SlideShare a Scribd company logo
1 of 42
Download to read offline
On Bregman Voronoi Diagrams
Frank Nielsen1

Jean-Daniel Boissonnat2 Richard Nock3

1 Sony

Computer Science Laboratories, Inc.
Fundamental Research Laboratory
Frank.Nielsen@acm.org
2 INRIA

Sophia-Antipolis
Geometrica
Jean-Daniel.Boissonnat@sophia.inria.fr
3 University

of Antilles-Guyanne
CEREGMIA
Richard.Nock@martinique.univ-ag.fr

July 2006 — January 2007

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Ordinary Voronoi Diagrams

• Voronoi diagram Vor(S) s.t.
p4
p1

def

p5
p7
p66
p
Vor(p6 )

p3

Vor(pi ) = {x ∈ Rd | ||pi x|| ≤ ||pj x|| ∀pj ∈ S}
• Voronoi sites (static view).
• Voronoi generators (dynamic view).

p2

´
→ Rene Descartes, 17th century.
→ Partition the Euclidean space Ed wrt
the Euclidean distance ||x||2 =

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams

d
2
i=1 xi .
Generalizing Voronoi Diagrams
Voronoi diagrams widely studied in comp. geometry [AK’00]:
Manhattan (taxi-cab) diagram (L1 norm): ||x||1 =

d
i=1 |xi |,

Affine diagram (power distance): ||x − ci ||2 − ri2 ,
Anisotropic diagram (quad. dist.):

(x − ci )T Qi (x − ci ),

Apollonius diagram (circle distance): ||x − ci || − ri ,
¨
Mobius diagram (weighted distance): λi ||x − ci || − µi ,
Abstract Voronoi diagrams [Klein’89], etc.

Taxi-cab diagram

Power diagram

F. Nielsen, J.-D. Boissonnat and R. Nock

Anisotropic diagram

On Bregman Voronoi Diagrams

Apollonius diagram
Non-Euclidean Voronoi diagrams
´
´
Hyperbolic Voronoi: Poincare disk [B+’96], Poincare
half-plane [OT’96], etc.
Kullback-Leibler divergence (statistical Voronoi diagrams)
[OI’96] & [S+’98]
Divergence between two statistical distributions
p(x)
KL(p||q) = x p(x) log q(x) dx [relative entropy]
Riemannian Voronoi diagrams: geodesic length
(aka geodesic Voronoi diagrams) [LL’00]

´
Hyperbolic Voronoi (Poincare)

Hyperbolic Voronoi (Klein)

F. Nielsen, J.-D. Boissonnat and R. Nock

Riemannian Voronoi

On Bregman Voronoi Diagrams
Bregman divergences
F a strictly convex and differentiable function
defined over a convex set domain X
DF (p, q) = F (p) − F (q) − p − q, F (q)
not a distance
(not necessarily symmetric nor does triangle inequality hold)

F

DF (p, q)
Hq
x

F. Nielsen, J.-D. Boissonnat and R. Nock

q

p

On Bregman Voronoi Diagrams
Example: The squared Euclidean distance
F (x) = x 2 : strictly convex and differentiable over Rd
(Multivariate F (x) =

€d

2
i=1 xi )

DF (p, q) = F (p) − F (q) − p − q,
2

F (q)

2

= p − q − p − q, 2q
=

p−q

2

Voronoi diagram equivalence classes
2
Since Vor(S; d2 ) = Vor(S; d2 ), the ordinary Voronoi diagram is
interpreted as a Bregman Voronoi diagram.
(Any strictly monotone function f of d2 yields the same ordinary Voronoi diagram: Vor(S; d2 ) = Vor(S; f (d2 )).)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman divergences for probability distributions
F (p) =

p(x) log p(x) dx

(Discrete distributions F (p) =

DF (p, q) =

=

€
x

(Shannon entropy)

p(x) log p(x) dx)

(p(x) log p(x) − q(x) log q(x)
− p(x) − q(x), log q(x) + 1 )) dx
p(x)
dx
(KL divergence)
p(x) log
q(x)

Kullback-Leiber divergence also known as:
relative entropy or I-divergence.
(Defined either on the probability simplex or extended on the full positive quadrant.)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman divergences: A versatile measure
Bregman divergences are versatile, suited to mixed type data.
(Build multivariate divergences dimensionwise using elementary univariate divergences.)

Fact (Linearity)
Bregman divergence is a linear operator:
∀F1 ∈ C ∀F2 ∈ C DF1 +λF2 (p||q) = DF1 (p||q) + λDF2 (p||q) for
any λ ≥ 0.
Fact (Equivalence classes)
Let G(x) = F (x) + a, x + b be another strictly convex and
differentiable function, with a ∈ Rd and b ∈ R. Then
DF (p||q) = DG (p||q).
(For Voronoi diagrams, relax the classes to any monotone function of DF : relative vs absolute divergence.)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman divergences for sound processing
F (p) = − x log p(x) dx
p(x)
p(x)
DF (p, q) = x ( q(x) − log q(x) − 1) dx

(Burg entropy)
(Itakura-Saito)

Convexity & Bregman balls
DF (p||q) is convex in its first argument p but not necessarily in
its second argument q.

ball(c, r ) = {x | DF (x, c) ≤ r }

ball (c, r ) = {x | DF (c, x) ≤ r }

F. Nielsen, J.-D. Boissonnat and R. Nock

Superposition of I.-S. balls

On Bregman Voronoi Diagrams
Dual divergence
Convex conjugate
Unique convex conjugate function G (= F ∗ ) obtained by the
Legendre transformation: G(y) = supx∈X { y, x − F (x)}.
G(y) =

( y, x − F (x)) = 0 →

y=

F (x)

.

(thus we have x = F −1 (y))
DF (p||q) = F (p) − F (q) − p − q, q with (q = F (q)). F ∗
(= G) is a Bregman generator function such that (F ∗ )∗ = F .
Dual Bregman divergence
DF (p||q) = F (p) + F ∗ (q ) − p, q = DF ∗ (q ||p )

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Convex conjugate and Dual Bregman divergence
Legendre transformation: F ∗ (x ) = −F (x) + x, x .
X

f=

F
Y=X

x2
DF (x1 , x2 )
x1
F

y2 = x2
DF ∗ (x2 , x1 )
y1 = x1
g=

F −1

G = F∗

DF (x1 , x2 ) = F (x1 ) − F (x2 ) − x1 − x2 , x2
= −F ∗ (x1 ) + x1 , x1 + F ∗ (x2 ) − x1 , x2
= DF ∗ (x2 , x1 )
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Examples of dual divergences

Exponential loss ←→ unnormalized Shannon entropy.
F (x) = exp(x) ←→ G(y ) = y log y − y = F ∗ (x ).
F (x) = exp x
G(y ) = y log y − y

DF (x1 ||x2 ) = exp x1
DG (y1 ||y2 ) = y1 log

− exp x2 − (x1 − x2 ) exp x2
+ y2 − y1

y1
y2

f (x) = exp x = y
g(y) = log y = x

Logistic loss ←→ Bernouilli-like entropy.
F (x) = x log x + (1 − x) log(1 − x) ←→ G(y ) = log(1 + exp(y ))
F (x) = log(1 + exp x)
G(y ) = y log

y
1−y

+ log(1 − y )

1+exp x

exp x

DF (x1 ||x2 ) = log 1+exp x1 − (x1 − x2 ) 1+exp 2
x2
2
y
1−y
DG (y1 ||y2 ) = y1 log y1 + (1 − y1 ) log 1−y1

F. Nielsen, J.-D. Boissonnat and R. Nock

2

2

On Bregman Voronoi Diagrams

exp x
f (x) = 1+exp x = y
y

g(y) = log 1−y = x
Bregman (Dual) divergences
Dual divergences have gradient entries swapped in the table:
(Because of equivalence classes, it is sufficient to have f = Θ(g).)

