SlideShare a Scribd company logo
1 of 58
Download to read offline
ZERO.
PROBABILYSTIC FOUNDATION
OF
THEORETYICAL PHYSICS
HTTP://VIXRA.ORG/ABS/1111.0051
For a detailed discussion of this PRESENTATION
formulas read In this book
A reference of type [p.X]
means: "on the page X"
DOT EVENTS
Camille Pissarro, LA ROUTE DE
This
picture is
drawn with
colored
dots
Let A(x) be a dot event in a 3+1 point x
(x = = 〈x₀, x₁, x₂, x₃〉).
Let be a probability function defined on the set
of dot events in the 3+1 space-time.

 xx ,0
Let D be a domain in the 3+1 space-time and
let be a defined in the 3+1 space-time
function such that
 xpA
      DxxAxpxd
D
A 
 xpA
Function is invariant under the Lorentz
transformations [p.58]. I call this function an
absolute probability density of event A.
   
  

yxpyd
xxp
xx
A
A
A
,
,
:,
0
0
0
If
then is a probability density of
event A in an instant .
 xxA ,0
0x
A probability density of event A in an instant is
not invariant under the Lorentz transformations.
0x
 xxxxdx AkAk ,0 If
then is an average k-coordinate of event A.
And if
Akx
 xxxxdxu AkAkAk ,000  
Aku average k-coordinateThen is an of velocity of
event A.
 xxxu AkkA ,: 00, If then is a k-
coordinate of velocity of event A.
kAu ,
I consider events which obey the following
condition: 22
3,
2
2,
2
1, cuuu AAA 
(Traceable events)
Let  3,2,1:,: ,,0,  kforujcj kAAkAAA 
is a probability current vector of event A.
AA jj ,0,
 
,1
10
01
:,
00
00
:0,
10
01
:1 4
22
220
22 

















 
Denote:
The Pauli matrices:
.
10
01
:,
0
0
:,
01
10
: 321 











 






 
i
i
A set of complex n x n matrices is called a Clifford set
of rank n if the following conditions are fulfilled:
.setofelementsallfor
2
;2,
,
,
CthenC
if
thenCCif
ks
skkssk
skkssksk






C
If n = 4 then a Clifford set either contains 3 matrices
(a Clifford triplet) or contains 5
matrices (a Clifford pentad)
[Madelung, E., Die
Mathematischen Hilfsmittel
des Physikers. Springer
Verlag, (1957) p.29].
If n = 4 then a Clifford set either contains 3 matrices (a
Clifford triplet) or contains 5 matrices (a Clifford
pentad).
Here exist only six Clifford pentads [pp.59-60]:
one light pentad β:
 
 
   
.
01
10
:,
01
10
:
;3,2,1
0
0
:
22
224
22
220
2
2






















i
kfor
k
kk




three chromatic pentads:
the red pentad ζ:
     
,
0
0
:,
0
0
:,
0
0
:
32
233
22
222
12
211






























   
;
0
0
:,
0
0
:
21
124
21
120





















 i
the green pentad :
     
,
0
0
:,
0
0
:,
0
0
:
32
233
22
222
12
211






























   
;
0
0
:,
0
0
:
22
224
22
220





















 i
     
,
0
0
:,
0
0
:,
0
0
:
32
233
22
222
12
211































   
;
0
0
:,
0
0
:
23
324
23
320





















 i
the blue pentad:
two gustatory pentads:
the sweet pentad⧋:
     
,
0
0
:,
0
0
:,
0
0
:
23
323
22
222
21
121































   
;
01
10
:,
10
01
:
22
224
22
220













 i
the bitter pentad :
     
,
0
0
:,
0
0
:,
0
0
:
23
323
22
222
21
121





 





 





 







iii
   
;
01
10
:,
10
01
:
22
224
22
220













Further we do not consider gustatory pentads since
these pentads are not used yet in the contemporary
physics.
For all : ifAA jj ,0,
22
3,
2
2,
2
1, cuuu AAA 
then a 4X1 complex matrix function φ exists which
obeys to the following conditions:
 
  

4
1
4
1
,
*,
4
1
*
,
k s
skss
A
s
ssA
c
j
 
[pp.61—62]
Let a Fourier series for has the following
form:
 xtj ,
    



w p
pwpwjj xtcxt ,, ,,,

   xtcxt pwpwjpwj
,:, ,,,,,
 
Let ⟨t; ⟩ be any space-time point.
Denote:
x

xtpwkkA
,,,
: 
the value of function in this point, and:pwk ,,

Let
 
xts
pwssjpwjtj
c
C
,
4
1
3
1
,,,,,
1
: 





