SlideShare a Scribd company logo
1 of 40
Professor A G Constantinides
1
Digital Filter Specifications
• We discuss in this course only the magnitude
approximation problem
• There are four basic types of ideal filters with
magnitude responses as shown below
Professor A G Constantinides
2
Digital Filter Specifications
• These filters are unealizable because their
impulse responses infinitely long non-
causal
• In practice the magnitude response
specifications of a digital filter in the
passband and in the stopband are given with
some acceptable tolerances
• In addition, a transition band is specified
between the passband and stopband
Professor A G Constantinides
3
Digital Filter Specifications
• For example the magnitude response
of a digital lowpass filter may be given as
indicated below
)
( 
j
e
G
Professor A G Constantinides
4
Digital Filter Specifications
• In the passband we require that
with a deviation
• In the stopband we require that
with a deviation
1
)
( 

j
e
G
0
)
( 

j
e
G s

p


p

 

0


 

s
p
p
j
p e
G 


 




 ,
1
)
(
1







 s
s
j
e
G ,
)
(
Professor A G Constantinides
5
Digital Filter Specifications
Filter specification parameters
• - passband edge frequency
• - stopband edge frequency
• - peak ripple value in the passband
• - peak ripple value in the stopband
p

s

s

p

Professor A G Constantinides
6
Digital Filter Specifications
• Practical specifications are often given in
terms of loss function (in dB)
•
• Peak passband ripple
dB
• Minimum stopband attenuation
dB
)
(
log
20
)
( 10

 j
e
G


G
)
1
(
log
20 10 p
p 
 


)
(
log
20 10 s
s 
 

Professor A G Constantinides
7
Digital Filter Specifications
• In practice, passband edge frequency
and stopband edge frequency are
specified in Hz
• For digital filter design, normalized
bandedge frequencies need to be computed
from specifications in Hz using
T
F
F
F
F
p
T
p
T
p
p 

 2
2




T
F
F
F
F
s
T
s
T
s
s 

 2
2




s
F
p
F
Professor A G Constantinides
8
Digital Filter Specifications
• Example - Let kHz, kHz, and
kHz
• Then
7

p
F 3

s
F
25

T
F


 56
.
0
10
25
)
10
7
(
2
3
3




p


 24
.
0
10
25
)
10
3
(
2
3
3




s
Professor A G Constantinides
9
• The transfer function H(z) meeting the
specifications must be a causal transfer
function
• For IIR real digital filter the transfer
function is a real rational function of
• H(z) must be stable and of lowest order N
for reduced computational complexity
Selection of Filter Type
1

z
N
N
M
M
z
d
z
d
z
d
d
z
p
z
p
z
p
p
z
H 
















2
2
1
1
0
2
2
1
1
0
)
(
Professor A G Constantinides
10
Selection of Filter Type
• For FIR real digital filter the transfer
function is a polynomial in with real
coefficients
• For reduced computational complexity,
degree N of H(z) must be as small as
possible
• If a linear phase is desired, the filter
coefficients must satisfy the constraint:




N
n
n
z
n
h
z
H
0
]
[
)
(
]
[
]
[ n
N
h
n
h 


1

z
Professor A G Constantinides
11
Selection of Filter Type
• Advantages in using an FIR filter -
(1) Can be designed with exact linear phase,
(2) Filter structure always stable with
quantised coefficients
• Disadvantages in using an FIR filter - Order
of an FIR filter, in most cases, is
considerably higher than the order of an
equivalent IIR filter meeting the same
specifications, and FIR filter has thus higher
computational complexity
Professor A G Constantinides
12
FIR Design
FIR Digital Filter Design
Three commonly used approaches to FIR
filter design -
(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization methods
Professor A G Constantinides
13
Finite Impulse Response
Filters
• The transfer function is given by
• The length of Impulse Response is N
• All poles are at .
• Zeros can be placed anywhere on the z-
plane





1
0
).
(
)
(
N
n
n
z
n
h
z
H
0

z
Professor A G Constantinides
14
FIR: Linear phase
• Linear Phase: The impulse response is
required to be
• so that for N even:
)
1
(
)
( n
N
h
n
h 













1
2
1
2
0
).
(
).
(
)
(
N
N
n
n
N
n
n
z
n
h
z
n
h
z
H
 












1
2
0
)
1
(
1
2
0
).
1
(
).
(
N
n
n
N
N
n
n
z
n
N
h
z
n
h
 
 