Dom.
X

Function F
(or dual G = F ∗ )

Gradient
(f = g −1 )

Inv. grad.
(g = f −1 )

Divergence
DF (p, q)

R

Squared function
x2

2x

x
2

Squared loss (norm)
(p − q)2

R+

Unnorm. Shannon entropy
x log x − x
Exponential
exp x

log x

exp(x)

exp x

log x

Kullback-Leibler div. (I-div.)
p
p log q − p + q
Exponential loss
exp(p) − (p − q + 1) exp(q)

R+ ∗

Burg entropy
− log x

1
−x

1
−x

Itakura-Saito divergence
p
p
− log q − 1
q

[0, 1]

Bit entropy
x log x + (1 − x) log(1 − x)
Dual bit entropy
log(1 + exp x)

x
log 1−x

exp x
1+exp x

exp x
1+exp x

x
log 1−x

qx

qx

R

R
[−1, 1]

Hellinger
p
− 1 − x2

1−x 2

F. Nielsen, J.-D. Boissonnat and R. Nock

Hellinger
1−pq
q 2

1+x 2

(Self-dual divergences are marked with an asterisk . Note that f =

Logistic loss
1−p
p
p log q + (1 − p) log 1−q
Dual logistic loss
1+exp p
exp q
log 1+exp q − (p − q) 1+exp q

F

−

p

1−q

and g =

F

−1

.)

On Bregman Voronoi Diagrams

1 − p2
Self-dual Bregman divergences: Legendre duals
Legendre duality: Consider functions and domains:
(F , X ) ↔ (F ∗ , X ∗ )

Squared Euclidean distance:
F (x) = 1 x, x is self-dual on X = X ∗ = Rd .
2
Itakura-Saito divergence. F (x) = − log xi .
Domains are X = R+ ∗ and X ∗ = R− ∗ (G = F ∗ = − log(−x))
p
p
1
1
(DF (p||q) = q − log q − 1 = q − log q − 1 = DF (q ||p ) with q = − q and p = − p )
p

p

It can be difficult to compute for a given F its convex conjugate:
F

−1

(eg, F (x) = x log x; Liouville’s non exp-log functions).

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Exponential families in Statistics
Canonical representation of the proba. density func. of a r.v. X
def
p(x|θ) = exp{ θ, f(x) − F (θ) − k (f(x))},
with f(x): sufficient statistics and θ: natural parameters.
F : cumulant function (or log-partition function).
Example: Univariate Gaussian distributions N (µ, σ)
1
(x − µ)2
exp{−
} = exp
√
2σ 2
σ 2π

@
2 T

[x x ] , [

−1 T
µ2
1
]
−(
+ log σ) − log 2π
σ 2 2σ 2
σ2
2
µ

Minimal statistics f(x) = [x x 2 ]T , natural parameters [θ1 θ2 ]T = [ µ −1 ]T ,
σ 2 2σ 2
θ2

1
1
cumulant function F (θ1 , θ2 ) = − 4θ − 1 log(−2θ2 ), and k(f(x)) = 2 log 2π.
2
2

Duality [B+’05]
Bregman functions ↔ exponential families.
(Bijection primordial for designing tailored clustering divergences [B+05])

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams

A
Exponential families
Exponential families include many usual distributions:
Gaussian, Poisson, Bernouilli, Multinomial, Raleigh, etc.

Exponential family
(exp{ θ, f(x) − F (θ) − k(f(x))})
Name

Natural θ

Sufficient stat. f(x)

Cumulant F (θ)

Density cond. k (f(x))

Bernouilli

q
log 1−q

x

log(1 + exp θ)

0

Gaussian

[ µ −1 ]T
σ 2 2σ 2

[x x ]

2
θ1
− 4θ
2

1
2

Poisson

log λ

x

exp θ

2 T

−

1
2

log(−2 log θ2 )

log 2π

log x!

Cumulant function F fully characterizes the family.
W.l.o.g., simplify the p.d.f. to
g(w|θ) = exp( θ, w − F (θ) − h(w))
f (x|θ)

(Indeed, g(w|θ) is independent of θ.)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Multivariate Normal distributions: N (µ, Σ)
Probability density function of d-variate N (µ, Σ) (X = Rd ) is
d
2

1
√

1
exp{− (x − µ)T Σ(x − µ)},
2
det Σ

(2π)
where µ is the mean and Σ is the covariance matrix. (positive definite)
Natural parameters:
1
θ = (θA , θB ) with θA = Σ−1 µ and θB = − 2 Σ−1 .
Sufficient statistics: fA (x) = x and fB (x) = xxT
Cumulant function F :
1
1
F (µ, Σ) = µT Σ−1 µ + log det(2πΣ).
2
2
1 T −1
1
−1
F (θ) = − θA θB θA + log det(−πθB ).
4
2
k(f(x) = 0.
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Kullback-Leibler divergence & Bregman divergences
Kullback-Leiber divergence KL(p||q) of two probability
p(x)
distributions p and q : KL(p||q) = x p(x) log q(x) dx.
Kullback-Leibler: Bregman divergence for the cumulant function
KL(θp ||θq ) = DF (θq ||θp ) = F (θq ) − F (θp ) − (θq − θp ), θp [f] ,
with θp [f] = Ep(x|θ) [X ] = dη denoting expectation parameters.
θp [f] =

¢‚

x

f(x) exp{ θp , f(x) − F (θp ) − k (f(x))}dx

£

(Beware of argument swapping.)

Kullback-Leibler and Legendre duality
KL(θp ||θq ) = DF (θq ||θp ) = DF ∗ (dηp ||dηq ).
Univariate Normal distributions: natural parameters θ = [ µ −1 ]T , expectation parameters dη = [µ µ2 + σ 2 ]T .
2
2
σ

F. Nielsen, J.-D. Boissonnat and R. Nock

2σ

On Bregman Voronoi Diagrams
Bregman Voronoi diagrams: Bisectors
Two types of Voronoi diagrams defined by bisectors:
First-type Hpq H(p, q) = {x ∈ X | DF (x||p) = DF (x||q)} ()
Second-type Hpq : H (p, q) = {x ∈ X | DF (p||x) = DF (q||x)}

(Kullback-Leibler)

(Itakura-Saito)

Affine/Curved Voronoi diagrams & Dualities
Hyperplane H(p, q) :

x, p − q

+ F (p) − p, p

Hypersurface H (p, q) : x , q − p
Curved in x but linear in x .

− F (q) + q, q

+ F (p) − F (q) = 0

(Dual of first-type bisector for gradient point set S and DF ∗ ; ⇒ image by

dual

=0

.
F

is a hyperplane in X .)

dual

Duality: vorF (S) ≡ vorF ∗ (S ) and vorF (S) ≡ vorF ∗ (S ).
F. Nielsen, J.-D. Boissonnat and R. Nock

.

On Bregman Voronoi Diagrams
Bregman Voronoi diagrams: Videos

(Rasterized real-time on GPU, or computed exactly using the qhull package.)
Visit http://www.csl.sony.co.jp/person/nielsen/BregmanVoronoi

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Symmetrized Bregman divergences
Symmetrized Bregman divergence is a Bregman divergence
SF (p, q) = 1 (DF (p, q) + DF (q, p)) =
2

1
2

p − q, p − q .

