many but it makes an interesting aside to consider
that such a course of action is open only to a highly centralized defense infrastructure. The usual round of
tenders and costly in-house developments associated with the now common place procurement programs carried
out by most open market nations, especially in the United Kingdom.
III. METHADOLOGY AND ANALYSIS
3.1 FINITE ELEMENT METHOD:
The Basic concept in FEA is that the body or structure may be divided into smaller elements of finite
dimensions called “Finite Elements”. The original body or the structure is then considered as an assemblage of
these elements connected at a finite number of joints called “Nodes” or “Nodal Points”. Simple functions are
chosen to approximate the displacements over each finite element. Such assumed functions are called “shape
functions”. This will represent the displacement within the element in terms of the displacement at the nodes of
the element.
Due to high cost of computing power of years gone by, FEA has a history of being used to solve
complex and cost critical problems. Classical methods alone usually cannot provide adequate information to
determine the safe working limits of a major civil engineering construction or an automobile or an aircraft. In
the recent years, FEA has been universally used to solve structural engineering problems. The departments,
which are heavily relied on this technology, are the automotive and aerospace industry. Due to the need to meet
the extreme demands for faster, stronger, efficient and lightweight automobiles and aircraft, manufacturers have
to rely on this technique to stay competitive.
If one needs to evaluate the area of the circle without using the conventional formula, one of the
approaches could be to divide the above area into a number of equal segments; the area of each triangle
multiplied by the number of such segments gives the total area of the circle.
3.2 THE BASIC STEPS INVOLVED IN FEA:
Mathematically, the structure to be analyzed is subdivided into a mesh of finite sized elements of
simple shape. Within each element, the variation of displacement is assumed to be determined by simple
polynomial shape functions and nodal displacements. Equations for the strains and stresses are developed in
terms of the unknown nodal displacements. From this, the equations of equilibrium are assembled in a matrix
form which can be easily be programmed and solved on a computer. After applying the appropriate boundary
conditions, the nodal displacements are found by solving the matrix stiffness equation. Once the nodal
displacements are known, element stresses and strains can be calculated.
Basic Steps in FEA:
3.2.1 Discretization of the domain
3.2.2 Application of Boundary conditions
3.3.3 Assembling the system equations
3.2.4 Solution for system equations
3.2.5 Post processing the results.
The first two steps of the above said process is known as pre-processing stage, third and fourth is the
processing stage and final step is known as post-processing stage.
3.3 THEORIES OF FAILURE:
Determining the expected mode of failure is an important first step in analyzing a part design. The
failure mode will be influenced by the nature of load, the expected response of the material and the geometry
and constraints. In an engineering sense, failure may be defined as the occurrence of any event considered to be
unacceptable on the basis of part performance. The modes of failure considered here are related to mechanical
loads and structural analysis. A failure may include either an unacceptable response to a temporary load
involving no permanent damage to the part or an acceptable response, which does involve permanent, and
sometimes catastrophic, damage. The purpose of theories of failure is to predict what combination of principal
stresses will result in failure. There are number of theories to describe failure criteria, of them these are the
widely accepted theories.
3.4 Choice of the theories of failure:
Well documented experimental results by various authors on the various theories of failure, indicate
that the distortion energy theory predicts yielding with greatest accuracy. Compared to this maximum shear
stress theory predicts results which are always on safer side. Maximum principal stress theory gives
conservative results only if the sign of the two principal stresses is the same (2-D case). Therefore, the use of
“Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge”
www.iosrjournals.org 8 | Page
maximum principal stress theory for pure torsion is ruled out where the sign of the two principal stresses are
opposite.
When the fracture of a tension specimen loaded up to rupture is examined, it shows that for ductile
materials, failure occurs along lines at angles 45 degrees with the load axis. This indicates a shear failure. Brittle
materials on the other hand, rupture on planes normal to the load axis, indicating that maximum normal stress
determines failure. Because of the above mentioned observations, it is universally accepted that for a brittle
materials, the maximum normal stress theory is the most suitable. For ductile materials, the maximum shear
stress theory gives conservative results and it is simpler to use as compared to distortion energy theory, so it is
universally accepted as the theory of failure for ductile materials. But, where low weight is desired, the
distortion energy theory is recommended.
IV. PHYSICAL AND MATHEMATICAL MODELLING
4.1 DESIGN REQUIREMENTS:
Maximum weight carried by bridge is of armored tank Arjun MBT. So, maximum load which will pass
over the HAB is of Arjun MBT. The total weight of Arjun MBT is 64.5 tones. Therefore HAB should be design
to withstand the maximum load of 70 tones.
Major components of HAB:
There are two major components in HAB,
4.1.1 Span (it is track over which vehicle will move)
4.1.2 Centre pin joint
A main pin joint in HAB Bridge is responsible for connecting two girders in a single bridge span.
Simultaneously, it is the most loaded part during the launched operation under the obstacle and moving the
vehicles through the main tracks of the bridge.
When load is applied on HAB, centre pin joint will fail before failure of span.
4.2 LOAD CALCULATION:
The weight of 18G2A steel is more as its density is high. But it won’t make any kind of differences as
total weight of centre pin joint is very small as compared to weight of HAB.
Strength:Ultimate strength of steel is very high upto 610 MPa.
Young’s modulus is considered as 204000 MPa
Yield strength 398 MPa
Poison ratio 0.3
The Endurance Limit:
Following figure suggests that the endurance limit ranges from about 40 to 60% of the tensile
strength for steel up to (1460 MPa)
About 1460 MPa, the scatter appears to increase, but the trend seems to level off at e S =740 MPa.
V. ANALYSIS AND RESULTS