1
2
)
(
N
m
n
z
z
n
h N
m 
Professor A G Constantinides
15
FIR: Linear phase
• for N odd:
• I) On we have for N even, and
+ve sign
 
 




 











 



1
2
1
0
2
1
2
1
).
(
)
(
N
n
N
m
n
z
N
h
z
z
n
h
z
H
1
: 
z
C
 










 









 
 1
2
0
2
1
2
1
cos
).
(
2
.
)
(
N
n
N
T
j
T
j N
n
T
n
h
e
e
H 


Professor A G Constantinides
16
FIR: Linear phase
• II) While for –ve sign
• [Note: antisymmetric case adds rads to
phase, with discontinuity at ]
• III) For N odd with +ve sign
 










 









 
 1
2
0
2
1
2
1
sin
).
(
2
.
)
(
N
n
N
T
j
T
j N
n
T
n
h
j
e
e
H 


2
/

0










 






 

2
1
)
( 2
1
N
h
e
e
H
N
T
j
T
j







 










 




2
3
0 2
1
cos
).
(
2
N
n
N
n
T
n
h 
Professor A G Constantinides
17
FIR: Linear phase
• IV) While with a –ve sign
• [Notice that for the antisymmetric case to
have linear phase we require
The phase discontinuity is as for N even]










 










 









 
 2
3
0
2
1
2
1
sin
).
(
.
2
)
(
N
n
N
T
j
T
j N
n
T
n
h
j
e
e
H 


.
0
2
1






 
N
h
Professor A G Constantinides
18
FIR: Linear phase
• The cases most commonly used in filter
design are (I) and (III), for which the
amplitude characteristic can be written as a
polynomial in
2
cos
T

Professor A G Constantinides
19
FIR: Linear phase
For phase linearity the FIR transfer
function must have zeros outside the
unit circle
Professor A G Constantinides
20
FIR: Linear phase
• To develop expression for phase response
set transfer function
• In factored form
• Where , is real &
zeros occur in conjugates
n
nz
h
z
h
z
h
h
z
H 






 ...
)
( 2
2
1
1
0
)
1
(
).
1
(
)
( 1
2
1
1
1
1




 
 
 z
z
K
z
H i
n
i
i
n
i


1
,
1 
 i
i 
 K
Professor A G Constantinides
21
FIR: Linear phase
• Let
where
• Thus
)
(
)
(
)
( 2
1 z
N
z
KN
z
H 
)
1
ln(
)
1
ln(
)
ln(
))
(
ln(
2
1
1
1
1
1
 

 






n
i
i
n
i
i z
z
K
z
H 

)
1
(
)
( 1
1
1
1


 
 z
z
N i
n
i
 )
1
(
)
( 1
2
1
2


 
 z
z
N i
n
i

Professor A G Constantinides
22
FIR: Linear phase
• Expand in a Laurent Series convergent
within the unit circle
• To do so modify the second sum as
)
1
1
ln(
)
ln(
)
1
ln(
2
1
1
2
1
1
2
1
z
z
z
i
n
i
i
n
i
i
n
i 

  

 

 





Professor A G Constantinides
23
FIR: Linear phase
• So that
• Thus
• where
)
1
1
ln(
)
1
ln(
)
ln(
)
ln(
))
(
ln(
2
1
1
1
1
2  

 






n
i i
n
i
i z
z
z
n
K
z
H


m
N
m
m
m
N
m
z
m
s
z
m
s
z
n
K
z
H
2
1
1
2 )
ln(
)
ln(
))
(
ln( 



 






1
1
1
n
i
m
i
N
m
s  




1
1
2
n
i
m
i
N
m
s 
Professor A G Constantinides
24
FIR: Linear phase
• are the root moments of the minimum
phase component
• are the inverse root moments of the
maximum phase component
• Now on the unit circle we have
and

j
e
z 
)
(
)
(
)
( 


 j
j
e
A
e
H 
1
N
m
s
2
N
m
s
Professor A G Constantinides
25
Fundamental Relationships
• hence (note Fourier form)



 jm
N
m
m
jm
N
m
j
e
m
s
e
m
s
jn
K
e
H
2
1
1
2
)
ln(
))
(
ln( 



 