1
(DF (p, q) + DF (q, p))
2
1
=
DF (p, q) + DF ∗ (p , q )
2
= DF (p, q)
ˆ ˆ ˆ

SF (p, q) =

ˆ ˆ
ˆ
where p = (p, p ) and F (p) =

1
2

(F (p) + F ∗ (p ))

Symmetrized bisector & Symmetrized Voronoi diagram
ˆ ˆ
HSF (p, q) = projX HDF (p, q) ∩ M with M = {(x, x )} ⊂ R2d
ˆ
ˆ
(Double space dimension: from d-variate F to 2d-variate F .)
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Space of Bregman spheres

σ(c, r ) = {x ∈ X | DF (x, c) = r }

Bregman spheres

Lemma
The lifted image σ onto F of a Bregman
ˆ
sphere σ is contained in a hyperplane Hσ .
(Hσ : z = x − c, c

+ F (c) + r )

Conversely, the intersection of any
hyperplane H with F projects vertically onto
a Bregman sphere.
(H : z = x, a +b − σ = (
→

F

−1

(a),

F

−1

(a), a −F (

F. Nielsen, J.-D. Boissonnat and R. Nock

F

−1

(a))+b))

(eg, usual paraboloid of revolution F

On Bregman Voronoi Diagrams

)
Algorithmics of Bregman spheres/balls

Union/intersection of Bregman balls
The union/intersection of n Bregman balls of X has complexity
d+1
d+1
Θ(n 2 ) and can be computed in time Θ(n log n + n 2 )
Boundary of

i

↑
σi : Proj⊥ of F ∩ ∩n Hσi .
i=1

Boundary of

i

↑
σi : Proj⊥ of complement of F ∩ ∩n Hσi .
i=1

Generalize the (Euclidean) space of spheres to Bregman
spaces of spheres: radical axes, pencils of spheres, etc.
(Important for manifold reconstruction since every solid is a union of balls; ie., medial axis — power crust)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Polarity for symmetric divergences
F

The pole of Hσ is the point σ + =
(c, F (c) − r )
common to all the tangent hyperplanes at
Hσ ∩ F

Hσ

Hq
x

r

c
+

σ = (c, F (c) − r)

Polarity
+
+
Polarity preserves incidences σ1 ∈ Hσ2 ⇔ σ2 ∈ Hσ1
+
σ1 ∈ Hσ2

⇔ F (c1 ) − r1 = c1 − c2 , c2 + F (c2 ) + r2
⇔ DF (c1 , c2 ) = r1 + r2 = DF (c2 , c1 )
+
⇔ σ2 ∈ Hσ1

(Require symmetric divergences.)
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Generalized Pythagoras theorem
Fact (Three-point)
DF (p||q) + DF (q||r) = DF (p||r) + p − q, r − q .
p

p

q

p⊥

q

p⊥
W

W

Fact (Bregman projection)
p⊥ Bregman projection of t p onto convex subset W ⊆ X :
p⊥ = argminw∈W DF (w, p).

Equality iff W is an affine set.
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Dual orthogonality of bisectors with geodesics
l(p, q) = {x : x = λp + (1 − λ)q}
c(p, q) = {x : x = λp + (1 − λ)q }

Straight line segment [pq]
Geodesic (p, q)

Orthogonality (Projection)
X is Bregman orthogonal to Y if
∀x ∈ X , ∀y ∈ Y , ∀t ∈ X ∩ Y
DF (x, t) + DF (t, y) = DF (x, y)

⇔

x − t, y − t = 0

Lemma
c(p, q) is Bregman orthogonal to Hpq
l(p, q) is Bregman orthogonal to Hpq

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman Voronoi diagrams from polytopes

Theorem
The first-type Bregman Voronoi diagram
vorF (S) is obtained by projecting by Proj⊥
the faces of the (d + 1)-dimensional
↑
polytope H = ∩i Hpi of X + onto X .
The Bregman Voronoi diagrams of a set
of n d-dimensional points have
d+1
complexity Θ(n 2 ) and can be
computed in optimal time
d+1
Θ(n log n + n 2 ).

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman Voronoi diagrams from power diagrams
Affine Voronoi diagrams
The first-type Bregman Voronoi diagram of n sites of X is
identical to the power diagram of n Euclidean hyperspheres
centered at F (S) = {p | p ∈ S}
DF (x, pi ) ≤ DF (x, pj )
⇐
⇒
⇐
⇒
⇐
⇒

−F (pi ) − x − pi , pi ) ≤ −F (pj ) − x − pj , pj )
x, x − 2 x, pi
x − pi , x − pi

− 2F (pi ) + 2 pi , pi
−

2
ri

≤ x, x − 2 x, pj

≤ x − pj , x − pj

−

pi → σi = Ball(pi , ri ) with ri2 =
2(F (pi ) − pi , pi )

F. Nielsen, J.-D. Boissonnat and R. Nock

− 2F (pj ) + 2 pj , pj

2
rj

pi , pi +

On Bregman Voronoi Diagrams
Straight triangulations from polytopes
Several ways to define Bregman triangulations
Definition (Straight triangulation)
ˆ
S : lifted image of S
ˆ
T : lower convex hull of S
The vertical projection of T is called the
straight Bregman triangulation of S
Properties
Characteristic property : The Bregman sphere
circumscribing any simplex of BT (S) is empty
Optimality : BT (S) = minT ∈T (S) maxτ ∈T r (τ )
(r (τ ) = radius of the smallest Bregman ball containing τ )
[Rajan]

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman Voronoi diagram & triangulation from
polytopes

(Implemented using OpenGL R .)
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman triangulations: Geodesic triangulations
The straight triangulation is not necessarily the dual of the
Bregman Voronoi diagram. The dual triangulation is the
geodesic triangulation (bisector/geodesic Bregman orthogonality).

Geodesic triangulation
Image of triangulation by
curved triangulation

−1
F

is a

Edges: geodesic arcs joining two sites

Symmetric divergences
For symmetric divergences, straight and geodesic
triangulations are combinatorially equivalent (polarity).
(For DF = L2 , straight and geodesic triangulations are the same ordinary Delaunay triangulations.)
2
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Geodesic triangulation: Hellinger-type

p
‚ p
(Hellinger distance D (0) (p||q) = 2 ( p(x) − q(x))dx, a particular case of f -divergence)

(D (1) is Kullback-Leibler)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Riemannian geometry
Bregman geometry can be tackled from the viewpoint of
Riemannian geometry:
Riemannian geometry & Information geometry [AN’00],
(mostly Fischer metrics for statistical manifolds)

Calculus on manifolds: Parallel transports of vector fields
and connections,
geodesic Voronoi diagram

b
a

gij γ i γj ds (metric gij )

Canonical divergences & second- or third-order metric
approximations
(D )
(g(DF ) = g(DF ∗ ) with gij F = −DF (∂i ||∂j ) = DF (∂i ∂j ||·) = DF (·||∂i ∂j ))

Bregman geometry: A special case of Riemannian geometry
Dual affine coordinate systems (x and x ) of non-metric
connections and ∗ (DF and DF ∗ are non-conformal representations)
Torsion-free & zero-curvature space (dually flat space).
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Extensions
In our paper, we further consider
Weighted Bregman diagrams:
WDF (pi , pj ) = DF (pi , pj ) + wi − wj
(incl. k-order Bregman diagrams)
k-jet Bregman divergences (tails of Taylor expansions)
Centroidal Voronoi diagrams (centroid & Bregman
information).
Applications to -sampling and minmax quantization
Applications to machine learning
Visit http://www.csl.sony.co.jp/person/nielsen/BregmanVoronoi/