5.1 TOTAL LOAD ON CENTRE PIN JOINT :
Weight of bridge is approximately 20 tons.
Armored vehicle passed over bridge it may weight approximately 60 tons.
Total weight on bridge is now 80 tons.
So, 80000 x 9.81 = 784800 N.
As there are two track, and bridge and vehicle passed over bridge are in symmetry, so load on single track will
be half, 392400 N.
Now, track is divided into two span, so load on single span is half, 196200 N.
Again, each span will have two centre pin joint, therefore load on single centre pin joint element is 98100 N.
Considering additional load on centre pin joint,
Total load on centre pin joint element is = 100000 N.
5.2 MATHEMATICAL PROOF :
Development of shear stress :
Load on pin is 100000 N
Inside diameter of hole is 40 mm and thickness of outside Lug is 12 mm.
For one Lug element, Considering the YZ plane
Shear stress will be developed Inside the diameter of Lug,
Inside Area of Lug = Inside perimeter of hole x thickness of Lug
Inside perimeter of hole= 2 x π x r
Inside Area of Lug = 2 x 3.14 x 20 x 12 = 1507.2 mm2.
“Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge”
www.iosrjournals.org 9 | Page
Load on pin = cross sectional area along YZ plane of hole x shear stress
100000 =2 x 3.14 x 20 x 12 x shear stress
Shear stress along YZ plane = 67 MPa
Stress developed in Lug,
For existing central pin joint, as Lug size is Small and it is attached to welding surface area, therefore failure or
maximum stress development will be at joining of Lug and welding surface.
Load on pin = cross sectional area of Lug at joint x shear stress
100000 = 12 x 12 x shear stress
Shear stress along YZ plane = 694 MPa.
5.3 MODIFIED CENTRE PIN JOINT: In this pin joint, lugs are long enough and welding surface area is
same and is attached over lugs. Therefore according to geometry of figure maximum stress concentration will be
at hole. But due to pin inside hole and no opportunity for lug to rotate, then it is to be said constrained. Hence
hole is completely constrained. Due to perpendicular load on cross sectional area from hole to outer diameter of
lug will be in double shear. So stress development will be half.
Load on one side of lug = cross sectional area of lug from hole to outer diameter x stress
100000 = 12 x 30 x stress/2
Stress developed inside hole is = 555 MPa.
5.3 ANSYS RESULT :
“Fig.1”: Three Lugs Element “Fig.2”: Two Lugs Element
“Fig.3”: Stress Intensity “Fig.4”: Von-Misses Stress
“Fig.5”: Shear Stress along XY Axis “Fig.6”: Shear Stress along YZ axis
“Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge”
www.iosrjournals.org 10 | Page
NEW MODIFIED PART:
“Fig.7”: Three Lug Element Part “Fig.8”: Two Lug element
“Fig.9”: Stress Intensity “Fig.10”: Von-Misses Stress
“Fig.11”: Shear Stress along XY Axis “Fig.12”: Shear Stress along YZ Axis
VI. Result:
Drawing of existing and modified part:
“Fig.13”: Existing Centre Pin Joint Modeling “Fig.14”: Modified Centre Pin Joint Modeling
“Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge”
www.iosrjournals.org 11 | Page
Stress intensity comparision between both parts :
Fig. 15: Stress Intensity of Existing Part Fig. 16: Stress Intensity of Modified Part
VII. CONCLUSION
Now we have following data,
Sut= 610 MPa
Sy = 398 MPa
After 10 4
= 515 MPa
By comparing stress intensity of existing and modified part, the maximum stress developed in existing
part is between the ranges of 609 to 685 MPa. And maximum ultimate stress of 18G2A steel is 610 MPa. For
existing centre pin joint, stress limit slightly exceeds than ultimate stress which may cause sudden failure of
existing centre pin joint fewer than 80 tones load including 20 tones bridge weight itself. So near about 60 tones
weighted vehicle does not allow to pass over bridge. And it is limited upto 50 tones load.
For newly designed centre pin joint stress developed in part is between the range of 486 to 546 MPa
which is quite low as compared to ultimate stress and near about yield strength. So modified centre pin joint is
sufficient safe for 60 tones weighted vehicle for passing over it.
Acknowledgements
First of all, I thank God for giving me the strength to accomplish this thesis. I express my sincere
thanks with deep sense of gratitude of my Guide Prof. P.N.Ulhe for his encouragement, valuable suggestions,
guidance and help throughout the preparation of this project.
I would like to express my deepest appreciation towards Dr.D.S.Deshmukh (H.O.D. Mechanical
Engineering Department) whose valuable guidance supported me in preparing the report. I would also like to
express my respect and gratitude to Principal of College for providing me this opportunity to prepare the
project-I report.
I take this opportunity to thanks all the professors and staff members of Mechanical Engineering
Department who have directly or indirectly helped me for the completion of the project. I am also grateful to
other friends of mine who have been very cooperative.
Finally, thanks are due to my mother and father, Dwarkabai and Jagannath and my wife, Dr.Shital for
her support and encouragement.
REFERENCES
[1] Department of the Army, 1990,"TM5-5420-203, Technical Manual: Operator's Unit, Direct Support and General Support
Maintenance for Bridge, Armored Vehicle Launched: Scissoring Type: Class 60 and Class 70 Aluminium; 60 Foot Span; For M48A5
and M60 Launcher, MLC60 and MLC70," Headquarters, Department of the Army, Washington, D.C.
[2] Choi, Jeong-Hoon, 2000,"The Fracture Analysis and Remaining Life Estimation of the HAB Sub-Components," Master Thesis
submitted to West Virginia University 5. Lewis R., 1987, "Production line applications of automated NDT systems," IEE.
[3] H.V.S. Ganga Rao, P. Klinkhachorn, U.B. Halabe, R.H.L. Chen, R. Kalluri, Alluri, E.S. Sazonov and J.H. Choi, “Damage and
remaining life assessment for AVLB”, Constructed Facilities Centre, West Virginia University, 2001, Submitted to U.S. Army Tank-
Automotive and Armament Command Acquisition Center , U.S. Army grant DAAE07-96-C-x226.
[4] Krason W. and Filiks L., Rigid and deformable models in the numerical strength test of Scissor Bridge.
[5] Dacko M., Krason W. and Filiks L., Experimental and numerical testing of the modernized BLG-67 Bridge.
[6] Reference manual, ANSYS, Version 12.
[7] Sienkiewicz O.C. and Taylor R.L., The Finite Element Method, Vol.1: The Basis, fifth edition, Butterworth-Heinemann, Oxford,
2000.
[8] Ministry of National Defense in India: Military Bridges, Manual, published by DRDO.
[9] Operational Manual: Trilateral design and test code for military bridging and gap-crossing equipment, Publisher in the United States,
1996.
[10] Indian Heavy Assault Bridge Kartik.
[11] Bridge fatigue life indicating system, By D. Thomson & G. samavedam, Sep 1991.
12) Experimental and Numerical studies of the scissors HAB Type Bridge, by Wieslaw Krason & Jerzy Malachowski Jan 2010.