  



the value of function  






  
4
1
3
1
,,,,,
1
s
pwssjpwjt
c 



In this point
Here and are complex numbers. Hence, the
following set of equations:
kA jC







pwkjpwjk
jk
k
pwkj
zz
CAz
,,,
*
,,,
4
1
,,,
,
is a system of 14 algebraic equation with complex
unknowns
pwkj
z ,,,
This system can be transformed as system of 8 linear real
equations with 16 real unknowns [pp.66—67].
This system has solutions in accordance with the
Kronecker-Capelli theorem.
Hence, such complex numbers exist in all
points [pp.65—67]
pwkj
z ,,,
xt,
xt,
Let be the linear operators on a linear space,
spanned of basic functions , such that
pw,

 xtpw
,,








'/'0
',''',
'',,
pporandwwif
ppwwifpw
pwpw



pw
pwpwkjkj zQ
,
,,,,, : Let
Therefore, for every function here exists an operator
such that a dependence of on t is described
by the following differential equation [pp.67—68]:
j
kjQ , j
 
k
k s
kjs
s
kjjt Qc    







4
1
3
1
,,
  jkpw
pw
pwkjkj QzQ ,,
,
*
,,,,  

and
 








22
225
10
01
:If
then this equation can be transformed to the
following form [pp.81—82]:
 
 
   
 
   
 
 
 
   
 
   
 
 
 
   
 
   
 
 
 
   
 
   
 
0
2
2
2
2
3
1
4
4,
0
0,
5
5
000
3
1
4
4,
0
0,
5
5
000
3
1
4
4,
0
0,
5
5
000
3
1
4
4
0
0
5
5
000











































































k
kkk
k
k
kkk
k
k
kkk
k
k
kkk
k
MMi
ii
ii
MMi
ii
ii
MMi
ii
ii
MMi
ii
ii
with real
  3,2,1,0,,,,,,,,, 4,0.4,0,4,0,40  kMMMMMMMM kk
       hkkk
 Because then [p.82]
   
 
       
       
0
4
4,
0
0,
4
4,
0
0,
4
4,
0
0,
4
4
0
0
5
3
0


























iMiMiMiM
iMiMiMiM
ii kkk
k
k
04,0.4,0,4,0,   MMMMMM
Let
then
   
     
04
4
0
0
5
3
0







 iMiMii kkk
k
k
Such equation is called a lepton’s equation [p.83]
 
 4
4, : 
 cjA
Let
 
 0
5, : 
 cjA
A
A
A
A
A
A
j
u
j
u

5,
5,
4,
4, :,: 
There [p.83]:
22
5,
2
4,
2
3,
2
2,
2
1, cuuuuu AAAAA 
Thus, only all 5 elements of Clifford Pentada provide a
full set of speed components and, for completeness,
two more "space" coordinates and should be
added to our three .
4x
5x
321 ,, xxx
Coordinates and are not of any events
coordinates. Hence, our devices do not detect of its as
space coordinates.
5x
4x
Let    
      3214432105
32154321
,,,,,,exp
,,,:,,,,,~
xxxtMxxxxtMxi
xxxtxxxxxt

 
In this case a lepton equation of moving has the
following shape [p.84]:
   
     
0~
4
4
5
0
3
0
5







 iii
k
kkk
k
For every real and real , , and a
constant exist which obey to following condition
[p.84]:
k k kF kB
1g
 
kkkk YBgF 1
5
5.0 








22
22
120
01
:Ywith
 
     
0~5.0 4
4
5
0
3
0
1 






 iiYBgFi
k
kkk
k
this equation of moving is invariant under the following
transformation [pp.85—89]:
 






UFUFF
g
BBB
forxxx
xxxx
xxxx
U
kkkkkkk
~~
:',
1
:'
3,2,1,0:'
2
sin
2
cos:'
,
2
sin
2
cos:'
~~
:'~~
1
4555
5444






That is [p.85]:
if is a real function and 3210 ,,, xxxx
 
  















22
22
1exp0
01
2
exp
:
~



i
i
U
Therefore, likes to the B-boson field of the Standard
Model.
kB
MASSES
Let




















































1
0
0
0
:,
0
1
0
0
:,
0
0
1
0
:,
0
0
0
1
: 4321 
Functions of type :
  knxsx
c
h
i
c
h








 54exp
2
with an integer n and s form orthonormal basis of some
unitary space 𝔍 with scalar productof the following
shape:
  




~~:~,~
45

   h
c
h
c
h
c
h
c dxdx
In that case [p.90]  
 
  c
j sAs
A
,~,~
~,~




  3,2,1s
 
  













h
cM
xxxtN
h
cM
xxxtN
4
321
0
321
trunc:,,,
trunc:,,,


Let
 
 
 