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
References
B+’96 Boissonnat et al., Output-sensitive construction of the
Delaunay triangulation of points lying in two planes,
Internat. J. Comput. Geom. Appl., 6(1):1-14, 1996.
OT’96 Onishi & Takayama, Construction of Voronoi diagram on
the upper half-plane, IEICE Trans. 79-A, pp. 533-539,
1996.
S+’98 Sadakane et al., Voronoi diagrams by divergences with
additive weights, SoCG video, 1998.
AK’00 Aurenhammer & Klein, Voronoi diagrams, Handbook of
Comp. Geom. , Elsevier , pp. 201-290, 2000.
AN’00 Amari & Nagaoka, Methods of information geometry,
Oxford University press 2005.
LL’00 Leibon & Letscher, Delaunay triangulations and Voronoi
diagrams for Riemannian manifolds, SoCG, pp. 341-349,
2000.
B+’05 Banerjee et al., Clustering with Bregman Divergences,
JMLR 2005.
F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Extra slides

Thank You!
E-mail: Frank.Nielsen@acm.org

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Bregman geometry: Dually flat space

Non-Riemannian symmetric dual connections
Conjugate
(Legendre,
connection)

p
F
∗

P
p

F. Nielsen, J.-D. Boissonnat and R. Nock

q
g

Q
q

1-affine coordinate system
2-order metric approximation g
1-affine coordinate system

On Bregman Voronoi Diagrams
Centroid and Bregman information
Centroid
The (weighted) Bregman centroid of a compact domain D is
c∗ = arg minc∈D x∈D p(x) DF (x, c) dx
Lemma
c∗ coincides with the (weighted) centroid of D

=


x∈D

p(x) DF (x, c) dx


∂
p(x) (F (x) − F (c) − x − c,
∂c x∈D

2
−
p(x) F (c)(x − c)dx

=

∂
∂c

−

=

x∈D

vanishes for c∗ =

F

2







xp(x)dx − c

(c)
x∈D

F (c)

p(x)dx
x∈D

R
x∈D xp(x)dx
R
x∈D p(x)dx

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams

) dx
Bregman information

Bregman information
x random variable, pdf = p(x)
Distortion rate
DF (c) = x∈X p(x) DF (x, c) dx
Bregman information
infc∈X DF (c)
Bregman representative
c∗ = x∈X x p(x) dx = E(x)

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Centroidal Bregman Voronoi diagrams and
least-square quantization

Lloyd relaxation
1
2

Choose k sites
repeat
1
2

Compute the Bregman Voronoi diagram of the k sites
Move the sites to the centroids of their cells

until convergence

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
ε-sampling and minmax quantization
ε-sample
error(P) = maxx∈D minpi ∈P DF (x, pi )
A finite set of points P of D is an ε-sample of D iff error(P) ≤ ε
Local maxima
error(P) = maxv∈V minpi ∈P DF (x, pi ).
where V consists of the vertices of BVD(P) and intersection
points between the edges of BVD(P) and the boundary of D
Ruppert’s algorithm
Insert a vertex of the current Bregman Voronoi diagram if its
Bregman radius is greater than ε

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams
Termination of the sampling algorithm
Optimal bounds on the number of sample points
Implied by the following lemma and a packing argument
Fatness of Bregman balls
If F is of class C 2 , there exists two constants γ and γ such
that
√
√
EB(c, γ r ) ⊂ B(c, r ) ⊂ EB(c, γ r )

Number of sample points
ε

4area(D+ 2 )
area(D)
≤ |P| ≤
γ πε2
γ πε2

F. Nielsen, J.-D. Boissonnat and R. Nock

On Bregman Voronoi Diagrams

More Related Content

What's hot

Divergence clustering
Divergence clusteringDivergence clustering
Divergence clusteringFrank Nielsen
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
Note on Character Theory-summer 2013
Note on Character Theory-summer 2013Note on Character Theory-summer 2013
Note on Character Theory-summer 2013Fan Huang (Wright)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Frank Nielsen
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions xmath266
 
Fixed point result in menger space with ea property
Fixed point result in menger space with ea propertyFixed point result in menger space with ea property
Fixed point result in menger space with ea propertyAlexander Decker
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions xmath266
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functionsUmair Pearl
 
Adv math[unit 1]
Adv math[unit 1]Adv math[unit 1]
Adv math[unit 1]Nald Torres
 
Slides: The Centroids of Symmetrized Bregman Divergences
Slides: The Centroids of Symmetrized Bregman DivergencesSlides: The Centroids of Symmetrized Bregman Divergences
Slides: The Centroids of Symmetrized Bregman DivergencesFrank Nielsen
 
Concept map function
Concept map functionConcept map function
Concept map functionzabidah awang
 

What's hot (19)

Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
Note on Character Theory-summer 2013
Note on Character Theory-summer 2013Note on Character Theory-summer 2013
Note on Character Theory-summer 2013
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
Unit iv
Unit ivUnit iv
Unit iv
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions x
 
Fixed point result in menger space with ea property
Fixed point result in menger space with ea propertyFixed point result in menger space with ea property
Fixed point result in menger space with ea property
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
Digital text
Digital  textDigital  text
Digital text
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x
 
Week 2 - Trigonometry
Week 2 - TrigonometryWeek 2 - Trigonometry
Week 2 - Trigonometry
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
 
Adv math[unit 1]
Adv math[unit 1]Adv math[unit 1]
Adv math[unit 1]
 
Slides: The Centroids of Symmetrized Bregman Divergences
Slides: The Centroids of Symmetrized Bregman DivergencesSlides: The Centroids of Symmetrized Bregman Divergences
Slides: The Centroids of Symmetrized Bregman Divergences
 
Concept map function
Concept map functionConcept map function
Concept map function
 

Viewers also liked

Google mapshttp://martingonzalezti.blogspot.mx/
Google mapshttp://martingonzalezti.blogspot.mx/Google mapshttp://martingonzalezti.blogspot.mx/
Google mapshttp://martingonzalezti.blogspot.mx/edgaradm123
 
Samb ie opasnbie dorogi mira superversiya
Samb ie opasnbie dorogi mira superversiyaSamb ie opasnbie dorogi mira superversiya
Samb ie opasnbie dorogi mira superversiyaAvdeev_Dima
 
Brendan abhijay ,5000,000
Brendan abhijay ,5000,000Brendan abhijay ,5000,000
Brendan abhijay ,5000,000ernsteins
 
Copia título UCAB
Copia título UCABCopia título UCAB
Copia título UCABJose Astor
 
Aaron Paul’s Testimonial
Aaron Paul’s TestimonialAaron Paul’s Testimonial
Aaron Paul’s TestimonialJulie Moniere
 
"España es una puerta de entrada a Europa y un auténtico capitalizador de ten...
"España es una puerta de entrada a Europa y un auténtico capitalizador de ten..."España es una puerta de entrada a Europa y un auténtico capitalizador de ten...
"España es una puerta de entrada a Europa y un auténtico capitalizador de ten...British Chamber of Commerce in Spain
 
дэлгэрцэцэг3
дэлгэрцэцэг3дэлгэрцэцэг3
дэлгэрцэцэг3lkkkkkk
 
Eugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistus
Eugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistusEugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistus
Eugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistusKnowledge Economy Forum
 