More Related Content

What's hot

Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...
Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...
Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...IRJET Journal
 
Mr. mohamad dichari us standards for railroad types, infrastructure and are...
Mr. mohamad dichari   us standards for railroad types, infrastructure and are...Mr. mohamad dichari   us standards for railroad types, infrastructure and are...
Mr. mohamad dichari us standards for railroad types, infrastructure and are...imadhammoud
 
Railway engineering
Railway engineeringRailway engineering
Railway engineeringjmaghade99
 
Railway engineering.
Railway engineering.Railway engineering.
Railway engineering.Md Khan
 
Railway engineering.
Railway engineering.Railway engineering.
Railway engineering.Md Khan
 
Comparative study on normal and skew bridge of psc box girder
Comparative study on normal and skew bridge of psc box girderComparative study on normal and skew bridge of psc box girder
Comparative study on normal and skew bridge of psc box girdereSAT Journals
 
Railway engineering-jdge@railway.gov.bd
Railway engineering-jdge@railway.gov.bdRailway engineering-jdge@railway.gov.bd
Railway engineering-jdge@railway.gov.bdMd. Sultan Ali
 
1.5 class a,b
1.5 class a,b1.5 class a,b
1.5 class a,bMani Das
 
Introduction to railway engineering
Introduction to railway engineeringIntroduction to railway engineering
Introduction to railway engineeringSatyapal Singh
 
IRJET- Design of Railway Foot Over Bridge (Shelu)
IRJET- Design of Railway Foot Over Bridge (Shelu)IRJET- Design of Railway Foot Over Bridge (Shelu)
IRJET- Design of Railway Foot Over Bridge (Shelu)IRJET Journal
 
Overvew column analysis
Overvew column analysisOvervew column analysis
Overvew column analysisSubin Desar
 
English Version of Book of coasts, ports and offshore structures engineering
English Version of Book of coasts, ports and offshore structures engineeringEnglish Version of Book of coasts, ports and offshore structures engineering
English Version of Book of coasts, ports and offshore structures engineeringKabir Sadeghi
 
English version, book , design of marine and offshore structures
English version, book , design of  marine and offshore structuresEnglish version, book , design of  marine and offshore structures
English version, book , design of marine and offshore structuresKabir Sadeghi
 
Introduction railway engineering
Introduction railway engineeringIntroduction railway engineering
Introduction railway engineeringDnyaneshwar More
 

What's hot (20)

Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...
Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...
Boom Structural Design and Static Finite Element Analysis for a 1000tons Shee...
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Mr. mohamad dichari us standards for railroad types, infrastructure and are...
Mr. mohamad dichari   us standards for railroad types, infrastructure and are...Mr. mohamad dichari   us standards for railroad types, infrastructure and are...
Mr. mohamad dichari us standards for railroad types, infrastructure and are...
 
Railway engineering
Railway engineeringRailway engineering
Railway engineering
 
L&H International
L&H InternationalL&H International
L&H International
 
Railway engineering.
Railway engineering.Railway engineering.
Railway engineering.
 
Railway engineering.
Railway engineering.Railway engineering.
Railway engineering.
 
Comparative study on normal and skew bridge of psc box girder
Comparative study on normal and skew bridge of psc box girderComparative study on normal and skew bridge of psc box girder
Comparative study on normal and skew bridge of psc box girder
 
Railway engineering-jdge@railway.gov.bd
Railway engineering-jdge@railway.gov.bdRailway engineering-jdge@railway.gov.bd
Railway engineering-jdge@railway.gov.bd
 
CV_VPD_mail_1
CV_VPD_mail_1CV_VPD_mail_1
CV_VPD_mail_1
 
1.5 class a,b
1.5 class a,b1.5 class a,b
1.5 class a,b
 
Introduction to railway engineering
Introduction to railway engineeringIntroduction to railway engineering
Introduction to railway engineering
 
Bridge
BridgeBridge
Bridge
 
IRJET- Design of Railway Foot Over Bridge (Shelu)
IRJET- Design of Railway Foot Over Bridge (Shelu)IRJET- Design of Railway Foot Over Bridge (Shelu)
IRJET- Design of Railway Foot Over Bridge (Shelu)
 
Overvew column analysis
Overvew column analysisOvervew column analysis
Overvew column analysis
 
English Version of Book of coasts, ports and offshore structures engineering
English Version of Book of coasts, ports and offshore structures engineeringEnglish Version of Book of coasts, ports and offshore structures engineering
English Version of Book of coasts, ports and offshore structures engineering
 
English version, book , design of marine and offshore structures
English version, book , design of  marine and offshore structuresEnglish version, book , design of  marine and offshore structures
English version, book , design of marine and offshore structures
 
Introduction railway engineering
Introduction railway engineeringIntroduction railway engineering
Introduction railway engineering
 
Loads and forces
Loads and forcesLoads and forces
Loads and forces
 
Tactical comms
Tactical commsTactical comms
Tactical comms
 

Viewers also liked

MCRSD REIL Score
MCRSD REIL ScoreMCRSD REIL Score
MCRSD REIL Scorewwareiv
 
Sintesis informativa 10 de noviembre de 2016
Sintesis informativa 10 de noviembre de 2016Sintesis informativa 10 de noviembre de 2016
Sintesis informativa 10 de noviembre de 2016megaradioexpress
 
Curriculum Vitae BAF Oct 2015
Curriculum Vitae BAF Oct 2015Curriculum Vitae BAF Oct 2015
Curriculum Vitae BAF Oct 2015Ben Fisher
 
Polymer processing
Polymer processingPolymer processing
Polymer processingkanna410
 
Monarquia Parlamentària. Nerea i Alexis
Monarquia Parlamentària. Nerea i AlexisMonarquia Parlamentària. Nerea i Alexis
Monarquia Parlamentària. Nerea i AlexisAlmudecor Herrero
 