  



























3214
3215
321
54321
,,,
,,,
exp,,,
,,,,,~
xxxtN
c
h
x
xxxtN
c
h
x
ixxxt
xxxxxt




In that case to high precision:
A Fourier series for is of the following form [p.91]:~
   
      








sn
xtsNxtnN sxnx
c
h
i
xtxxxt
,
45,,
45
exp
,,,,~





From properties of 𝛿: in every point : eitherxt

,
  0,,,~
45 xxxt


or integer numbers and exist for which:
0n 0s
     





 405045 exp,,,,~ xsxn
c
h
ixtxxxt


If 2
0
2
0
2
: sn
c
h
m 






then m is denoted mass of ~
.That is for every space-time point: either this point is
empty or single mass is placed in this point [p.91].
Under the transformation : U
~
400500
40504050
2
sin
2
cos
2
sin
2
cos
''
xnsxsn
xsxnxsxn















Therefore, a mass is invariant under this
transformation
Mass expressed hypotenuse of a Pythagorean triangle.
Therefore, this invariance requires a fairly large amount
of such triangles from this hypotenuse [pp.91-93].
For each natural number n, there exist at
least n different Pythagorean triples with the
same hypotenuse. Sierpinski, 2003, с. 31. —
Dover, 2003. — ISBN 978-0-486-43278-6.
John F. Goehi Jr. TRIPLES, QUARTETS,
PENTADS
: Mathematics teacher, ISSN 0025-5769, Vol.
98, Nº 9, 2005, pág. 580
ELECTRO-WEAK
FIELD
   
 
       
       
0
4
4,
0
0,
4
4,
0
0,
4
4,
0
0,
4
4
0
0
5
3
0


























iMiMiMiM
iMiMiMiM
ii kkk
k
k
If equation
does not contain the chromatic members then [p.141]:
 
      
0
~~
5.0
~
2
4
1
0
3
0












 e
mimWZiAiei
s
ssss
s 

Here the vector field is similar to the
electromagnetic potential and is similar to
the weak potential.
A
~
WZ
~~

 
 }{
~~1
,,,
,
3
1
22
0
2
2,
3
1
22
2


WWW
WWWgW
c
jiji
s ss st







  













,2
,1
,0
W
W
W
:
~
W
Let:
The components of obey to the
Klein-Gordon equation [pp.130--137
Wˆ
with “mass” m = 

3
1
22
02
~~
s
sWWg
c
h
This “mass” is invariant under rotation in the 3-space,
under the Lorentz transformations, and under
global SU(2)-transformations [pp.130--139]
But it is not invariant under local SU(2) transformations
and this “mass” depends on the points coordinates.
But these circumstances are
insignificant
for W0,μ, W1,μ, W2,μ since all three particles are very short-
lived (3×10-25 c.)
and a measurement
of masses of these particles is practically possible only at
the point <t ≈ 0; x ≈ 0 > .
And if
2
1
arctg:
g
g
 then
cos
W
Z
m
m  [p.139]
QUARKS , GLUONS
and
GRAVITATION
It is a chromatic equation of moving [p.146].
The mass members of this equation form
the following matrix sum [p.146]:
Elements of these matrices are rotated by
transformations which similar to:
There exist only eight of such transformations
These transformations add to chromatic equation
eight more gauge fields:
with some real
constant g3 (similar
to 8 gluons)
[pp.146--.157]
Some of these transformations bend space-time so,
as shown by the following figure [pp.161,179]:.
Here function g(t; x1) represents the acceleration of
the curved coordinate system relative to the original system [p.160].
    222
/cosh/, xtxcxtg

{1) (2)
2
/ x


Hence, to the right from point C′ and to the
left from poin C the Newtonian gravitation
law is carried out.
AA′ is the Asymptotic Freedom Zone.
CB and B′C′ is the Confinement Zone.
Some oscillations of chromatic states bend space-
time as follows [pp.148,164]:
.2sin2cos
'
,2sin2cos
'
xyy
yxx


















Let iyxz  , i.e. .i
rez 
What is DARK MATTER?
''' iyxz 
Because linear velocity of the curved coordinate
system ⟨x′;y′⟩ into the initial system is the
following
⟨x;y⟩
2
1
22
''

























t
x
t
x
v
then
t
z
v



' Let function z′ be a holomorphic
function. Hence, in accordance with
the Cauchy-Riemann conditions the
following equations are fulfilled:
.
''
,
''
x
y
y
x
y
y
x
x










Therefore,
 
dzedz i 2
' 

where 2α is an holomorphic function, too.
For example, let     21
2 yxixy
t
 In this case:
          dy
t
xyiyx
idx
t
xyiyx
z 