Ningan wwtp using levapor biofilm technology
Ningan wwtp using levapor biofilm technologyNingan wwtp using levapor biofilm technology
Ningan wwtp using levapor biofilm technologyAmit Christian
 
Viktoras Sencila LKDK - Lietuvos kolegiju sektorius
Viktoras Sencila LKDK - Lietuvos kolegiju sektoriusViktoras Sencila LKDK - Lietuvos kolegiju sektorius
Viktoras Sencila LKDK - Lietuvos kolegiju sektoriusKnowledge Economy Forum
 
Sigitas Besagirskas - LPK - verslo ir universitetu partneryste
Sigitas Besagirskas - LPK - verslo ir universitetu partnerysteSigitas Besagirskas - LPK - verslo ir universitetu partneryste
Sigitas Besagirskas - LPK - verslo ir universitetu partnerysteKnowledge Economy Forum
 

Viewers also liked (16)

בינוי ודיור Construction and Housing
בינוי ודיור   Construction and Housingבינוי ודיור   Construction and Housing
בינוי ודיור Construction and Housing
 
Google mapshttp://martingonzalezti.blogspot.mx/
Google mapshttp://martingonzalezti.blogspot.mx/Google mapshttp://martingonzalezti.blogspot.mx/
Google mapshttp://martingonzalezti.blogspot.mx/
 
Samb ie opasnbie dorogi mira superversiya
Samb ie opasnbie dorogi mira superversiyaSamb ie opasnbie dorogi mira superversiya
Samb ie opasnbie dorogi mira superversiya
 
intro calendar
intro calendarintro calendar
intro calendar
 
Brendan abhijay ,5000,000
Brendan abhijay ,5000,000Brendan abhijay ,5000,000
Brendan abhijay ,5000,000
 
Copia título UCAB
Copia título UCABCopia título UCAB
Copia título UCAB
 
Aaron Paul’s Testimonial
Aaron Paul’s TestimonialAaron Paul’s Testimonial
Aaron Paul’s Testimonial
 
NominationCertificate
NominationCertificateNominationCertificate
NominationCertificate
 
"España es una puerta de entrada a Europa y un auténtico capitalizador de ten...
"España es una puerta de entrada a Europa y un auténtico capitalizador de ten..."España es una puerta de entrada a Europa y un auténtico capitalizador de ten...
"España es una puerta de entrada a Europa y un auténtico capitalizador de ten...
 
дэлгэрцэцэг3
дэлгэрцэцэг3дэлгэрцэцэг3
дэлгэрцэцэг3
 
Deval CV
Deval CVDeval CV
Deval CV
 
Eugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistus
Eugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistusEugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistus
Eugenijus Butkus VU - Aukstojo mokslo vaidmuo rengiant specialistus
 
Ningan wwtp using levapor biofilm technology
Ningan wwtp using levapor biofilm technologyNingan wwtp using levapor biofilm technology
Ningan wwtp using levapor biofilm technology
 
Viktoras Sencila LKDK - Lietuvos kolegiju sektorius
Viktoras Sencila LKDK - Lietuvos kolegiju sektoriusViktoras Sencila LKDK - Lietuvos kolegiju sektorius
Viktoras Sencila LKDK - Lietuvos kolegiju sektorius
 
Sigitas Besagirskas - LPK - verslo ir universitetu partneryste
Sigitas Besagirskas - LPK - verslo ir universitetu partnerysteSigitas Besagirskas - LPK - verslo ir universitetu partneryste
Sigitas Besagirskas - LPK - verslo ir universitetu partneryste
 
Teratogénesis
TeratogénesisTeratogénesis
Teratogénesis
 

Similar to Bregman Voronoi Diagrams (SODA 2007)

Slides: The Burbea-Rao and Bhattacharyya centroids
Slides: The Burbea-Rao and Bhattacharyya centroidsSlides: The Burbea-Rao and Bhattacharyya centroids
Slides: The Burbea-Rao and Bhattacharyya centroidsFrank Nielsen
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Frank Nielsen
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsFrank Nielsen
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsgregcross22
 
Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...
Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...
Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...Frank Nielsen
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationGabriel Peyré
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCEFrank Nielsen
 
Lecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsLecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsStéphane Canu
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Francesco Tudisco
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 

Similar to Bregman Voronoi Diagrams (SODA 2007) (20)

Slides: The Burbea-Rao and Bhattacharyya centroids
Slides: The Burbea-Rao and Bhattacharyya centroidsSlides: The Burbea-Rao and Bhattacharyya centroids
Slides: The Burbea-Rao and Bhattacharyya centroids
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 
Ece3075 a 8
Ece3075 a 8Ece3075 a 8
Ece3075 a 8
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...
Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...
Voronoi diagrams in information geometry:  Statistical Voronoi diagrams and ...
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems Regularization
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
 
Lecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsLecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhs
 
Analisis matematico
Analisis matematicoAnalisis matematico
Analisis matematico
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
F.Komposisi
F.KomposisiF.Komposisi
F.Komposisi
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 

Recently uploaded

FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 

Recently uploaded (20)

FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 

Bregman Voronoi Diagrams (SODA 2007)