Climbing Steps: From Casual to Competitive
Climbing Steps: From Casual to CompetitiveClimbing Steps: From Casual to Competitive
Climbing Steps: From Casual to Competitivelearningnight
 
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...IOSR Journals
 
Comparative study of two methods for Handwritten Devanagari Numeral Recognition
Comparative study of two methods for Handwritten Devanagari Numeral RecognitionComparative study of two methods for Handwritten Devanagari Numeral Recognition
Comparative study of two methods for Handwritten Devanagari Numeral RecognitionIOSR Journals
 
International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...IOSR Journals
 

Viewers also liked (20)

Camera plans
Camera plansCamera plans
Camera plans
 
MCRSD REIL Score
MCRSD REIL ScoreMCRSD REIL Score
MCRSD REIL Score
 
Modelos de discapacidad
Modelos de discapacidadModelos de discapacidad
Modelos de discapacidad
 
Cath mobile
Cath mobileCath mobile
Cath mobile
 
Sintesis informativa 10 de noviembre de 2016
Sintesis informativa 10 de noviembre de 2016Sintesis informativa 10 de noviembre de 2016
Sintesis informativa 10 de noviembre de 2016
 
CLARA PRIDE
CLARA PRIDECLARA PRIDE
CLARA PRIDE
 
Curriculum Vitae BAF Oct 2015
Curriculum Vitae BAF Oct 2015Curriculum Vitae BAF Oct 2015
Curriculum Vitae BAF Oct 2015
 
17 los nutrientes en el compost
17 los nutrientes en el compost17 los nutrientes en el compost
17 los nutrientes en el compost
 
Resume
ResumeResume
Resume
 
raiders
raidersraiders
raiders
 
Polymer processing
Polymer processingPolymer processing
Polymer processing
 
Monarquia Parlamentària. Nerea i Alexis
Monarquia Parlamentària. Nerea i AlexisMonarquia Parlamentària. Nerea i Alexis
Monarquia Parlamentària. Nerea i Alexis
 
Spring
SpringSpring
Spring
 
Climbing Steps: From Casual to Competitive
Climbing Steps: From Casual to CompetitiveClimbing Steps: From Casual to Competitive
Climbing Steps: From Casual to Competitive
 
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
An Assessment of the Level of Competence Acquired By Graduates of the Undergr...
 
Comparative study of two methods for Handwritten Devanagari Numeral Recognition
Comparative study of two methods for Handwritten Devanagari Numeral RecognitionComparative study of two methods for Handwritten Devanagari Numeral Recognition
Comparative study of two methods for Handwritten Devanagari Numeral Recognition
 
I012415358
I012415358I012415358
I012415358
 
International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...
 
L017548287
L017548287L017548287
L017548287
 
D1102032633
D1102032633D1102032633
D1102032633
 

Similar to Failure Analysis of Centre Pin Joint Used In Heavy Assault Bridge

Analysis of PSC Bridge for Highway Structures using Software
Analysis of PSC Bridge for Highway Structures using SoftwareAnalysis of PSC Bridge for Highway Structures using Software
Analysis of PSC Bridge for Highway Structures using Softwareijtsrd
 
IRJET- Structural Engineering Aspects of Metro Rail Projects
IRJET- Structural Engineering Aspects of Metro Rail ProjectsIRJET- Structural Engineering Aspects of Metro Rail Projects
IRJET- Structural Engineering Aspects of Metro Rail ProjectsIRJET Journal
 
IRJET- Analysis and Design of Segmental Box Girder Bridge
IRJET- Analysis and Design of Segmental Box Girder BridgeIRJET- Analysis and Design of Segmental Box Girder Bridge
IRJET- Analysis and Design of Segmental Box Girder BridgeIRJET Journal
 
A Review Paper on Analysis and Design of Precast Box Culvert Bridge
A Review Paper on Analysis and Design of Precast Box Culvert BridgeA Review Paper on Analysis and Design of Precast Box Culvert Bridge
A Review Paper on Analysis and Design of Precast Box Culvert BridgeIRJET Journal
 
Design of midship section based on hydrostatic and hydrodynamic loads
Design of midship section based on hydrostatic and hydrodynamic loadsDesign of midship section based on hydrostatic and hydrodynamic loads
Design of midship section based on hydrostatic and hydrodynamic loadsISAAC SAMUEL RAJA T
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAdnan Lazem
 
Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...
Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...
Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...IRJET Journal
 
A Study on Application of Passive Control Techniques to RC Bridges through No...
A Study on Application of Passive Control Techniques to RC Bridges through No...A Study on Application of Passive Control Techniques to RC Bridges through No...
A Study on Application of Passive Control Techniques to RC Bridges through No...IRJET Journal
 
IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...
IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...
IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...IRJET Journal
 
Analysis and Design of OIL STEEL STORAGE TANK_2023.docx
Analysis and Design of OIL STEEL STORAGE TANK_2023.docxAnalysis and Design of OIL STEEL STORAGE TANK_2023.docx
Analysis and Design of OIL STEEL STORAGE TANK_2023.docxadnan885140
 
P.e.b. mini project report
P.e.b. mini project reportP.e.b. mini project report
P.e.b. mini project reportShubham Parab
 
Analysis and Design of Box Underpass Bridge Using Software
Analysis and Design of Box Underpass Bridge Using SoftwareAnalysis and Design of Box Underpass Bridge Using Software
Analysis and Design of Box Underpass Bridge Using Softwareijtsrd
 
IRJET- Analysis and Design of Flyover by using Staad Pro
IRJET- Analysis and Design of Flyover by using Staad ProIRJET- Analysis and Design of Flyover by using Staad Pro
IRJET- Analysis and Design of Flyover by using Staad ProIRJET Journal
 
Analysis and Design of Reinforced Concrete Solid Slab Bridge
Analysis and Design of Reinforced Concrete Solid Slab BridgeAnalysis and Design of Reinforced Concrete Solid Slab Bridge
Analysis and Design of Reinforced Concrete Solid Slab Bridgeijtsrd
 
IRJET-Analysis of Offshore Jacket Structure
IRJET-Analysis of Offshore Jacket StructureIRJET-Analysis of Offshore Jacket Structure
IRJET-Analysis of Offshore Jacket StructureIRJET Journal
 