22
'
[pp.166—167]
Let k = y/x. Hence,
    
dy
t
k
y
yiy
k
y
i
dx
t
xkxikxx
z











































 

2
2
exp
exp'
Calculate::
    
 
 
,
242
1
242
1
erf
2
1
exp
2
ikik
t
ikik
t
x
dx
t
xkxikxx


















 


 
 ikik
tk
ikik
tk
y
dy
t
k
y
yiy
k
y
i
242
1
242
1
erf
2
1
exp
2
2
2
2
2












































 
 
     
     
   
    





























































2
22
2
2
22
22
222
2
2
22
2
22
3
2
1
erf
1
2
2
1
erf
1
2
2
1
exp2
1
4
2
1
exp2
1
4
28
1'
iki
t
x
tk
ikikt
iki
tk
y
tk
ikitki
ikix
t
iki
tk
ikikx
ikiy
tk
iki
t
iky
iiktit
z


For large t:
 
    



















 2
22
22
3
2
1
erf
1
2
28
1'
iki
tk
y
tk
ikitki
iiktit
z

Hence,
    










2
2
1
erf
1
1
8
1
iki
tik
kiv 
Because  cos,tan rxk  then
  
 
     










2
tan2
1
coserf
tan
1
tan1
8
1
ii
t
r
i
iv 


For θ:=0.98π,
t=10E4:
Compare with
Rotation curve of NGC 6503. The dash-dotted lines are the
contributions of dark matter [K. G. Begeman, A. H. Broeils
and R. H. Sanders, 1991, MNRAS, 249, 523]
For θ = 13π/14.
t = 10E4:
Compare with
A rotation curve for a typical spiral galaxy. The solid
line shows actual measurements
(Hawley and Holcomb., 1998, p. 390)
Hence, Dark Matter and Dark Energy can be
mirages in the space-time, which is curved
by oscillations of chromatic states.
The Dark Energy phenomena is explained jn similar
way
CHROME
The red state becomes the green state under
rotation of the Cartesian system [168—182].21,xx
Similarly, for other Cartesian rotations, the chrome
of the other quark states changes.
This explains the phenomenon of confinement and
the composition of baryon families
No need models - the fundamental
theoretical physics is a part of classical
probability theory (the part that considers
the probability of dot events in the 3 + 1
space-time).

More Related Content

What's hot

Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Solving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic IntegersSolving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic IntegersJoseph Molina
 
Real number by G R Ahmed of KVK
Real number by G R Ahmed of KVKReal number by G R Ahmed of KVK
Real number by G R Ahmed of KVKMD. G R Ahmed
 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...ijrap
 
Parallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a SurveyParallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a SurveyUral-PDC
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem Manthan Chavda
 
Cramer row inequality
Cramer row inequality Cramer row inequality
Cramer row inequality VashuGupta8
 
A Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's ConjectureA Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's Conjecturenikos mantzakouras
 
Complex analysis book by iit
Complex analysis book by iitComplex analysis book by iit
Complex analysis book by iitJITENDRA SUWASIYA
 
Euclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisEuclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisAmrinder Arora
 
The gaussian minimum entropy conjecture
The gaussian minimum entropy conjectureThe gaussian minimum entropy conjecture
The gaussian minimum entropy conjecturewtyru1989
 
Some Thoughts on Sampling
Some Thoughts on SamplingSome Thoughts on Sampling
Some Thoughts on SamplingDon Sheehy
 
Newton-Raphson Iteration marths 4 ntsm
Newton-Raphson Iteration marths 4 ntsmNewton-Raphson Iteration marths 4 ntsm
Newton-Raphson Iteration marths 4 ntsmNemish Bhojani
 

What's hot (20)

Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Stochastic Processes Homework Help
Stochastic Processes Homework Help Stochastic Processes Homework Help
Stochastic Processes Homework Help
 
Solving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic IntegersSolving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic Integers
 
Solution 3.
Solution 3.Solution 3.
Solution 3.
 
Real number by G R Ahmed of KVK
Real number by G R Ahmed of KVKReal number by G R Ahmed of KVK
Real number by G R Ahmed of KVK
 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
 
Parallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a SurveyParallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a Survey
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Cramer row inequality
Cramer row inequality Cramer row inequality
Cramer row inequality
 
Computer Science Assignment Help
Computer Science Assignment Help Computer Science Assignment Help
Computer Science Assignment Help
 
Signals Processing Homework Help
Signals Processing Homework HelpSignals Processing Homework Help
Signals Processing Homework Help
 
A Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's ConjectureA Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's Conjecture
 
Complex analysis book by iit
Complex analysis book by iitComplex analysis book by iit
Complex analysis book by iit
 