  • 1. On Bregman Voronoi Diagrams Frank Nielsen1 Jean-Daniel Boissonnat2 Richard Nock3 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 INRIA Sophia-Antipolis Geometrica Jean-Daniel.Boissonnat@sophia.inria.fr 3 University of Antilles-Guyanne CEREGMIA Richard.Nock@martinique.univ-ag.fr July 2006 — January 2007 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 2. Ordinary Voronoi Diagrams • Voronoi diagram Vor(S) s.t. p4 p1 def p5 p7 p66 p Vor(p6 ) p3 Vor(pi ) = {x ∈ Rd | ||pi x|| ≤ ||pj x|| ∀pj ∈ S} • Voronoi sites (static view). • Voronoi generators (dynamic view). p2 ´ → Rene Descartes, 17th century. → Partition the Euclidean space Ed wrt the Euclidean distance ||x||2 = F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams d 2 i=1 xi .
  • 3. Generalizing Voronoi Diagrams Voronoi diagrams widely studied in comp. geometry [AK’00]: Manhattan (taxi-cab) diagram (L1 norm): ||x||1 = d i=1 |xi |, Affine diagram (power distance): ||x − ci ||2 − ri2 , Anisotropic diagram (quad. dist.): (x − ci )T Qi (x − ci ), Apollonius diagram (circle distance): ||x − ci || − ri , ¨ Mobius diagram (weighted distance): λi ||x − ci || − µi , Abstract Voronoi diagrams [Klein’89], etc. Taxi-cab diagram Power diagram F. Nielsen, J.-D. Boissonnat and R. Nock Anisotropic diagram On Bregman Voronoi Diagrams Apollonius diagram
  • 4. Non-Euclidean Voronoi diagrams ´ ´ Hyperbolic Voronoi: Poincare disk [B+’96], Poincare half-plane [OT’96], etc. Kullback-Leibler divergence (statistical Voronoi diagrams) [OI’96] & [S+’98] Divergence between two statistical distributions p(x) KL(p||q) = x p(x) log q(x) dx [relative entropy] Riemannian Voronoi diagrams: geodesic length (aka geodesic Voronoi diagrams) [LL’00] ´ Hyperbolic Voronoi (Poincare) Hyperbolic Voronoi (Klein) F. Nielsen, J.-D. Boissonnat and R. Nock Riemannian Voronoi On Bregman Voronoi Diagrams
  • 5. Bregman divergences F a strictly convex and differentiable function defined over a convex set domain X DF (p, q) = F (p) − F (q) − p − q, F (q) not a distance (not necessarily symmetric nor does triangle inequality hold) F DF (p, q) Hq x F. Nielsen, J.-D. Boissonnat and R. Nock q p On Bregman Voronoi Diagrams
  • 6. Example: The squared Euclidean distance F (x) = x 2 : strictly convex and differentiable over Rd (Multivariate F (x) = €d 2 i=1 xi ) DF (p, q) = F (p) − F (q) − p − q, 2 F (q) 2 = p − q − p − q, 2q = p−q 2 Voronoi diagram equivalence classes 2 Since Vor(S; d2 ) = Vor(S; d2 ), the ordinary Voronoi diagram is interpreted as a Bregman Voronoi diagram. (Any strictly monotone function f of d2 yields the same ordinary Voronoi diagram: Vor(S; d2 ) = Vor(S; f (d2 )).) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 7. Bregman divergences for probability distributions F (p) = p(x) log p(x) dx (Discrete distributions F (p) = DF (p, q) = = € x (Shannon entropy) p(x) log p(x) dx) (p(x) log p(x) − q(x) log q(x) − p(x) − q(x), log q(x) + 1 )) dx p(x) dx (KL divergence) p(x) log q(x) Kullback-Leiber divergence also known as: relative entropy or I-divergence. (Defined either on the probability simplex or extended on the full positive quadrant.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 8. Bregman divergences: A versatile measure Bregman divergences are versatile, suited to mixed type data. (Build multivariate divergences dimensionwise using elementary univariate divergences.) Fact (Linearity) Bregman divergence is a linear operator: ∀F1 ∈ C ∀F2 ∈ C DF1 +λF2 (p||q) = DF1 (p||q) + λDF2 (p||q) for any λ ≥ 0. Fact (Equivalence classes) Let G(x) = F (x) + a, x + b be another strictly convex and differentiable function, with a ∈ Rd and b ∈ R. Then DF (p||q) = DG (p||q). (For Voronoi diagrams, relax the classes to any monotone function of DF : relative vs absolute divergence.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 9. Bregman divergences for sound processing F (p) = − x log p(x) dx p(x) p(x) DF (p, q) = x ( q(x) − log q(x) − 1) dx (Burg entropy) (Itakura-Saito) Convexity & Bregman balls DF (p||q) is convex in its first argument p but not necessarily in its second argument q. ball(c, r ) = {x | DF (x, c) ≤ r } ball (c, r ) = {x | DF (c, x) ≤ r } F. Nielsen, J.-D. Boissonnat and R. Nock Superposition of I.-S. balls On Bregman Voronoi Diagrams
  • 10. Dual divergence Convex conjugate Unique convex conjugate function G (= F ∗ ) obtained by the Legendre transformation: G(y) = supx∈X { y, x − F (x)}. G(y) = ( y, x − F (x)) = 0 → y= F (x) . (thus we have x = F −1 (y)) DF (p||q) = F (p) − F (q) − p − q, q with (q = F (q)). F ∗ (= G) is a Bregman generator function such that (F ∗ )∗ = F . Dual Bregman divergence DF (p||q) = F (p) + F ∗ (q ) − p, q = DF ∗ (q ||p ) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 11. Convex conjugate and Dual Bregman divergence Legendre transformation: F ∗ (x ) = −F (x) + x, x . X f= F Y=X x2 DF (x1 , x2 ) x1 F y2 = x2 DF ∗ (x2 , x1 ) y1 = x1 g= F −1 G = F∗ DF (x1 , x2 ) = F (x1 ) − F (x2 ) − x1 − x2 , x2 = −F ∗ (x1 ) + x1 , x1 + F ∗ (x2 ) − x1 , x2 = DF ∗ (x2 , x1 ) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 12. Examples of dual divergences Exponential loss ←→ unnormalized Shannon entropy. F (x) = exp(x) ←→ G(y ) = y log y − y = F ∗ (x ). F (x) = exp x G(y ) = y log y − y DF (x1 ||x2 ) = exp x1 DG (y1 ||y2 ) = y1 log − exp x2 − (x1 − x2 ) exp x2 + y2 − y1 y1 y2 f (x) = exp x = y g(y) = log y = x Logistic loss ←→ Bernouilli-like entropy. F (x) = x log x + (1 − x) log(1 − x) ←→ G(y ) = log(1 + exp(y )) F (x) = log(1 + exp x) G(y ) = y log y 1−y + log(1 − y ) 1+exp x exp x DF (x1 ||x2 ) = log 1+exp x1 − (x1 − x2 ) 1+exp 2 x2 2 y 1−y DG (y1 ||y2 ) = y1 log y1 + (1 − y1 ) log 1−y1 F. Nielsen, J.-D. Boissonnat and R. Nock 2 2 On Bregman Voronoi Diagrams exp x f (x) = 1+exp x = y y g(y) = log 1−y = x
  • 13. Bregman (Dual) divergences Dual divergences have gradient entries swapped in the table: (Because of equivalence classes, it is sufficient to have f = Θ(g).) Dom. X Function F (or dual G = F ∗ ) Gradient (f = g −1 ) Inv. grad. (g = f −1 ) Divergence DF (p, q) R Squared function x2 2x x 2 Squared loss (norm) (p − q)2 R+ Unnorm. Shannon entropy x log x − x Exponential exp x log x exp(x) exp x log x Kullback-Leibler div. (I-div.) p p log q − p + q Exponential loss exp(p) − (p − q + 1) exp(q) R+ ∗ Burg entropy − log x 1 −x 1 −x Itakura-Saito divergence p p − log q − 1 q [0, 1] Bit entropy x log x + (1 − x) log(1 − x) Dual bit entropy log(1 + exp x) x log 1−x exp x 1+exp x exp x 1+exp x x log 1−x qx qx R R [−1, 1] Hellinger p − 1 − x2 1−x 2 F. Nielsen, J.-D. Boissonnat and R. Nock Hellinger 1−pq q 2 1+x 2 (Self-dual divergences are marked with an asterisk . Note that f = Logistic loss 1−p p p log q + (1 − p) log 1−q Dual logistic loss 1+exp p exp q log 1+exp q − (p − q) 1+exp q F − p 1−q and g = F −1 .) On Bregman Voronoi Diagrams 1 − p2