)
(
))
(
ln(
)
)
(
ln(
))
(
ln( )
(



 


j
A
e
A
e
H j
j




 m
m
s
m
s
K
A
N
m
m
N
m
cos
)
(
)
ln(
))
(
ln(
2
1
1



 





 m
m
s
m
s
n
N
m
m
N
m
sin
)
(
)
(
2
1
1
2



 



Professor A G Constantinides
26
FIR: Linear phase
• Thus for linear phase the second term in the
fundamental phase relationship must be identically
zero for all index values.
• Hence
• 1) the maximum phase factor has zeros which are
the inverses of the those of the minimum phase
factor
• 2) the phase response is linear with group delay
equal to the number of zeros outside the unit circle
Professor A G Constantinides
27
FIR: Linear phase
• It follows that zeros of linear phase FIR
trasfer functions not on the circumference
of the unit circle occur in the form
 1

 i
j
ie 

Professor A G Constantinides
28
Design of FIR filters: Windows
(i) Start with ideal infinite duration
(ii) Truncate to finite length. (This produces
unwanted ripples increasing in height near
discontinuity.)
(iii) Modify to
Weight w(n) is the window
 
)
(n
h
)
(
).
(
)
(
~
n
w
n
h
n
h 
Professor A G Constantinides
29
Windows
Commonly used windows
• Rectangular 1
• Bartlett
• Hann
• Hamming
•
• Blackman
•
• Kaiser
2
1


N
n
N
n
2
1







N
n

2
cos
1







N
n

2
cos
46
.
0
54
.
0














N
n
N
n 
 4
cos
08
.
0
2
cos
5
.
0
42
.
0
)
(
1
2
1 0
2
0 
 J
N
n
J
















Professor A G Constantinides
30
Kaiser window
• Kaiser window
β Transition
width (Hz)
Min. stop
attn dB
2.12 1.5/N 30
4.54 2.9/N 50
6.76 4.3/N 70
8.96 5.7/N 90
Professor A G Constantinides
31
Example
• Lowpass filter of length 51 and 2
/

 
c
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Hann window
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Hamming window
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Blackman window
Professor A G Constantinides
32
Frequency Sampling Method
• In this approach we are given and
need to find
• This is an interpolation problem and the
solution is given in the DFT part of the
course
• It has similar problems to the windowing
approach
2
/

 
c





 

1
0 1
2
.
1
1
).
(
1
)
(
N
k k
N
j
N
z
e
z
k
H
N
z
H 
)
(k
H
)
(z
H
Professor A G Constantinides
33
Linear-Phase FIR Filter
Design by Optimisation
• Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as
where
)
(
)
(
)
( 

 A
Q
H 









4
Type
for
),
2
/
sin(
3
Type
for
),
sin(
2
Type
for
/2),
cos(
1
Type
for
,
1
)
(




Q
Professor A G Constantinides
34
Linear-Phase FIR Filter
Design by Optimisation
• Modified form of weighted error function
where
)]
(
)
(
)
(
)[
(
)
( 



 D
A
Q
W 

E
]
)
(
)[
(
)
( )
(
)
(




 Q
D
A
Q
W 

)]
(
~
)
(
)[
(
~


 D
A
W 

)
(
)
(
)
(
~


 Q
W
W 
)
(
/
)
(
)
(
~


 Q
D
D 
Professor A G Constantinides
35
Linear-Phase FIR Filter
Design by Optimisation
• Optimisation Problem - Determine
which minimise the peak absolute value
of
over the specified frequency bands
• After has been determined, construct
the original and hence h[n]
)]
(
~
)
cos(
]
[
~
)[
(
~
)
(
0



 D
k
k
a
W
L
k




E
]
[
~ k
a
R


)
( 
j
e
A
]
[
~ k
a
Professor A G Constantinides
36
Linear-Phase FIR Filter
Design by Optimisation
Solution is obtained via the Alternation
Theorem
The optimal solution has equiripple behaviour
consistent with the total number of available
parameters.
Parks and McClellan used the Remez
algorithm to develop a procedure for
designing linear FIR digital filters.
Professor A G Constantinides
37
FIR Digital Filter Order
Estimation
Kaiser’s Formula:
• ie N is inversely proportional to transition
band width and not on transition band
location