Similar to Failure Analysis of Centre Pin Joint Used In Heavy Assault Bridge (20)

Analysis of PSC Bridge for Highway Structures using Software
Analysis of PSC Bridge for Highway Structures using SoftwareAnalysis of PSC Bridge for Highway Structures using Software
Analysis of PSC Bridge for Highway Structures using Software
 
20160406_Project report_Final
20160406_Project report_Final20160406_Project report_Final
20160406_Project report_Final
 
IRJET- Structural Engineering Aspects of Metro Rail Projects
IRJET- Structural Engineering Aspects of Metro Rail ProjectsIRJET- Structural Engineering Aspects of Metro Rail Projects
IRJET- Structural Engineering Aspects of Metro Rail Projects
 
IRJET- Analysis and Design of Segmental Box Girder Bridge
IRJET- Analysis and Design of Segmental Box Girder BridgeIRJET- Analysis and Design of Segmental Box Girder Bridge
IRJET- Analysis and Design of Segmental Box Girder Bridge
 
Lh3619271935
Lh3619271935Lh3619271935
Lh3619271935
 
Bridge Grillage Analysis using Finite Element Methods
Bridge Grillage Analysis using Finite Element  MethodsBridge Grillage Analysis using Finite Element  Methods
Bridge Grillage Analysis using Finite Element Methods
 
A Review Paper on Analysis and Design of Precast Box Culvert Bridge
A Review Paper on Analysis and Design of Precast Box Culvert BridgeA Review Paper on Analysis and Design of Precast Box Culvert Bridge
A Review Paper on Analysis and Design of Precast Box Culvert Bridge
 
MODELLING AND VIBRATION ANALYSIS OF REINFORCED CONCRETE BRIDGE
MODELLING AND VIBRATION ANALYSIS OF REINFORCED CONCRETE BRIDGEMODELLING AND VIBRATION ANALYSIS OF REINFORCED CONCRETE BRIDGE
MODELLING AND VIBRATION ANALYSIS OF REINFORCED CONCRETE BRIDGE
 
Design of midship section based on hydrostatic and hydrodynamic loads
Design of midship section based on hydrostatic and hydrodynamic loadsDesign of midship section based on hydrostatic and hydrodynamic loads
Design of midship section based on hydrostatic and hydrodynamic loads
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
 
Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...
Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...
Review Paper on Analysis and Design of Steel Truss by using Angle and Tube Se...
 
A Study on Application of Passive Control Techniques to RC Bridges through No...
A Study on Application of Passive Control Techniques to RC Bridges through No...A Study on Application of Passive Control Techniques to RC Bridges through No...
A Study on Application of Passive Control Techniques to RC Bridges through No...
 
IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...
IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...
IRJET- Parametric Study of RC Deck Slab Bridge with Varying Thickness: A Conc...
 
Analysis and Design of OIL STEEL STORAGE TANK_2023.docx
Analysis and Design of OIL STEEL STORAGE TANK_2023.docxAnalysis and Design of OIL STEEL STORAGE TANK_2023.docx
Analysis and Design of OIL STEEL STORAGE TANK_2023.docx
 
P.e.b. mini project report
P.e.b. mini project reportP.e.b. mini project report
P.e.b. mini project report
 
Analysis and Design of Box Underpass Bridge Using Software
Analysis and Design of Box Underpass Bridge Using SoftwareAnalysis and Design of Box Underpass Bridge Using Software
Analysis and Design of Box Underpass Bridge Using Software
 
IRJET- Analysis and Design of Flyover by using Staad Pro
IRJET- Analysis and Design of Flyover by using Staad ProIRJET- Analysis and Design of Flyover by using Staad Pro
IRJET- Analysis and Design of Flyover by using Staad Pro
 
Analysis and Design of Reinforced Concrete Solid Slab Bridge
Analysis and Design of Reinforced Concrete Solid Slab BridgeAnalysis and Design of Reinforced Concrete Solid Slab Bridge
Analysis and Design of Reinforced Concrete Solid Slab Bridge
 
NCIT civil Syllabus 2013-2014
NCIT civil Syllabus 2013-2014NCIT civil Syllabus 2013-2014
NCIT civil Syllabus 2013-2014
 
IRJET-Analysis of Offshore Jacket Structure
IRJET-Analysis of Offshore Jacket StructureIRJET-Analysis of Offshore Jacket Structure
IRJET-Analysis of Offshore Jacket Structure
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 

Recently uploaded (20)