DSP System Assignment Help
DSP System Assignment HelpDSP System Assignment Help
DSP System Assignment Help
 
Euclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity AnalysisEuclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
Euclid's Algorithm for Greatest Common Divisor - Time Complexity Analysis
 
OT
OTOT
OT
 
Assignment 2 daa
Assignment 2 daaAssignment 2 daa
Assignment 2 daa
 
The gaussian minimum entropy conjecture
The gaussian minimum entropy conjectureThe gaussian minimum entropy conjecture
The gaussian minimum entropy conjecture
 
Some Thoughts on Sampling
Some Thoughts on SamplingSome Thoughts on Sampling
Some Thoughts on Sampling
 
Newton-Raphson Iteration marths 4 ntsm
Newton-Raphson Iteration marths 4 ntsmNewton-Raphson Iteration marths 4 ntsm
Newton-Raphson Iteration marths 4 ntsm
 

Similar to Zero. Probabilystic Foundation of Theoretyical Physics

Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theoremWathna
 
Theoryofcomp science
Theoryofcomp scienceTheoryofcomp science
Theoryofcomp scienceRaghu nath
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
 
Appendex b
Appendex bAppendex b
Appendex bswavicky
 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...mathsjournal
 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...mathsjournal
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3MuhannadSaleh
 
E041046051
E041046051E041046051
E041046051inventy
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical MethodsTeja Ande
 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysisMohsin Siddique
 
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based ComputingMolecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based Computingijcsit
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
2012 mdsp pr06  hmm
2012 mdsp pr06  hmm2012 mdsp pr06  hmm
2012 mdsp pr06  hmmnozomuhamada
 
Study on a class of recursive functions
Study on a class of recursive functionsStudy on a class of recursive functions
Study on a class of recursive functionsLuca Polidori
 

Similar to Zero. Probabilystic Foundation of Theoretyical Physics (20)

jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Theoryofcomp science
Theoryofcomp scienceTheoryofcomp science
Theoryofcomp science
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
Appendex b
Appendex bAppendex b
Appendex b
 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...
 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
E041046051
E041046051E041046051
E041046051
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysis
 
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based ComputingMolecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
 
L16
L16L16
L16
 
Unit 3
Unit 3Unit 3
Unit 3
 
Unit 3
Unit 3Unit 3
Unit 3
 
Wave function
Wave functionWave function
Wave function
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
2012 mdsp pr06  hmm
2012 mdsp pr06  hmm2012 mdsp pr06  hmm
2012 mdsp pr06  hmm
 
Study on a class of recursive functions
Study on a class of recursive functionsStudy on a class of recursive functions
Study on a class of recursive functions
 
CALCULUS 2.pptx
CALCULUS 2.pptxCALCULUS 2.pptx
CALCULUS 2.pptx
 

More from Gunn Quznetsov (9)

Velocity of Neutrino
Velocity of NeutrinoVelocity of Neutrino
Velocity of Neutrino
 
Velocity of Neutrino
Velocity of NeutrinoVelocity of Neutrino
Velocity of Neutrino
 
Aaq
AaqAaq
Aaq
 
TOE
TOETOE
TOE
 
RESULTS of work of LHC
RESULTS of work of LHC RESULTS of work of LHC
RESULTS of work of LHC
 
Probability and Entanglement
Probability and EntanglementProbability and Entanglement
Probability and Entanglement
 
Runii
RuniiRunii
Runii
 
TOE
TOETOE
TOE
 
Farewell to higgs
Farewell to higgsFarewell to higgs
Farewell to higgs
 

Recently uploaded

Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravitySubhadipsau21168
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 

Recently uploaded (20)

Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified Gravity
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 

Zero. Probabilystic Foundation of Theoretyical Physics

  • 2. HTTP://VIXRA.ORG/ABS/1111.0051 For a detailed discussion of this PRESENTATION formulas read In this book A reference of type [p.X] means: "on the page X"
  • 3. DOT EVENTS Camille Pissarro, LA ROUTE DE This picture is drawn with colored dots
  • 4. Let A(x) be a dot event in a 3+1 point x (x = = 〈x₀, x₁, x₂, x₃〉). Let be a probability function defined on the set of dot events in the 3+1 space-time.   xx ,0 Let D be a domain in the 3+1 space-time and let be a defined in the 3+1 space-time function such that  xpA       DxxAxpxd D A 
  • 5.  xpA Function is invariant under the Lorentz transformations [p.58]. I call this function an absolute probability density of event A.         yxpyd xxp xx A A A , , :, 0 0 0 If then is a probability density of event A in an instant .  xxA ,0 0x
  • 6. A probability density of event A in an instant is not invariant under the Lorentz transformations. 0x  xxxxdx AkAk ,0 If then is an average k-coordinate of event A. And if Akx  xxxxdxu AkAkAk ,000   Aku average k-coordinateThen is an of velocity of event A.
  • 7.  xxxu AkkA ,: 00, If then is a k- coordinate of velocity of event A. kAu , I consider events which obey the following condition: 22 3, 2 2, 2 1, cuuu AAA  (Traceable events) Let  3,2,1:,: ,,0,  kforujcj kAAkAAA  is a probability current vector of event A. AA jj ,0,
  • 8.   ,1 10 01 :, 00 00 :0, 10 01 :1 4 22 220 22                     Denote: The Pauli matrices: . 10 01 :, 0 0 :, 01 10 : 321                       i i
  • 9. A set of complex n x n matrices is called a Clifford set of rank n if the following conditions are fulfilled: .setofelementsallfor 2 ;2, , , CthenC if thenCCif ks skkssk skkssksk       C If n = 4 then a Clifford set either contains 3 matrices (a Clifford triplet) or contains 5 matrices (a Clifford pentad)
  • 10. [Madelung, E., Die Mathematischen Hilfsmittel des Physikers. Springer Verlag, (1957) p.29].
  • 11. If n = 4 then a Clifford set either contains 3 matrices (a Clifford triplet) or contains 5 matrices (a Clifford pentad). Here exist only six Clifford pentads [pp.59-60]: one light pentad β:         . 01 10 :, 01 10 : ;3,2,1 0 0 : 22 224 22 220 2 2                       i kfor k kk    
  • 12. three chromatic pentads: the red pentad ζ:       , 0 0 :, 0 0 :, 0 0 : 32 233 22 222 12 211                                   ; 0 0 :, 0 0 : 21 124 21 120                       i the green pentad :       , 0 0 :, 0 0 :, 0 0 : 32 233 22 222 12 211                                   ; 0 0 :, 0 0 : 22 224 22 220                       i
  • 13.       , 0 0 :, 0 0 :, 0 0 : 32 233 22 222 12 211                                    ; 0 0 :, 0 0 : 23 324 23 320                       i the blue pentad: two gustatory pentads: the sweet pentad⧋:       , 0 0 :, 0 0 :, 0 0 : 23 323 22 222 21 121                                    ; 01 10 :, 10 01 : 22 224 22 220               i
  • 14. the bitter pentad :       , 0 0 :, 0 0 :, 0 0 : 23 323 22 222 21 121                             iii     ; 01 10 :, 10 01 : 22 224 22 220              Further we do not consider gustatory pentads since these pentads are not used yet in the contemporary physics.
  • 15. For all : ifAA jj ,0, 22 3, 2 2, 2 1, cuuu AAA  then a 4X1 complex matrix function φ exists which obeys to the following conditions:       4 1 4 1 , *, 4 1 * , k s skss A s ssA c j   [pp.61—62] Let a Fourier series for has the following form:  xtj ,         w p pwpwjj xtcxt ,, ,,, 
  • 16.    xtcxt pwpwjpwj ,:, ,,,,,   Let ⟨t; ⟩ be any space-time point. Denote: x  xtpwkkA ,,, :  the value of function in this point, and:pwk ,,  Let   xts pwssjpwjtj c C , 4 1 3 1 ,,,,, 1 :             the value of function            4 1 3 1 ,,,,, 1 s pwssjpwjt c     In this point
  • 17. Here and are complex numbers. Hence, the following set of equations: kA jC        pwkjpwjk jk k pwkj zz CAz ,,, * ,,, 4 1 ,,, , is a system of 14 algebraic equation with complex unknowns pwkj z ,,, This system can be transformed as system of 8 linear real equations with 16 real unknowns [pp.66—67].
  • 18. This system has solutions in accordance with the Kronecker-Capelli theorem. Hence, such complex numbers exist in all points [pp.65—67] pwkj z ,,, xt, xt, Let be the linear operators on a linear space, spanned of basic functions , such that pw,   xtpw ,,         '/'0 ',''', '',, pporandwwif ppwwifpw pwpw    pw pwpwkjkj zQ , ,,,,, : Let
  • 19. Therefore, for every function here exists an operator such that a dependence of on t is described by the following differential equation [pp.67—68]: j kjQ , j   k k s kjs s kjjt Qc            4 1 3 1 ,,   jkpw pw pwkjkj QzQ ,, , * ,,,,    and           22 225 10 01 :If
  • 20. then this equation can be transformed to the following form [pp.81—82]:                                                                 0 2 2 2 2 3 1 4 4, 0 0, 5 5 000 3 1 4 4, 0 0, 5 5 000 3 1 4 4, 0 0, 5 5 000 3 1 4 4 0 0 5 5 000                                                                            k kkk k k kkk k k kkk k k kkk k MMi ii ii MMi ii ii MMi ii ii MMi ii ii
  • 21. with real   3,2,1,0,,,,,,,,, 4,0.4,0,4,0,40  kMMMMMMMM kk        hkkk  Because then [p.82]                       0 4 4, 0 0, 4 4, 0 0, 4 4, 0 0, 4 4 0 0 5 3 0                           iMiMiMiM iMiMiMiM ii kkk k k
  • 22. 04,0.4,0,4,0,   MMMMMM Let then           04 4 0 0 5 3 0         iMiMii kkk k k Such equation is called a lepton’s equation [p.83]    4 4, :   cjA Let    0 5, :   cjA A A A A A A j u j u  5, 5, 4, 4, :,: 
  • 23. There [p.83]: 22 5, 2 4, 2 3, 2 2, 2 1, cuuuuu AAAAA  Thus, only all 5 elements of Clifford Pentada provide a full set of speed components and, for completeness, two more "space" coordinates and should be added to our three . 4x 5x 321 ,, xxx Coordinates and are not of any events coordinates. Hence, our devices do not detect of its as space coordinates. 5x 4x
  • 24. Let           3214432105 32154321 ,,,,,,exp ,,,:,,,,,~ xxxtMxxxxtMxi xxxtxxxxxt    In this case a lepton equation of moving has the following shape [p.84]:           0~ 4 4 5 0 3 0 5         iii k kkk k For every real and real , , and a constant exist which obey to following condition [p.84]: k k kF kB 1g   kkkk YBgF 1 5 5.0          22 22 120 01 :Ywith
  • 25.         0~5.0 4 4 5 0 3 0 1         iiYBgFi k kkk k this equation of moving is invariant under the following transformation [pp.85—89]:         UFUFF g BBB forxxx xxxx xxxx U kkkkkkk ~~ :', 1 :' 3,2,1,0:' 2 sin 2 cos:' , 2 sin 2 cos:' ~~ :'~~ 1 4555 5444       That is [p.85]:
  • 26. if is a real function and 3210 ,,, xxxx                     22 22 1exp0 01 2 exp : ~    i i U Therefore, likes to the B-boson field of the Standard Model. kB
  • 28. Let                                                     1 0 0 0 :, 0 1 0 0 :, 0 0 1 0 :, 0 0 0 1 : 4321  Functions of type :   knxsx c h i c h          54exp 2 with an integer n and s form orthonormal basis of some unitary space 𝔍 with scalar productof the following shape:
  • 29.        ~~:~,~ 45     h c h c h c h c dxdx In that case [p.90]       c j sAs A ,~,~ ~,~       3,2,1s                   h cM xxxtN h cM xxxtN 4 321 0 321 trunc:,,, trunc:,,,   Let
  • 30.                                     3214 3215 321 54321 ,,, ,,, exp,,, ,,,,,~ xxxtN c h x xxxtN c h x ixxxt xxxxxt     In that case to high precision: A Fourier series for is of the following form [p.91]:~                    sn xtsNxtnN sxnx c h i xtxxxt , 45,, 45 exp ,,,,~     
  • 31. From properties of 𝛿: in every point : eitherxt  ,   0,,,~ 45 xxxt   or integer numbers and exist for which: 0n 0s             405045 exp,,,,~ xsxn c h ixtxxxt   If 2 0 2 0 2 : sn c h m        then m is denoted mass of ~ .That is for every space-time point: either this point is empty or single mass is placed in this point [p.91].
  • 32. Under the transformation : U ~ 400500 40504050 2 sin 2 cos 2 sin 2 cos '' xnsxsn xsxnxsxn                Therefore, a mass is invariant under this transformation Mass expressed hypotenuse of a Pythagorean triangle. Therefore, this invariance requires a fairly large amount of such triangles from this hypotenuse [pp.91-93].
  • 33. For each natural number n, there exist at least n different Pythagorean triples with the same hypotenuse. Sierpinski, 2003, с. 31. — Dover, 2003. — ISBN 978-0-486-43278-6. John F. Goehi Jr. TRIPLES, QUARTETS, PENTADS : Mathematics teacher, ISSN 0025-5769, Vol. 98, Nº 9, 2005, pág. 580
  • 34.
  • 36.                       0 4 4, 0 0, 4 4, 0 0, 4 4, 0 0, 4 4 0 0 5 3 0                           iMiMiMiM iMiMiMiM ii kkk k k If equation does not contain the chromatic members then [p.141]:          0 ~~ 5.0 ~ 2 4 1 0 3 0              e mimWZiAiei s ssss s   Here the vector field is similar to the electromagnetic potential and is similar to the weak potential. A ~ WZ ~~ 