2
/
)
(
6
.
14
)
(
log
20 10
p
s
s
p
N



Professor A G Constantinides
38
FIR Digital Filter Order
Estimation
• Hermann-Rabiner-Chan’s Formula:
where
with










2
/
)
(
]
2
/
)
)[(
,
(
)
,
( 2
p
s
p
s
s
p
s
p F
D
N



 
s
p
p
s
p a
a
a
D 



 10
3
10
2
2
10
1 log
]
)
(log
)
(log
[
)
,
( 



]
)
(log
)
(log
[ 6
10
5
2
10
4 a
a
a p
p 

 

]
log
[log
)
,
( 10
10
2
1 s
p
s
p b
b
F 


 


4761
.
0
,
07114
.
0
,
005309
.
0 3
2
1 


 a
a
a
4278
.
0
,
5941
.
0
,
00266
.
0 6
5
4 

 a
a
a
51244
.
0
,
01217
.
11 2
1 
 b
b
Professor A G Constantinides
39
FIR Digital Filter Order
Estimation
• Fred Harris’ guide:
where A is the attenuation in dB
• Then add about 10% to it


 2
/
)
(
20 p
s
A
N


Professor A G Constantinides
40
FIR Digital Filter Order
Estimation
• Formula valid for
• For , formula to be used is obtained
by interchanging and
• Both formulae provide only an estimate of
the required filter order N
• If specifications are not met, increase filter
order until they are met
s
p 
 
s
p 
 
p
 s


More Related Content

Similar to 6-Digital filters (FIR).ppt

DSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter DesignDSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter DesignAmr E. Mohamed
 
Module iv sp
Module iv spModule iv sp
Module iv spVijaya79
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptStefan Oprea
 
Design of digital filters
Design of digital filtersDesign of digital filters
Design of digital filtersNaila Bibi
 
Chapter communication_Lect7.ppt
Chapter communication_Lect7.pptChapter communication_Lect7.ppt
Chapter communication_Lect7.pptraaed5
 
Fir and iir filter_design
Fir and iir filter_designFir and iir filter_design
Fir and iir filter_designshrinivasgnaik
 
A Fast Implicit Gaussian Curvature Filter
A Fast Implicit Gaussian Curvature FilterA Fast Implicit Gaussian Curvature Filter
A Fast Implicit Gaussian Curvature FilterYuanhao Gong
 
Digital communication
Digital communicationDigital communication
Digital communicationmeashi
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 

Similar to 6-Digital filters (FIR).ppt (20)

lecture_37.pptx
lecture_37.pptxlecture_37.pptx
lecture_37.pptx
 
DSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter DesignDSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter Design
 
Module iv sp
Module iv spModule iv sp
Module iv sp
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
 
Design of digital filters
Design of digital filtersDesign of digital filters
Design of digital filters
 
Chapter communication_Lect7.ppt
Chapter communication_Lect7.pptChapter communication_Lect7.ppt
Chapter communication_Lect7.ppt
 
1 finite wordlength
1 finite wordlength1 finite wordlength
1 finite wordlength
 
Filter_Designs
Filter_DesignsFilter_Designs
Filter_Designs
 
Active filters
Active filtersActive filters
Active filters
 
Bodeplot
BodeplotBodeplot
Bodeplot
 
Fir and iir filter_design
Fir and iir filter_designFir and iir filter_design
Fir and iir filter_design
 
1-DSP Fundamentals.ppt
1-DSP Fundamentals.ppt1-DSP Fundamentals.ppt
1-DSP Fundamentals.ppt
 
Fir filter_utkarsh_kulshrestha
Fir filter_utkarsh_kulshresthaFir filter_utkarsh_kulshrestha
Fir filter_utkarsh_kulshrestha
 
Design of Filters PPT
Design of Filters PPTDesign of Filters PPT
Design of Filters PPT
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
A Fast Implicit Gaussian Curvature Filter
A Fast Implicit Gaussian Curvature FilterA Fast Implicit Gaussian Curvature Filter
A Fast Implicit Gaussian Curvature Filter
 
bode plot.pptx
bode plot.pptxbode plot.pptx
bode plot.pptx
 
Digital communication
Digital communicationDigital communication
Digital communication
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Filters2
Filters2Filters2
Filters2
 

Recently uploaded

Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsmeharikiros2
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptAfnanAhmad53
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257subhasishdas79
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...ssuserdfc773
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 