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 

Failure Analysis of Centre Pin Joint Used In Heavy Assault Bridge

  • 1. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 1 (May. - Jun. 2013), PP 05-11 www.iosrjournals.org www.iosrjournals.org 5 | Page Failure Analysis of Centre Pin Joint Used In Heavy Assault Bridge Dnyaneshwar J. Sushir1 , Prashant N. Ulhe2 1 (Mechanical Engg. Department, SSBT’s COET, Bambhori, Jalgaon / North Maharashtra University, India) 2 (Mechanical Engg. Department, SSBT’s COET, Bambhori, Jalgaon / North Maharashtra University, India) Abstract : Strategy is important to win the war in army. Every army has two major divisions as infantry and artillery. Artillery is dependent on the armored vehicles such as tanks, missile carriers and trucks. The movement of armored vehicles has vital importance in war to win. In order to cross the obstacles such as rivers, canals army has to build arrangement which will be quicker and faster to construct the bridge. These kinds of quickly constructed bridges are known as Heavy Assault Bridge. Its job is to allow armored units to cross the obstacles. The Heavy Assault bridge is rated for normal crossings of military load classification of 60 tons. Centre Pin Joint is placed between modules of the girders in a single bridge span. The maximum stresses will develop at centre pin joint only. Before failure of bridge centre pin joint will fail. So proper centre pin design is the main criteria. The objective of this project is to perform a failure analysis of the centre pin joint used in heavy assault bridge. So it is very important to determine high-stress areas of concern and to increase its load carrying capacity by design modification. As previously centre pin joint is replaced by modified pin joint, its load carrying capacity will be enhanced. Riveting of pin would be eliminated. Finally, conclusions based on the results and recommendations which can be extensions of this project are also presented. Keywords - Heavy assault bridge, Centre pin joint, Ansys. I. INTRODUCTION 1.1 BACKGROUND: A “Heavy Assault Bridge (HAB)” is a combat support vehicle sometimes regarded as a subtype of combat engineering vehicle designed to assist militaries in rapidly deploying tanks and other armored to cross the obstacles. The HAB is usually a tracked vehicle converted from a tank chassis to carry a folding metal bridge instead of a turret. The job of HAB is to allow armored or infantry units to cross obstacles when it is too deep and no bridge is conveniently located. The bridge layer unfolds and launches its cargo providing a ready-made bridge across the obstacle in only minutes. Once the span has been put in place, the HAB vehicle detaches from the bridge and moves aside to allow traffic to pass. Once all of the vehicles have crossed, it crosses the bridge itself and reattaches to the bridge on the other side. It then retracts the span ready to move off again. A similar procedure can be employed to allow crossings of similar obstructions. Mostly today HAB can carry bridges of 60 feet (19 meters) or greater in length. By using a tank chassis the bridge layer is able to cover the same terrain as main battle tanks and the provision of armor allows them to operate even in the face of enemy fire. However this is not a universal attribute design, specification, implementation changes according to terrain and area of implementation. 1.2 OBJECTIVES OF THE STUDY: 1.2.1 General Objective: The objective of the study is to produce results which may help to rectify problems associated with the centre pin joint used in heavy assault bridge and which also may be of significance during design of the centre pin joint after carrying out static analysis, combining existing theoretical knowledge and advanced analytical methods to improve the load carrying capacity of the centre pin joint by design modifications. 1.2.2 Specific Objectives: I. To develop mathematical and finite element model of the major components of a centre pin joint used in heavy assault bridge and carry out static analysis of the structures. II. Based on the analysis, identify points and sections which are highly loaded (stressed) due to the loads by means of which the overall intensity of loading in the structures is assessed. III. Improve the load carrying capacity of the centre pin joint by design modifications. Iv.Arrive at conclusions and propose recommendations. 1.3 METHODOLOGY: To fulfill the objectives of the study the following are used.
  • 2. “Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge” www.iosrjournals.org 6 | Page I. Literature Review: Survey of books, journal articles, proceedings of international Conferences, manufacturer catalogues, and other relevant literatures are done. II. Data Collection: Data regarding the centre pin and the heavy assault bridge are collected. The data include dimensions of the structure, material used to construct the structure and construction methods. III. Modeling and Analysis: The finite element model development as well as the corresponding static analysis is performed using ANSYS software. IV. Conclusions and Recommendations. 1.4 ORGANIZATION OF THE THESIS: The body of this thesis is divided into eight main chapters. The first chapter discusses background and objectives of the study. In addition, the details of the Indian bridges are used in the analysis are also discussed in the same chapter. The second chapter covers the review of some of the journal articles, proceedings and publications which were referred during the course of the thesis. Also, in relation and comparison with previous works, what is done in this thesis will be stated. The mathematical and finite element modeling is discussed in the sixth chapter. Also, covered in this chapter is meshing of the solid model of the centre pin joint used for the analysis into finite elements and the mathematical formulation of these elements. The results obtained from the static analysis of the centre pin joint and discussions based on these results are included in the eighth chapter. Finally, the eighth chapter covers conclusions drawn based on the results of the analysis and recommendations for future work. II. LITERATURE REVEIW 2.1 Origin: The roots of the modern HAB can be found in World War I, at the dawn of tank warfare. Having developed tanks, the UK and France were confronted with the problem of mounting tank advances in the face of the trenches that dominated the battlefields. Early engagements, such as at Cambria demonstrated the tank's utility, but also highlighted its vulnerability to battlefield geography many early tanks found themselves ignominiously stuck in the trenches, having insufficiently long tracks to cross them. To counter this disadvantage, tanks (especially the common British Mark series) began to go into battle with fascines hanging over their bows, sometimes as simple as a bundle of heavy sticks. By dropping these into the trenches, they were able to create a wedge over which the tank could drive. Later, some tanks began to carry rails on their decks the first HAB. 2.2 WORLD WAR II: It was in the World War II era that the importance of armored bridge layers, as well as combat engineering vehicles and armored became fully clear. With the advent of Blitzkrieg warfare, whole divisions had to advance along with tanks, which were suddenly far out-pacing the speed of infantry soldiers. Besides leading to the advent of self-propelled artillery/assault guns, mobile anti-aircraft and armored cars, it became clear that functions like vehicle repair, mine-clearing, and the like would have to be carried out by armored vehicles advancing along with tanks. Moreover, these forces would have to be able to cross all forms of terrain without losing speed and without having to concentrate their thrusts over certain bridges (and the rising weight of armored vehicles meant that fewer and fewer bridges could support these massed crossings). The only feasible solution to the dilemma posed by the mobility of all mechanized armed forces was a dedicated platform that could improvise river and obstacle crossings at short notice and in otherwise inconvenient locations. Tracked and armored, it was capable of operating right alongside combat units, crossing rough terrain and advancing in the face of light fire. To maximize on common parts and ease maintenance complications, they were usually based on existing tank chassis. 2.3 INDIAN HAB: The Indian military bridging program is notable for several reasons. One is that it is in every sense a program & not just a series of isolated projects carried out simultaneously. Almost every aspect of military bridging is being tackled from assault bridging to lines of communication structures bringing an opportunity to make maximum use of common components, materials, operating methods and other cost-saving measures. It is also interesting to note that not just bridging is included. Also involved in the program is an Armored Amphibious Dozer & an Engineer Reconnaissance Vehicle (both based on the locally built BMP-2 Infantry Combat Vehicle chassis). Both are still comparative rarities elsewhere as few armies seem to take the trouble to procure such specialized vehicles. One further aspect of the Indian bridging program is the involvement of industrial concerns in the design, development and learning curve relating to the program. From the earliest stages of the program those expected to manufacture the final products have been involved at every stage of the development process. Once
  • 3. “Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge” www.iosrjournals.org 7 | Page again the cost-effectiveness advantages of such a process are many but it makes an interesting aside to consider that such a course of action is open only to a highly centralized defense infrastructure. The usual round of tenders and costly in-house developments associated with the now common place procurement programs carried out by most open market nations, especially in the United Kingdom. III. METHADOLOGY AND ANALYSIS 3.1 FINITE ELEMENT METHOD: The Basic concept in FEA is that the body or structure may be divided into smaller elements of finite dimensions called “Finite Elements”. The original body or the structure is then considered as an assemblage of these elements connected at a finite number of joints called “Nodes” or “Nodal Points”. Simple functions are chosen to approximate the displacements over each finite element. Such assumed functions are called “shape functions”. This will represent the displacement within the element in terms of the displacement at the nodes of the element. Due to high cost of computing power of years gone by, FEA has a history of being used to solve complex and cost critical problems. Classical methods alone usually cannot provide adequate information to determine the safe working limits of a major civil engineering construction or an automobile or an aircraft. In the recent years, FEA has been universally used to solve structural engineering problems. The departments, which are heavily relied on this technology, are the automotive and aerospace industry. Due to the need to meet the extreme demands for faster, stronger, efficient and lightweight automobiles and aircraft, manufacturers have to rely on this technique to stay competitive. If one needs to evaluate the area of the circle without using the conventional formula, one of the approaches could be to divide the above area into a number of equal segments; the area of each triangle multiplied by the number of such segments gives the total area of the circle. 3.2 THE BASIC STEPS INVOLVED IN FEA: Mathematically, the structure to be analyzed is subdivided into a mesh of finite sized elements of simple shape. Within each element, the variation of displacement is assumed to be determined by simple polynomial shape functions and nodal displacements. Equations for the strains and stresses are developed in terms of the unknown nodal displacements. From this, the equations of equilibrium are assembled in a matrix form which can be easily be programmed and solved on a computer. After applying the appropriate boundary conditions, the nodal displacements are found by solving the matrix stiffness equation. Once the nodal displacements are known, element stresses and strains can be calculated. Basic Steps in FEA: 3.2.1 Discretization of the domain 3.2.2 Application of Boundary conditions 3.3.3 Assembling the system equations 3.2.4 Solution for system equations 3.2.5 Post processing the results. The first two steps of the above said process is known as pre-processing stage, third and fourth is the processing stage and final step is known as post-processing stage. 3.3 THEORIES OF FAILURE: Determining the expected mode of failure is an important first step in analyzing a part design. The failure mode will be influenced by the nature of load, the expected response of the material and the geometry and constraints. In an engineering sense, failure may be defined as the occurrence of any event considered to be unacceptable on the basis of part performance. The modes of failure considered here are related to mechanical loads and structural analysis. A failure may include either an unacceptable response to a temporary load involving no permanent damage to the part or an acceptable response, which does involve permanent, and sometimes catastrophic, damage. The purpose of theories of failure is to predict what combination of principal stresses will result in failure. There are number of theories to describe failure criteria, of them these are the widely accepted theories. 3.4 Choice of the theories of failure: Well documented experimental results by various authors on the various theories of failure, indicate that the distortion energy theory predicts yielding with greatest accuracy. Compared to this maximum shear stress theory predicts results which are always on safer side. Maximum principal stress theory gives conservative results only if the sign of the two principal stresses is the same (2-D case). Therefore, the use of
  • 4. “Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge” www.iosrjournals.org 8 | Page maximum principal stress theory for pure torsion is ruled out where the sign of the two principal stresses are opposite. When the fracture of a tension specimen loaded up to rupture is examined, it shows that for ductile materials, failure occurs along lines at angles 45 degrees with the load axis. This indicates a shear failure. Brittle materials on the other hand, rupture on planes normal to the load axis, indicating that maximum normal stress determines failure. Because of the above mentioned observations, it is universally accepted that for a brittle materials, the maximum normal stress theory is the most suitable. For ductile materials, the maximum shear stress theory gives conservative results and it is simpler to use as compared to distortion energy theory, so it is universally accepted as the theory of failure for ductile materials. But, where low weight is desired, the distortion energy theory is recommended. IV. PHYSICAL AND MATHEMATICAL MODELLING 4.1 DESIGN REQUIREMENTS: Maximum weight carried by bridge is of armored tank Arjun MBT. So, maximum load which will pass over the HAB is of Arjun MBT. The total weight of Arjun MBT is 64.5 tones. Therefore HAB should be design to withstand the maximum load of 70 tones. Major components of HAB: There are two major components in HAB, 4.1.1 Span (it is track over which vehicle will move) 4.1.2 Centre pin joint A main pin joint in HAB Bridge is responsible for connecting two girders in a single bridge span. Simultaneously, it is the most loaded part during the launched operation under the obstacle and moving the vehicles through the main tracks of the bridge. When load is applied on HAB, centre pin joint will fail before failure of span. 4.2 LOAD CALCULATION: The weight of 18G2A steel is more as its density is high. But it won’t make any kind of differences as total weight of centre pin joint is very small as compared to weight of HAB. Strength:Ultimate strength of steel is very high upto 610 MPa. Young’s modulus is considered as 204000 MPa Yield strength 398 MPa Poison ratio 0.3 The Endurance Limit: Following figure suggests that the endurance limit ranges from about 40 to 60% of the tensile strength for steel up to (1460 MPa) About 1460 MPa, the scatter appears to increase, but the trend seems to level off at e S =740 MPa. V. ANALYSIS AND RESULTS 5.1 TOTAL LOAD ON CENTRE PIN JOINT : Weight of bridge is approximately 20 tons. Armored vehicle passed over bridge it may weight approximately 60 tons. Total weight on bridge is now 80 tons. So, 80000 x 9.81 = 784800 N. As there are two track, and bridge and vehicle passed over bridge are in symmetry, so load on single track will be half, 392400 N. Now, track is divided into two span, so load on single span is half, 196200 N. Again, each span will have two centre pin joint, therefore load on single centre pin joint element is 98100 N. Considering additional load on centre pin joint, Total load on centre pin joint element is = 100000 N. 5.2 MATHEMATICAL PROOF : Development of shear stress : Load on pin is 100000 N Inside diameter of hole is 40 mm and thickness of outside Lug is 12 mm. For one Lug element, Considering the YZ plane Shear stress will be developed Inside the diameter of Lug, Inside Area of Lug = Inside perimeter of hole x thickness of Lug Inside perimeter of hole= 2 x π x r Inside Area of Lug = 2 x 3.14 x 20 x 12 = 1507.2 mm2.
  • 5. “Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge” www.iosrjournals.org 9 | Page Load on pin = cross sectional area along YZ plane of hole x shear stress 100000 =2 x 3.14 x 20 x 12 x shear stress Shear stress along YZ plane = 67 MPa Stress developed in Lug, For existing central pin joint, as Lug size is Small and it is attached to welding surface area, therefore failure or maximum stress development will be at joining of Lug and welding surface. Load on pin = cross sectional area of Lug at joint x shear stress 100000 = 12 x 12 x shear stress Shear stress along YZ plane = 694 MPa. 5.3 MODIFIED CENTRE PIN JOINT: In this pin joint, lugs are long enough and welding surface area is same and is attached over lugs. Therefore according to geometry of figure maximum stress concentration will be at hole. But due to pin inside hole and no opportunity for lug to rotate, then it is to be said constrained. Hence hole is completely constrained. Due to perpendicular load on cross sectional area from hole to outer diameter of lug will be in double shear. So stress development will be half. Load on one side of lug = cross sectional area of lug from hole to outer diameter x stress 100000 = 12 x 30 x stress/2 Stress developed inside hole is = 555 MPa. 5.3 ANSYS RESULT : “Fig.1”: Three Lugs Element “Fig.2”: Two Lugs Element “Fig.3”: Stress Intensity “Fig.4”: Von-Misses Stress “Fig.5”: Shear Stress along XY Axis “Fig.6”: Shear Stress along YZ axis
  • 6. “Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge” www.iosrjournals.org 10 | Page NEW MODIFIED PART: “Fig.7”: Three Lug Element Part “Fig.8”: Two Lug element “Fig.9”: Stress Intensity “Fig.10”: Von-Misses Stress “Fig.11”: Shear Stress along XY Axis “Fig.12”: Shear Stress along YZ Axis VI. Result: Drawing of existing and modified part: “Fig.13”: Existing Centre Pin Joint Modeling “Fig.14”: Modified Centre Pin Joint Modeling
  • 7. “Failure Analysis of Centre Pin Joint used in Heavy Assault Bridge” www.iosrjournals.org 11 | Page Stress intensity comparision between both parts : Fig. 15: Stress Intensity of Existing Part Fig. 16: Stress Intensity of Modified Part VII. CONCLUSION Now we have following data, Sut= 610 MPa Sy = 398 MPa After 10 4 = 515 MPa By comparing stress intensity of existing and modified part, the maximum stress developed in existing part is between the ranges of 609 to 685 MPa. And maximum ultimate stress of 18G2A steel is 610 MPa. For existing centre pin joint, stress limit slightly exceeds than ultimate stress which may cause sudden failure of existing centre pin joint fewer than 80 tones load including 20 tones bridge weight itself. So near about 60 tones weighted vehicle does not allow to pass over bridge. And it is limited upto 50 tones load. For newly designed centre pin joint stress developed in part is between the range of 486 to 546 MPa which is quite low as compared to ultimate stress and near about yield strength. So modified centre pin joint is sufficient safe for 60 tones weighted vehicle for passing over it. Acknowledgements First of all, I thank God for giving me the strength to accomplish this thesis. I express my sincere thanks with deep sense of gratitude of my Guide Prof. P.N.Ulhe for his encouragement, valuable suggestions, guidance and help throughout the preparation of this project. I would like to express my deepest appreciation towards Dr.D.S.Deshmukh (H.O.D. Mechanical Engineering Department) whose valuable guidance supported me in preparing the report. I would also like to express my respect and gratitude to Principal of College for providing me this opportunity to prepare the project-I report. I take this opportunity to thanks all the professors and staff members of Mechanical Engineering Department who have directly or indirectly helped me for the completion of the project. I am also grateful to other friends of mine who have been very cooperative. Finally, thanks are due to my mother and father, Dwarkabai and Jagannath and my wife, Dr.Shital for her support and encouragement. REFERENCES [1] Department of the Army, 1990,"TM5-5420-203, Technical Manual: Operator's Unit, Direct Support and General Support Maintenance for Bridge, Armored Vehicle Launched: Scissoring Type: Class 60 and Class 70 Aluminium; 60 Foot Span; For M48A5 and M60 Launcher, MLC60 and MLC70," Headquarters, Department of the Army, Washington, D.C. [2] Choi, Jeong-Hoon, 2000,"The Fracture Analysis and Remaining Life Estimation of the HAB Sub-Components," Master Thesis submitted to West Virginia University 5. Lewis R., 1987, "Production line applications of automated NDT systems," IEE. [3] H.V.S. Ganga Rao, P. Klinkhachorn, U.B. Halabe, R.H.L. Chen, R. Kalluri, Alluri, E.S. Sazonov and J.H. Choi, “Damage and remaining life assessment for AVLB”, Constructed Facilities Centre, West Virginia University, 2001, Submitted to U.S. Army Tank- Automotive and Armament Command Acquisition Center , U.S. Army grant DAAE07-96-C-x226. [4] Krason W. and Filiks L., Rigid and deformable models in the numerical strength test of Scissor Bridge. [5] Dacko M., Krason W. and Filiks L., Experimental and numerical testing of the modernized BLG-67 Bridge. [6] Reference manual, ANSYS, Version 12. [7] Sienkiewicz O.C. and Taylor R.L., The Finite Element Method, Vol.1: The Basis, fifth edition, Butterworth-Heinemann, Oxford, 2000. [8] Ministry of National Defense in India: Military Bridges, Manual, published by DRDO. [9] Operational Manual: Trilateral design and test code for military bridging and gap-crossing equipment, Publisher in the United States, 1996. [10] Indian Heavy Assault Bridge Kartik. [11] Bridge fatigue life indicating system, By D. Thomson & G. samavedam, Sep 1991. 12) Experimental and Numerical studies of the scissors HAB Type Bridge, by Wieslaw Krason & Jerzy Malachowski Jan 2010.