  • 37.    }{ ~~1 ,,, , 3 1 22 0 2 2, 3 1 22 2   WWW WWWgW c jiji s ss st                        ,2 ,1 ,0 W W W : ~ W Let: The components of obey to the Klein-Gordon equation [pp.130--137 Wˆ with “mass” m =   3 1 22 02 ~~ s sWWg c h This “mass” is invariant under rotation in the 3-space, under the Lorentz transformations, and under global SU(2)-transformations [pp.130--139]
  • 38. But it is not invariant under local SU(2) transformations and this “mass” depends on the points coordinates. But these circumstances are insignificant for W0,μ, W1,μ, W2,μ since all three particles are very short- lived (3×10-25 c.) and a measurement of masses of these particles is practically possible only at the point <t ≈ 0; x ≈ 0 > . And if 2 1 arctg: g g  then cos W Z m m  [p.139]
  • 40. It is a chromatic equation of moving [p.146].
  • 41. The mass members of this equation form the following matrix sum [p.146]:
  • 42. Elements of these matrices are rotated by transformations which similar to: There exist only eight of such transformations These transformations add to chromatic equation eight more gauge fields: with some real constant g3 (similar to 8 gluons) [pp.146--.157]
  • 43. Some of these transformations bend space-time so, as shown by the following figure [pp.161,179]:. Here function g(t; x1) represents the acceleration of the curved coordinate system relative to the original system [p.160].     222 /cosh/, xtxcxtg  {1) (2) 2 / x  
  • 44. Hence, to the right from point C′ and to the left from poin C the Newtonian gravitation law is carried out. AA′ is the Asymptotic Freedom Zone. CB and B′C′ is the Confinement Zone.
  • 45. Some oscillations of chromatic states bend space- time as follows [pp.148,164]: .2sin2cos ' ,2sin2cos ' xyy yxx                   Let iyxz  , i.e. .i rez  What is DARK MATTER? ''' iyxz  Because linear velocity of the curved coordinate system ⟨x′;y′⟩ into the initial system is the following ⟨x;y⟩ 2 1 22 ''                          t x t x v
  • 46. then t z v    ' Let function z′ be a holomorphic function. Hence, in accordance with the Cauchy-Riemann conditions the following equations are fulfilled: . '' , '' x y y x y y x x           Therefore,   dzedz i 2 '   where 2α is an holomorphic function, too. For example, let     21 2 yxixy t  In this case:           dy t xyiyx idx t xyiyx z      22 ' [pp.166—167]
  • 47. Let k = y/x. Hence,      dy t k y yiy k y i dx t xkxikxx z                                               2 2 exp exp' Calculate::          , 242 1 242 1 erf 2 1 exp 2 ikik t ikik t x dx t xkxikxx                      
  • 48.    ikik tk ikik tk y dy t k y yiy k y i 242 1 242 1 erf 2 1 exp 2 2 2 2 2                                                                                                                                   2 22 2 2 22 22 222 2 2 22 2 22 3 2 1 erf 1 2 2 1 erf 1 2 2 1 exp2 1 4 2 1 exp2 1 4 28 1' iki t x tk ikikt iki tk y tk ikitki ikix t iki tk ikikx ikiy tk iki t iky iiktit z  
  • 49. For large t:                            2 22 22 3 2 1 erf 1 2 28 1' iki tk y tk ikitki iiktit z  Hence,                2 2 1 erf 1 1 8 1 iki tik kiv  Because  cos,tan rxk  then                      2 tan2 1 coserf tan 1 tan1 8 1 ii t r i iv   
  • 51. Rotation curve of NGC 6503. The dash-dotted lines are the contributions of dark matter [K. G. Begeman, A. H. Broeils and R. H. Sanders, 1991, MNRAS, 249, 523]
  • 52. For θ = 13π/14. t = 10E4: Compare with
  • 53. A rotation curve for a typical spiral galaxy. The solid line shows actual measurements (Hawley and Holcomb., 1998, p. 390)
  • 54. Hence, Dark Matter and Dark Energy can be mirages in the space-time, which is curved by oscillations of chromatic states. The Dark Energy phenomena is explained jn similar way
  • 56. The red state becomes the green state under rotation of the Cartesian system [168—182].21,xx Similarly, for other Cartesian rotations, the chrome of the other quark states changes. This explains the phenomenon of confinement and the composition of baryon families
  • 57.
  • 58. No need models - the fundamental theoretical physics is a part of classical probability theory (the part that considers the probability of dot events in the 3 + 1 space-time).