Recently uploaded (20)

Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 

6-Digital filters (FIR).ppt

  • 1. Professor A G Constantinides 1 Digital Filter Specifications • We discuss in this course only the magnitude approximation problem • There are four basic types of ideal filters with magnitude responses as shown below
  • 2. Professor A G Constantinides 2 Digital Filter Specifications • These filters are unealizable because their impulse responses infinitely long non- causal • In practice the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances • In addition, a transition band is specified between the passband and stopband
  • 3. Professor A G Constantinides 3 Digital Filter Specifications • For example the magnitude response of a digital lowpass filter may be given as indicated below ) (  j e G
  • 4. Professor A G Constantinides 4 Digital Filter Specifications • In the passband we require that with a deviation • In the stopband we require that with a deviation 1 ) (   j e G 0 ) (   j e G s  p   p     0      s p p j p e G           , 1 ) ( 1         s s j e G , ) (
  • 5. Professor A G Constantinides 5 Digital Filter Specifications Filter specification parameters • - passband edge frequency • - stopband edge frequency • - peak ripple value in the passband • - peak ripple value in the stopband p  s  s  p 
  • 6. Professor A G Constantinides 6 Digital Filter Specifications • Practical specifications are often given in terms of loss function (in dB) • • Peak passband ripple dB • Minimum stopband attenuation dB ) ( log 20 ) ( 10   j e G   G ) 1 ( log 20 10 p p      ) ( log 20 10 s s    
  • 7. Professor A G Constantinides 7 Digital Filter Specifications • In practice, passband edge frequency and stopband edge frequency are specified in Hz • For digital filter design, normalized bandedge frequencies need to be computed from specifications in Hz using T F F F F p T p T p p    2 2     T F F F F s T s T s s    2 2     s F p F
  • 8. Professor A G Constantinides 8 Digital Filter Specifications • Example - Let kHz, kHz, and kHz • Then 7  p F 3  s F 25  T F    56 . 0 10 25 ) 10 7 ( 2 3 3     p    24 . 0 10 25 ) 10 3 ( 2 3 3     s
  • 9. Professor A G Constantinides 9 • The transfer function H(z) meeting the specifications must be a causal transfer function • For IIR real digital filter the transfer function is a real rational function of • H(z) must be stable and of lowest order N for reduced computational complexity Selection of Filter Type 1  z N N M M z d z d z d d z p z p z p p z H                  2 2 1 1 0 2 2 1 1 0 ) (
  • 10. Professor A G Constantinides 10 Selection of Filter Type • For FIR real digital filter the transfer function is a polynomial in with real coefficients • For reduced computational complexity, degree N of H(z) must be as small as possible • If a linear phase is desired, the filter coefficients must satisfy the constraint:     N n n z n h z H 0 ] [ ) ( ] [ ] [ n N h n h    1  z
  • 11. Professor A G Constantinides 11 Selection of Filter Type • Advantages in using an FIR filter - (1) Can be designed with exact linear phase, (2) Filter structure always stable with quantised coefficients • Disadvantages in using an FIR filter - Order of an FIR filter, in most cases, is considerably higher than the order of an equivalent IIR filter meeting the same specifications, and FIR filter has thus higher computational complexity
  • 12. Professor A G Constantinides 12 FIR Design FIR Digital Filter Design Three commonly used approaches to FIR filter design - (1) Windowed Fourier series approach (2) Frequency sampling approach (3) Computer-based optimization methods
  • 13. Professor A G Constantinides 13 Finite Impulse Response Filters • The transfer function is given by • The length of Impulse Response is N • All poles are at . • Zeros can be placed anywhere on the z- plane      1 0 ). ( ) ( N n n z n h z H 0  z
  • 14. Professor A G Constantinides 14 FIR: Linear phase • Linear Phase: The impulse response is required to be • so that for N even: ) 1 ( ) ( n N h n h               1 2 1 2 0 ). ( ). ( ) ( N N n n N n n z n h z n h z H               1 2 0 ) 1 ( 1 2 0 ). 1 ( ). ( N n n N N n n z n N h z n h         1 2 ) ( N m n z z n h N m 
  • 15. Professor A G Constantinides 15 FIR: Linear phase • for N odd: • I) On we have for N even, and +ve sign                           1 2 1 0 2 1 2 1 ). ( ) ( N n N m n z N h z z n h z H 1 :  z C                           1 2 0 2 1 2 1 cos ). ( 2 . ) ( N n N T j T j N n T n h e e H   
  • 16. Professor A G Constantinides 16 FIR: Linear phase • II) While for –ve sign • [Note: antisymmetric case adds rads to phase, with discontinuity at ] • III) For N odd with +ve sign                           1 2 0 2 1 2 1 sin ). ( 2 . ) ( N n N T j T j N n T n h j e e H    2 /  0                      2 1 ) ( 2 1 N h e e H N T j T j                          2 3 0 2 1 cos ). ( 2 N n N n T n h 
  • 17. Professor A G Constantinides 17 FIR: Linear phase • IV) While with a –ve sign • [Notice that for the antisymmetric case to have linear phase we require The phase discontinuity is as for N even]                                     2 3 0 2 1 2 1 sin ). ( . 2 ) ( N n N T j T j N n T n h j e e H    . 0 2 1         N h
  • 18. Professor A G Constantinides 18 FIR: Linear phase • The cases most commonly used in filter design are (I) and (III), for which the amplitude characteristic can be written as a polynomial in 2 cos T 
  • 19. Professor A G Constantinides 19 FIR: Linear phase For phase linearity the FIR transfer function must have zeros outside the unit circle
  • 20. Professor A G Constantinides 20 FIR: Linear phase • To develop expression for phase response set transfer function • In factored form • Where , is real & zeros occur in conjugates n nz h z h z h h z H         ... ) ( 2 2 1 1 0 ) 1 ( ). 1 ( ) ( 1 2 1 1 1 1          z z K z H i n i i n i   1 , 1   i i   K
  • 21. Professor A G Constantinides 21 FIR: Linear phase • Let where • Thus ) ( ) ( ) ( 2 1 z N z KN z H  ) 1 ln( ) 1 ln( ) ln( )) ( ln( 2 1 1 1 1 1            n i i n i i z z K z H   ) 1 ( ) ( 1 1 1 1      z z N i n i  ) 1 ( ) ( 1 2 1 2      z z N i n i 
  • 22. Professor A G Constantinides 22 FIR: Linear phase • Expand in a Laurent Series convergent within the unit circle • To do so modify the second sum as ) 1 1 ln( ) ln( ) 1 ln( 2 1 1 2 1 1 2 1 z z z i n i i n i i n i                
  • 23. Professor A G Constantinides 23 FIR: Linear phase • So that • Thus • where ) 1 1 ln( ) 1 ln( ) ln( ) ln( )) ( ln( 2 1 1 1 1 2            n i i n i i z z z n K z H   m N m m m N m z m s z m s z n K z H 2 1 1 2 ) ln( ) ln( )) ( ln(             1 1 1 n i m i N m s       1 1 2 n i m i N m s 
  • 24. Professor A G Constantinides 24 FIR: Linear phase • are the root moments of the minimum phase component • are the inverse root moments of the maximum phase component • Now on the unit circle we have and  j e z  ) ( ) ( ) (     j j e A e H  1 N m s 2 N m s
  • 25. Professor A G Constantinides 25 Fundamental Relationships • hence (note Fourier form)     jm N m m jm N m j e m s e m s jn K e H 2 1 1 2 ) ln( )) ( ln(          ) ( )) ( ln( ) ) ( ln( )) ( ln( ) (        j A e A e H j j      m m s m s K A N m m N m cos ) ( ) ln( )) ( ln( 2 1 1            m m s m s n N m m N m sin ) ( ) ( 2 1 1 2        
  • 26. Professor A G Constantinides 26 FIR: Linear phase • Thus for linear phase the second term in the fundamental phase relationship must be identically zero for all index values. • Hence • 1) the maximum phase factor has zeros which are the inverses of the those of the minimum phase factor • 2) the phase response is linear with group delay equal to the number of zeros outside the unit circle
  • 27. Professor A G Constantinides 27 FIR: Linear phase • It follows that zeros of linear phase FIR trasfer functions not on the circumference of the unit circle occur in the form  1   i j ie  