  • 14. Self-dual Bregman divergences: Legendre duals Legendre duality: Consider functions and domains: (F , X ) ↔ (F ∗ , X ∗ ) Squared Euclidean distance: F (x) = 1 x, x is self-dual on X = X ∗ = Rd . 2 Itakura-Saito divergence. F (x) = − log xi . Domains are X = R+ ∗ and X ∗ = R− ∗ (G = F ∗ = − log(−x)) p p 1 1 (DF (p||q) = q − log q − 1 = q − log q − 1 = DF (q ||p ) with q = − q and p = − p ) p p It can be difficult to compute for a given F its convex conjugate: F −1 (eg, F (x) = x log x; Liouville’s non exp-log functions). F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 15. Exponential families in Statistics Canonical representation of the proba. density func. of a r.v. X def p(x|θ) = exp{ θ, f(x) − F (θ) − k (f(x))}, with f(x): sufficient statistics and θ: natural parameters. F : cumulant function (or log-partition function). Example: Univariate Gaussian distributions N (µ, σ) 1 (x − µ)2 exp{− } = exp √ 2σ 2 σ 2π @ 2 T [x x ] , [ −1 T µ2 1 ] −( + log σ) − log 2π σ 2 2σ 2 σ2 2 µ Minimal statistics f(x) = [x x 2 ]T , natural parameters [θ1 θ2 ]T = [ µ −1 ]T , σ 2 2σ 2 θ2 1 1 cumulant function F (θ1 , θ2 ) = − 4θ − 1 log(−2θ2 ), and k(f(x)) = 2 log 2π. 2 2 Duality [B+’05] Bregman functions ↔ exponential families. (Bijection primordial for designing tailored clustering divergences [B+05]) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams A
  • 16. Exponential families Exponential families include many usual distributions: Gaussian, Poisson, Bernouilli, Multinomial, Raleigh, etc. Exponential family (exp{ θ, f(x) − F (θ) − k(f(x))}) Name Natural θ Sufficient stat. f(x) Cumulant F (θ) Density cond. k (f(x)) Bernouilli q log 1−q x log(1 + exp θ) 0 Gaussian [ µ −1 ]T σ 2 2σ 2 [x x ] 2 θ1 − 4θ 2 1 2 Poisson log λ x exp θ 2 T − 1 2 log(−2 log θ2 ) log 2π log x! Cumulant function F fully characterizes the family. W.l.o.g., simplify the p.d.f. to g(w|θ) = exp( θ, w − F (θ) − h(w)) f (x|θ) (Indeed, g(w|θ) is independent of θ.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 17. Multivariate Normal distributions: N (µ, Σ) Probability density function of d-variate N (µ, Σ) (X = Rd ) is d 2 1 √ 1 exp{− (x − µ)T Σ(x − µ)}, 2 det Σ (2π) where µ is the mean and Σ is the covariance matrix. (positive definite) Natural parameters: 1 θ = (θA , θB ) with θA = Σ−1 µ and θB = − 2 Σ−1 . Sufficient statistics: fA (x) = x and fB (x) = xxT Cumulant function F : 1 1 F (µ, Σ) = µT Σ−1 µ + log det(2πΣ). 2 2 1 T −1 1 −1 F (θ) = − θA θB θA + log det(−πθB ). 4 2 k(f(x) = 0. F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 18. Kullback-Leibler divergence & Bregman divergences Kullback-Leiber divergence KL(p||q) of two probability p(x) distributions p and q : KL(p||q) = x p(x) log q(x) dx. Kullback-Leibler: Bregman divergence for the cumulant function KL(θp ||θq ) = DF (θq ||θp ) = F (θq ) − F (θp ) − (θq − θp ), θp [f] , with θp [f] = Ep(x|θ) [X ] = dη denoting expectation parameters. θp [f] = ¢‚ x f(x) exp{ θp , f(x) − F (θp ) − k (f(x))}dx £ (Beware of argument swapping.) Kullback-Leibler and Legendre duality KL(θp ||θq ) = DF (θq ||θp ) = DF ∗ (dηp ||dηq ). Univariate Normal distributions: natural parameters θ = [ µ −1 ]T , expectation parameters dη = [µ µ2 + σ 2 ]T . 2 2 σ F. Nielsen, J.-D. Boissonnat and R. Nock 2σ On Bregman Voronoi Diagrams
  • 19. Bregman Voronoi diagrams: Bisectors Two types of Voronoi diagrams defined by bisectors: First-type Hpq H(p, q) = {x ∈ X | DF (x||p) = DF (x||q)} () Second-type Hpq : H (p, q) = {x ∈ X | DF (p||x) = DF (q||x)} (Kullback-Leibler) (Itakura-Saito) Affine/Curved Voronoi diagrams & Dualities Hyperplane H(p, q) : x, p − q + F (p) − p, p Hypersurface H (p, q) : x , q − p Curved in x but linear in x . − F (q) + q, q + F (p) − F (q) = 0 (Dual of first-type bisector for gradient point set S and DF ∗ ; ⇒ image by dual =0 . F is a hyperplane in X .) dual Duality: vorF (S) ≡ vorF ∗ (S ) and vorF (S) ≡ vorF ∗ (S ). F. Nielsen, J.-D. Boissonnat and R. Nock . On Bregman Voronoi Diagrams
  • 20. Bregman Voronoi diagrams: Videos (Rasterized real-time on GPU, or computed exactly using the qhull package.) Visit http://www.csl.sony.co.jp/person/nielsen/BregmanVoronoi F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 21. Symmetrized Bregman divergences Symmetrized Bregman divergence is a Bregman divergence SF (p, q) = 1 (DF (p, q) + DF (q, p)) = 2 1 2 p − q, p − q . 1 (DF (p, q) + DF (q, p)) 2 1 = DF (p, q) + DF ∗ (p , q ) 2 = DF (p, q) ˆ ˆ ˆ SF (p, q) = ˆ ˆ ˆ where p = (p, p ) and F (p) = 1 2 (F (p) + F ∗ (p )) Symmetrized bisector & Symmetrized Voronoi diagram ˆ ˆ HSF (p, q) = projX HDF (p, q) ∩ M with M = {(x, x )} ⊂ R2d ˆ ˆ (Double space dimension: from d-variate F to 2d-variate F .) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 22. Space of Bregman spheres σ(c, r ) = {x ∈ X | DF (x, c) = r } Bregman spheres Lemma The lifted image σ onto F of a Bregman ˆ sphere σ is contained in a hyperplane Hσ . (Hσ : z = x − c, c + F (c) + r ) Conversely, the intersection of any hyperplane H with F projects vertically onto a Bregman sphere. (H : z = x, a +b − σ = ( → F −1 (a), F −1 (a), a −F ( F. Nielsen, J.-D. Boissonnat and R. Nock F −1 (a))+b)) (eg, usual paraboloid of revolution F On Bregman Voronoi Diagrams )
  • 23. Algorithmics of Bregman spheres/balls Union/intersection of Bregman balls The union/intersection of n Bregman balls of X has complexity d+1 d+1 Θ(n 2 ) and can be computed in time Θ(n log n + n 2 ) Boundary of i ↑ σi : Proj⊥ of F ∩ ∩n Hσi . i=1 Boundary of i ↑ σi : Proj⊥ of complement of F ∩ ∩n Hσi . i=1 Generalize the (Euclidean) space of spheres to Bregman spaces of spheres: radical axes, pencils of spheres, etc. (Important for manifold reconstruction since every solid is a union of balls; ie., medial axis — power crust) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 24. Polarity for symmetric divergences F The pole of Hσ is the point σ + = (c, F (c) − r ) common to all the tangent hyperplanes at Hσ ∩ F Hσ Hq x r c + σ = (c, F (c) − r) Polarity + + Polarity preserves incidences σ1 ∈ Hσ2 ⇔ σ2 ∈ Hσ1 + σ1 ∈ Hσ2 ⇔ F (c1 ) − r1 = c1 − c2 , c2 + F (c2 ) + r2 ⇔ DF (c1 , c2 ) = r1 + r2 = DF (c2 , c1 ) + ⇔ σ2 ∈ Hσ1 (Require symmetric divergences.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 25. Generalized Pythagoras theorem Fact (Three-point) DF (p||q) + DF (q||r) = DF (p||r) + p − q, r − q . p p q p⊥ q p⊥ W W Fact (Bregman projection) p⊥ Bregman projection of t p onto convex subset W ⊆ X : p⊥ = argminw∈W DF (w, p). Equality iff W is an affine set. F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 26. Dual orthogonality of bisectors with geodesics l(p, q) = {x : x = λp + (1 − λ)q} c(p, q) = {x : x = λp + (1 − λ)q } Straight line segment [pq] Geodesic (p, q) Orthogonality (Projection) X is Bregman orthogonal to Y if ∀x ∈ X , ∀y ∈ Y , ∀t ∈ X ∩ Y DF (x, t) + DF (t, y) = DF (x, y) ⇔ x − t, y − t = 0 Lemma c(p, q) is Bregman orthogonal to Hpq l(p, q) is Bregman orthogonal to Hpq F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 27. Bregman Voronoi diagrams from polytopes Theorem The first-type Bregman Voronoi diagram vorF (S) is obtained by projecting by Proj⊥ the faces of the (d + 1)-dimensional ↑ polytope H = ∩i Hpi of X + onto X . The Bregman Voronoi diagrams of a set of n d-dimensional points have d+1 complexity Θ(n 2 ) and can be computed in optimal time d+1 Θ(n log n + n 2 ). F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 28. Bregman Voronoi diagrams from power diagrams Affine Voronoi diagrams The first-type Bregman Voronoi diagram of n sites of X is identical to the power diagram of n Euclidean hyperspheres centered at F (S) = {p | p ∈ S} DF (x, pi ) ≤ DF (x, pj ) ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ −F (pi ) − x − pi , pi ) ≤ −F (pj ) − x − pj , pj ) x, x − 2 x, pi x − pi , x − pi − 2F (pi ) + 2 pi , pi − 2 ri ≤ x, x − 2 x, pj ≤ x − pj , x − pj − pi → σi = Ball(pi , ri ) with ri2 = 2(F (pi ) − pi , pi ) F. Nielsen, J.-D. Boissonnat and R. Nock − 2F (pj ) + 2 pj , pj 2 rj pi , pi + On Bregman Voronoi Diagrams