  • 28. Professor A G Constantinides 28 Design of FIR filters: Windows (i) Start with ideal infinite duration (ii) Truncate to finite length. (This produces unwanted ripples increasing in height near discontinuity.) (iii) Modify to Weight w(n) is the window   ) (n h ) ( ). ( ) ( ~ n w n h n h 
  • 29. Professor A G Constantinides 29 Windows Commonly used windows • Rectangular 1 • Bartlett • Hann • Hamming • • Blackman • • Kaiser 2 1   N n N n 2 1        N n  2 cos 1        N n  2 cos 46 . 0 54 . 0               N n N n   4 cos 08 . 0 2 cos 5 . 0 42 . 0 ) ( 1 2 1 0 2 0   J N n J                
  • 30. Professor A G Constantinides 30 Kaiser window • Kaiser window β Transition width (Hz) Min. stop attn dB 2.12 1.5/N 30 4.54 2.9/N 50 6.76 4.3/N 70 8.96 5.7/N 90
  • 31. Professor A G Constantinides 31 Example • Lowpass filter of length 51 and 2 /    c 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Hann window 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Hamming window 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Blackman window
  • 32. Professor A G Constantinides 32 Frequency Sampling Method • In this approach we are given and need to find • This is an interpolation problem and the solution is given in the DFT part of the course • It has similar problems to the windowing approach 2 /    c         1 0 1 2 . 1 1 ). ( 1 ) ( N k k N j N z e z k H N z H  ) (k H ) (z H
  • 33. Professor A G Constantinides 33 Linear-Phase FIR Filter Design by Optimisation • Amplitude response for all 4 types of linear- phase FIR filters can be expressed as where ) ( ) ( ) (    A Q H           4 Type for ), 2 / sin( 3 Type for ), sin( 2 Type for /2), cos( 1 Type for , 1 ) (     Q
  • 34. Professor A G Constantinides 34 Linear-Phase FIR Filter Design by Optimisation • Modified form of weighted error function where )] ( ) ( ) ( )[ ( ) (      D A Q W   E ] ) ( )[ ( ) ( ) ( ) (      Q D A Q W   )] ( ~ ) ( )[ ( ~    D A W   ) ( ) ( ) ( ~    Q W W  ) ( / ) ( ) ( ~    Q D D 
  • 35. Professor A G Constantinides 35 Linear-Phase FIR Filter Design by Optimisation • Optimisation Problem - Determine which minimise the peak absolute value of over the specified frequency bands • After has been determined, construct the original and hence h[n] )] ( ~ ) cos( ] [ ~ )[ ( ~ ) ( 0     D k k a W L k     E ] [ ~ k a R   ) (  j e A ] [ ~ k a
  • 36. Professor A G Constantinides 36 Linear-Phase FIR Filter Design by Optimisation Solution is obtained via the Alternation Theorem The optimal solution has equiripple behaviour consistent with the total number of available parameters. Parks and McClellan used the Remez algorithm to develop a procedure for designing linear FIR digital filters.
  • 37. Professor A G Constantinides 37 FIR Digital Filter Order Estimation Kaiser’s Formula: • ie N is inversely proportional to transition band width and not on transition band location      2 / ) ( 6 . 14 ) ( log 20 10 p s s p N   
  • 38. Professor A G Constantinides 38 FIR Digital Filter Order Estimation • Hermann-Rabiner-Chan’s Formula: where with           2 / ) ( ] 2 / ) )[( , ( ) , ( 2 p s p s s p s p F D N      s p p s p a a a D      10 3 10 2 2 10 1 log ] ) (log ) (log [ ) , (     ] ) (log ) (log [ 6 10 5 2 10 4 a a a p p      ] log [log ) , ( 10 10 2 1 s p s p b b F        4761 . 0 , 07114 . 0 , 005309 . 0 3 2 1     a a a 4278 . 0 , 5941 . 0 , 00266 . 0 6 5 4    a a a 51244 . 0 , 01217 . 11 2 1   b b
  • 39. Professor A G Constantinides 39 FIR Digital Filter Order Estimation • Fred Harris’ guide: where A is the attenuation in dB • Then add about 10% to it    2 / ) ( 20 p s A N  
  • 40. Professor A G Constantinides 40 FIR Digital Filter Order Estimation • Formula valid for • For , formula to be used is obtained by interchanging and • Both formulae provide only an estimate of the required filter order N • If specifications are not met, increase filter order until they are met s p    s p    p  s 