  • 29. Straight triangulations from polytopes Several ways to define Bregman triangulations Definition (Straight triangulation) ˆ S : lifted image of S ˆ T : lower convex hull of S The vertical projection of T is called the straight Bregman triangulation of S Properties Characteristic property : The Bregman sphere circumscribing any simplex of BT (S) is empty Optimality : BT (S) = minT ∈T (S) maxτ ∈T r (τ ) (r (τ ) = radius of the smallest Bregman ball containing τ ) [Rajan] F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 30. Bregman Voronoi diagram & triangulation from polytopes (Implemented using OpenGL R .) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 31. Bregman triangulations: Geodesic triangulations The straight triangulation is not necessarily the dual of the Bregman Voronoi diagram. The dual triangulation is the geodesic triangulation (bisector/geodesic Bregman orthogonality). Geodesic triangulation Image of triangulation by curved triangulation −1 F is a Edges: geodesic arcs joining two sites Symmetric divergences For symmetric divergences, straight and geodesic triangulations are combinatorially equivalent (polarity). (For DF = L2 , straight and geodesic triangulations are the same ordinary Delaunay triangulations.) 2 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 32. Geodesic triangulation: Hellinger-type p ‚ p (Hellinger distance D (0) (p||q) = 2 ( p(x) − q(x))dx, a particular case of f -divergence) (D (1) is Kullback-Leibler) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 33. Riemannian geometry Bregman geometry can be tackled from the viewpoint of Riemannian geometry: Riemannian geometry & Information geometry [AN’00], (mostly Fischer metrics for statistical manifolds) Calculus on manifolds: Parallel transports of vector fields and connections, geodesic Voronoi diagram b a gij γ i γj ds (metric gij ) Canonical divergences & second- or third-order metric approximations (D ) (g(DF ) = g(DF ∗ ) with gij F = −DF (∂i ||∂j ) = DF (∂i ∂j ||·) = DF (·||∂i ∂j )) Bregman geometry: A special case of Riemannian geometry Dual affine coordinate systems (x and x ) of non-metric connections and ∗ (DF and DF ∗ are non-conformal representations) Torsion-free & zero-curvature space (dually flat space). F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 34. Extensions In our paper, we further consider Weighted Bregman diagrams: WDF (pi , pj ) = DF (pi , pj ) + wi − wj (incl. k-order Bregman diagrams) k-jet Bregman divergences (tails of Taylor expansions) Centroidal Voronoi diagrams (centroid & Bregman information). Applications to -sampling and minmax quantization Applications to machine learning Visit http://www.csl.sony.co.jp/person/nielsen/BregmanVoronoi/ F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 35. References B+’96 Boissonnat et al., Output-sensitive construction of the Delaunay triangulation of points lying in two planes, Internat. J. Comput. Geom. Appl., 6(1):1-14, 1996. OT’96 Onishi & Takayama, Construction of Voronoi diagram on the upper half-plane, IEICE Trans. 79-A, pp. 533-539, 1996. S+’98 Sadakane et al., Voronoi diagrams by divergences with additive weights, SoCG video, 1998. AK’00 Aurenhammer & Klein, Voronoi diagrams, Handbook of Comp. Geom. , Elsevier , pp. 201-290, 2000. AN’00 Amari & Nagaoka, Methods of information geometry, Oxford University press 2005. LL’00 Leibon & Letscher, Delaunay triangulations and Voronoi diagrams for Riemannian manifolds, SoCG, pp. 341-349, 2000. B+’05 Banerjee et al., Clustering with Bregman Divergences, JMLR 2005. F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 36. Extra slides Thank You! E-mail: Frank.Nielsen@acm.org F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 37. Bregman geometry: Dually flat space Non-Riemannian symmetric dual connections Conjugate (Legendre, connection) p F ∗ P p F. Nielsen, J.-D. Boissonnat and R. Nock q g Q q 1-affine coordinate system 2-order metric approximation g 1-affine coordinate system On Bregman Voronoi Diagrams
  • 38. Centroid and Bregman information Centroid The (weighted) Bregman centroid of a compact domain D is c∗ = arg minc∈D x∈D p(x) DF (x, c) dx Lemma c∗ coincides with the (weighted) centroid of D =  x∈D p(x) DF (x, c) dx  ∂ p(x) (F (x) − F (c) − x − c, ∂c x∈D  2 − p(x) F (c)(x − c)dx = ∂ ∂c − = x∈D vanishes for c∗ = F 2   xp(x)dx − c (c) x∈D F (c) p(x)dx x∈D R x∈D xp(x)dx R x∈D p(x)dx F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams ) dx
  • 39. Bregman information Bregman information x random variable, pdf = p(x) Distortion rate DF (c) = x∈X p(x) DF (x, c) dx Bregman information infc∈X DF (c) Bregman representative c∗ = x∈X x p(x) dx = E(x) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 40. Centroidal Bregman Voronoi diagrams and least-square quantization Lloyd relaxation 1 2 Choose k sites repeat 1 2 Compute the Bregman Voronoi diagram of the k sites Move the sites to the centroids of their cells until convergence F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 41. ε-sampling and minmax quantization ε-sample error(P) = maxx∈D minpi ∈P DF (x, pi ) A finite set of points P of D is an ε-sample of D iff error(P) ≤ ε Local maxima error(P) = maxv∈V minpi ∈P DF (x, pi ). where V consists of the vertices of BVD(P) and intersection points between the edges of BVD(P) and the boundary of D Ruppert’s algorithm Insert a vertex of the current Bregman Voronoi diagram if its Bregman radius is greater than ε F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams
  • 42. Termination of the sampling algorithm Optimal bounds on the number of sample points Implied by the following lemma and a packing argument Fatness of Bregman balls If F is of class C 2 , there exists two constants γ and γ such that √ √ EB(c, γ r ) ⊂ B(c, r ) ⊂ EB(c, γ r ) Number of sample points ε 4area(D+ 2 ) area(D) ≤ |P| ≤ γ πε2 γ πε2 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams