SlideShare a Scribd company logo
1 of 78
Download to read offline
Evolutionary epidemiology of drug resistance
A spatial model
Florence D´ebarre, Thomas Lenormand, Sylvain Gandon
CNRS UMR 5175, CEFE, Montpellier, France
October 30, 2008
Introduction Models Results Conclusion Supp
Introduction
Antimicrobial drugs and
life expectancy
Introduction Models Results Conclusion Supp
Introduction
Antimicrobial drugs and
life expectancy
But emergence of drug
resistance
Penicillin consumption in 2000
%ofdrug-resistantSpneumoniae
Goossens (2005)
Introduction Models Results Conclusion Supp
Introduction
Antimicrobial drugs and
life expectancy
But emergence of drug
resistance
Penicillin consumption in 2000
%ofdrug-resistantSpneumoniae
Goossens (2005)
Introduction Models Results Conclusion Supp
Introduction
Antimicrobial drugs and
life expectancy
But emergence of drug
resistance
Treatment is not applied
uniformly . . .
Penicillin consumption in 2000
%ofdrug-resistantSpneumoniae
Goossens (2005)
Introduction Models Results Conclusion Supp
Introduction
Questions:
What is the impact of the heterogeneity of treatment?
Introduction Models Results Conclusion Supp
Introduction
Questions:
What is the impact of the heterogeneity of treatment?
on the persistence of drug-sensitive parasites (WT)
Introduction Models Results Conclusion Supp
Introduction
Questions:
What is the impact of the heterogeneity of treatment?
on the persistence of drug-sensitive parasites (WT)
on the spread of drug-resistance
Introduction Models Results Conclusion Supp
Introduction
Questions:
What is the impact of the heterogeneity of treatment?
on the persistence of drug-sensitive parasites (WT)
on the spread of drug-resistance
Which spatial pattern best prevents the propagation of drug
resistant parasites?
Introduction Models Results Conclusion Supp
Model: local changes
Epidemiology
S
IWT
Drug-sensitive
IR
Drug-resistant
Susceptible
individuals
Infected
individuals
Introduction Models Results Conclusion Supp
Model: local changes
Epidemiology
S
IWT
Drug-sensitive
IR
Drug-resistant
Susceptible
individuals
Infected
individuals
β transmission
Introduction Models Results Conclusion Supp
Model: local changes
Epidemiology
S
IWT
Drug-sensitive
IR
Drug-resistant
Susceptible
individuals
Infected
individuals
β transmission
γ recovery
Introduction Models Results Conclusion Supp
Model: local changes
Epidemiology
S
IWT
Drug-sensitive
IR
Drug-resistant
Susceptible
individuals
Infected
individuals
β transmission
γ recovery
In a well-mixed population:
R0 =
Nβ
γ
Introduction Models Results Conclusion Supp
Model: local changes
Epidemiology
S
IWT
Drug-sensitive
IR
Drug-resistant
Susceptible
individuals
Infected
individuals
β transmission
γ recovery
In a well-mixed population:
R0 =
Nβ
γ
Heterogeneous environment
TREATED UNTREATED
x
0
-qT L (1-qT) L
L
qT proportion of treated areas
L environmental grain
Introduction Models Results Conclusion Supp
Model: local changes
Epidemiology
S
IWT
Drug-sensitive
IR
Drug-resistant
Susceptible
individuals
Infected
individuals
β transmission
γ recovery
In a well-mixed population:
R0 =
Nβ
γ
Heterogeneous environment
TREATED UNTREATED
x
0
-qT L (1-qT) L
L
TREATED
x
UNTREATED UNTREATED
L
qT proportion of treated areas
L environmental grain
Introduction Models Results Conclusion Supp
Treatment and Resistance
Effects on parameters
UNTREATEDTREATED
Treatment's
effect
x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
WT,T
WT: drug-sensitive
R: drug-resistant
Introduction Models Results Conclusion Supp
Treatment and Resistance
Effects on parameters
Cost of
resistance
R
UNTREATEDTREATED
R
Treatment's
effect
x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
R
R0
WT,T
WT: drug-sensitive
R: drug-resistant
Introduction Models Results Conclusion Supp
The full model
Reaction-diffusion
∂IWT
∂t
= βWT(x)IWT(N − IWT − IR) − γWT(x)IWT +
σ2
2
∂2IWT
∂x2
∂IR
∂t
= βRIR(N − IWT − IR) − γRIR +
σ2
2
∂2IR
∂x2
Introduction Models Results Conclusion Supp
The full model
Reaction-diffusion
∂IWT
∂t
= βWT(x)IWT(N − IWT − IR) − γWT(x)IWT +
σ2
2
∂2IWT
∂x2
∂IR
∂t
= βRIR(N − IWT − IR) − γRIR +
σ2
2
∂2IR
∂x2
Introduction Models Results Conclusion Supp
The full model
Reaction-diffusion
∂IWT
∂t
= βWT(x)IWT(N − IWT − IR) − γWT(x)IWT +
σ2
2
∂2IWT
∂x2
∂IR
∂t
= βRIR(N − IWT − IR) − γRIR +
σ2
2
∂2IR
∂x2
Introduction Models Results Conclusion Supp
The full model
Reaction-diffusion
∂IWT
∂t
= βWT(x)IWT(N − IWT − IR) − γWT(x)IWT +
σ2
2
∂2IWT
∂x2
∂IR
∂t
= βRIR(N − IWT − IR) − γRIR +
σ2
2
∂2IR
∂x2
Introduction Models Results Conclusion Supp
The full model
Reaction-diffusion
∂IWT
∂t
= βWT(x)IWT(N − IWT ) − γWT(x)IWT +
σ2
2
∂2IWT
∂x2
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Sasaki (2004)
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Sasaki (2004)
Trivial when RWT,T
0 > 1 (always
persists)
UNTREATEDTREATED x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
WT,T
1
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Sasaki (2004)
Trivial when RWT,T
0 > 1 (always
persists)
When RWT,T
0 < 1 . . .
UNTREATEDTREATED x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
WT,T
1
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Sasaki (2004)
Trivial when RWT,T
0 > 1 (always
persists)
When RWT,T
0 < 1 . . .
UNTREATEDTREATED x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
WT,T
1
How to?
Study the stability of the IWT = 0 equilibrium
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Proportion of treated area qT
Localdensityof
infectedindividuals
prediction
σ = 1
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Proportion of treated area qT
Localdensityof
infectedindividuals
σ = 5
Introduction Models Results Conclusion Supp
Eradication of the drug-sensitive strain (WT)
Condition for the eradication
(1 − qT) L
√
2
σ
<
1
γU
WT
R
WT,U
0 − 1
arctan


 −
γT
WT R
WT,T
0 − 1
γU
WT
R
WT,U
0 − 1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1



Conclusion
Migration and local selection have antagonistic effects
Introduction Models Results Conclusion Supp
Evolution of drug-resistance
Suppose now that there are also drug-resistant parasites.
How does the heterogeneity of treatment affect the evolution
of drug-resistance?
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
When RWT,T
0 > 1
R
UNTREATEDTREATED
R
x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
R
R0
WT,T
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
When RWT,T
0 > 1
R
UNTREATEDTREATED
R
x
Basic Reproductive
Numbers (R0)
WT
WT
R0
WT,U
R0
R
R0
WT,T
1
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
Approximation
Real solution
qT L L
IWT/N
x
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
Approximation
Real solution
qT L L
IWT/N
1 - 1/R0
WT,T
1 - 1/R0
WT,U
x
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
Approximation
Real solution
qT L L
IWT/N
1 - 1/R0
WT,T
1 - 1/R0
WT,U
x
Low migration approximation
qT L L
IWT/N
1 - 1/R0
WT,T
1 - 1/R0
WT,U
x
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
How to
Study the stability of the equilibrium with the drug-sensitive
strain only
Approximation
Real solution
qT L L
IWT/N
1 - 1/R0
WT,T
1 - 1/R0
WT,U
x
Low migration approximation
qT L L
IWT/N
1 - 1/R0
WT,T
1 - 1/R0
WT,U
x
τ =
1 − 1/RWT,U
0
1 − 1/RWT,T
0
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
τ =
1 − 1/RWT,U
0
1 − 1/RWT,T
0
Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
τ =
1 − 1/RWT,U
0
1 − 1/RWT,T
0
Invasion Condition
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
τ =
1 − 1/RWT,U
0
1 − 1/RWT,T
0
Invasion Condition
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Introduction Models Results Conclusion Supp
Invasion of the drug-resistant parasites
τ =
1 − 1/RWT,U
0
1 − 1/RWT,T
0
Invasion Condition
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Proportion of treated area qT
Localdensityofdrug-
resistantindividuals
prediction
Introduction Models Results Conclusion Supp
Conditions for coexistence
Find the criteria for the invasion of drug-sensitive parasites in
a population of drug-resistant parasites (exact)
Introduction Models Results Conclusion Supp
Conditions for coexistence
Find the criteria for the invasion of drug-sensitive parasites in
a population of drug-resistant parasites (exact)
Coexistence when reciprocal invasion
Introduction Models Results Conclusion Supp
Conditions for coexistence
Find the criteria for the invasion of drug-sensitive parasites in
a population of drug-resistant parasites (exact)
Coexistence when reciprocal invasion
Proportion of treated area qT
ScaledsizeoftheenvironmentL√2/σ
COEXISTENCE
DRUG-RESISTANT
ONLY
DRUG-SENSITIVE
ONLY
Invasion of the drug-
resistant parasites
Invasion of the drug-
sensitive parasitesdecreasingmigration
Introduction Models Results Conclusion Supp
Beyond R0
R0 is a ratio . . .
Illustration with the drug-resistant parasites.
Introduction Models Results Conclusion Supp
Beyond R0
R0 is a ratio . . .
Illustration with the drug-resistant parasites.
RR
0 =
N βR
γR
= 1.36
Introduction Models Results Conclusion Supp
Beyond R0
R0 is a ratio . . .
Illustration with the drug-resistant parasites.
RR
0 =
N βR
γR
= 1.36
Costs on recovery γ
S
IWT
IR
Fast dynamics
Introduction Models Results Conclusion Supp
Beyond R0
R0 is a ratio . . .
Illustration with the drug-resistant parasites.
RR
0 =
N βR
γR
= 1.36
Costs on recovery γ
S
IWT
IR
Fast dynamics
Costs on transmission β
S
IWT
IR
Slow dynamics
Introduction Models Results Conclusion Supp
Beyond R0
R0 is a ratio . . .
Illustration with the drug-resistant parasites.
RR
0 =
N βR
γR
= 1.36
Costs on recovery γ
qTL L
x
Fast dynamics
Costs on transmission β
S
IWT
IR
Slow dynamics
Total prevalence IWT+IR
N
Proportion of drug-resistance IR
IWT+IR
Introduction Models Results Conclusion Supp
Beyond R0
R0 is a ratio . . .
Illustration with the drug-resistant parasites.
RR
0 =
N βR
γR
= 1.36
Costs on recovery γ
qTL L
x
Fast dynamics
Costs on transmission β
qTL L
x
Slow dynamics
Total prevalence IWT+IR
N
Proportion of drug-resistance IR
IWT+IR
Introduction Models Results Conclusion Supp
Beyond R0
RR
0 =
N βR
γR
= 1.36
Costs on recovery γ
qTL L
x
Fast dynamics
Costs on transmission β
qTL L
x
Slow dynamics
Conclusion
The R0s do not tell everything; the repartition of the effects between
transmission (β) and recovery (γ) rates also matters !
Introduction Models Results Conclusion Supp
Generalization: two-host system
Invasion of drug-resistant parasites
With a two-host system (e.g. vector-borne disease):
Drug-sensitive
Drug-resistant
S
IWT
IR
VWT
Vs
VR
HOST 1 HOST 2
Introduction Models Results Conclusion Supp
Generalization: two-host system
Invasion of drug-resistant parasites
One host
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Introduction Models Results Conclusion Supp
Generalization: two-host system
Invasion of drug-resistant parasites
One host
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Two hosts
qTL
√
2
σe
>
1
ΓR
RR
0
R
WT,T
0
− 1
arctan







τk
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σe
ΓR −
RR
0
R
WT,U
0
− 1









Introduction Models Results Conclusion Supp
Generalization: two-host system
Invasion of drug-resistant parasites
One host
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Two hosts
qTL
√
2
σe
>
1
ΓR
RR
0
R
WT,T
0
− 1
arctan







τk
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σe
ΓR −
RR
0
R
WT,U
0
− 1









σ2
e =
σ2
V/νR + σ2
H/γR
1/νR + 1/γR
Introduction Models Results Conclusion Supp
Generalization: two-host system
Invasion of drug-resistant parasites
One host
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Two hosts
qTL
√
2
σe
>
1
ΓR
RR
0
R
WT,T
0
− 1
arctan







τk
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σe
ΓR −
RR
0
R
WT,U
0
− 1









σ2
e =
σ2
V/νR + σ2
H/γR
1/νR + 1/γR
ΓR =
1
1/γR + 1/νR
Introduction Models Results Conclusion Supp
Generalization: two-host system
Invasion of drug-resistant parasites
One host
qTL
√
2
σ
>
1
√
γR
RR
0
R
WT,T
0
− 1
arctan







τ
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σ
√
γR −
RR
0
R
WT,U
0
− 1









Two hosts
qTL
√
2
σe
>
1
ΓR
RR
0
R
WT,T
0
− 1
arctan







τk
2
−
RR
0
R
WT,U
0
− 1
RR
0
R
WT,T
0
− 1
tanh


(1 − qT) L
√
2
σe
ΓR −
RR
0
R
WT,U
0
− 1









σ2
e =
σ2
V/νR + σ2
H/γR
1/νR + 1/γR
ΓR =
1
1/γR + 1/νR
Introduction Models Results Conclusion Supp
Take Home Message
Beyond R0: Costs repartition between transmission and
recovery
The local R0 are not enough !
What is the R0 at the whole population scale ?
Introduction Models Results Conclusion Supp
Take Home Message
Beyond R0: Costs repartition between transmission and
recovery
The local R0 are not enough !
What is the R0 at the whole population scale ?
Critical width of the treatment area
Migration selection balance
Wiping out the resistant strains
→ cline models in population genetics
Introduction Models Results Conclusion Supp
Acknowledgements
UMR 5175
Centre d’´Ecologie Fonctionnelle et
´Evolutive
Montpellier, France
UMR 2724
G´en´etique et ´Evolution des maladies
infectieuses
Montpellier, France
Minus van Baalen, Mark Kirkpatrick, Guillaume Martin, Andrew Park,
Oph´elie Ronce, Fran¸cois Rousset
Introduction Models Results Conclusion Supp
and thank you for your attention
Introduction Models Results Conclusion Supp
Introduction Models Results Conclusion Supp
Supplementary Materials
R
WT
=
(1 − qT) L
√
2
σ
γU
WT
R
WT,U
0 − 1
1
arctan

 −
γT
WT
R
WT,T
0
−1
γU
WT
R
WT,U
0
−1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1


Introduction Models Results Conclusion Supp
Supplementary Materials
R
WT
=
(1 − qT) L
√
2
σ
γU
WT
R
WT,U
0 − 1
1
arctan

 −
γT
WT
R
WT,T
0
−1
γU
WT
R
WT,U
0
−1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1


Introduction Models Results Conclusion Supp
Supplementary Materials
R
WT
=
(1 − qT) L
√
2
σ
γU
WT
R
WT,U
0 − 1
1
arctan

 −
γT
WT
R
WT,T
0
−1
γU
WT
R
WT,U
0
−1
tanh
qTL
√
2
σ
−γT
WT
RT
0 − 1


RWT
> 1
Introduction Models Results Conclusion Supp
Two-host model
Equivalent migration σe
σ2
e =
σ2
V/νR + σ2
H/γR
1/νR + 1/γR
Introduction Models Results Conclusion Supp
Two-host model
Equivalent migration σe
σ2
e =
σ2
V/νR + σ2
H/γR
1/νR + 1/γR
Initial density (WT)
Calculated either in the human (τH) or vector (τV) compartments
Introduction Models Results Conclusion Supp
Two-host model
Critical Size
With k =H or k =V:
qTL
√
2
σe
>
1
s
arctan τ2
k α tanh α
√
s
(1 − qT)L
√
2
σe
Introduction Models Results Conclusion Supp
Two-host model
Critical Size
With k =H or k =V:
qTL
√
2
σe
>
1
s
arctan τ2
k α tanh α
√
s
(1 − qT)L
√
2
σe
s ≈
RR
0
RWT,T
0
− 1
1
1/γR + 1/νR
α ≈ −
RR
0
RWT,U
0
− 1
RR
0
RWT,T
0
− 1
Introduction Models Results Conclusion Supp
Cost and evolution of resistance
γU
WT
βU
WT
Recovery rate γR
TransmissionβR
Introduction Models Results Conclusion Supp
Cost and evolution of resistance
γU
WT
βU
WT
Recovery rate γR
TransmissionβR
Introduction Models Results Conclusion Supp
Cost and evolution of resistance
γU
WT
βU
WT
Recovery rate γR
TransmissionβR
Critical size
easierinvasion
Introduction Models Results Conclusion Supp
Cost and evolution of resistance
γU
WT
βU
WT
Recovery rate γR
TransmissionβR
Critical size
easierinvasion
Introduction Models Results Conclusion Supp
Cost and evolution of resistance
γU
WT
βU
WT
Recovery rate γR
TransmissionβR
Critical size
easierinvasion

More Related Content

Similar to Spatial Evolutionary Epidemiology of Drug Resistance

PPT Rusconi "Le multiresistenze dell'HIV/AIDS"
PPT Rusconi "Le multiresistenze dell'HIV/AIDS"PPT Rusconi "Le multiresistenze dell'HIV/AIDS"
PPT Rusconi "Le multiresistenze dell'HIV/AIDS"
StopTb Italia
 
Innovations in coagulation testing
Innovations in coagulation testingInnovations in coagulation testing
Innovations in coagulation testing
derosaMSKCC
 
ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...
ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...
ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...
European School of Oncology
 
Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...
Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...
Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...
Madridge Publishers Pvt Ltd
 
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Nanomedicine Journal (NMJ)
 

Similar to Spatial Evolutionary Epidemiology of Drug Resistance (20)

How Radiation Therapy Is Used in the Treatment of Lymphoma
How Radiation Therapy Is Used in the Treatment of Lymphoma How Radiation Therapy Is Used in the Treatment of Lymphoma
How Radiation Therapy Is Used in the Treatment of Lymphoma
 
Antihistamine introduction by Ho-Chang Kuo, MD (郭和昌醫師)
Antihistamine introduction by Ho-Chang Kuo, MD (郭和昌醫師)Antihistamine introduction by Ho-Chang Kuo, MD (郭和昌醫師)
Antihistamine introduction by Ho-Chang Kuo, MD (郭和昌醫師)
 
PPT Rusconi "Le multiresistenze dell'HIV/AIDS"
PPT Rusconi "Le multiresistenze dell'HIV/AIDS"PPT Rusconi "Le multiresistenze dell'HIV/AIDS"
PPT Rusconi "Le multiresistenze dell'HIV/AIDS"
 
Innovations in coagulation testing
Innovations in coagulation testingInnovations in coagulation testing
Innovations in coagulation testing
 
Zoulim fz traitement hépatite b 2015 du
Zoulim  fz traitement hépatite b 2015 duZoulim  fz traitement hépatite b 2015 du
Zoulim fz traitement hépatite b 2015 du
 
ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...
ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...
ECCLU 2011 - S. Supiot - Locally advanced prostate cancer: Multimodality trea...
 
Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...
Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...
Quantum Chemical Study of Molecular Recognition between Etravirine/Rilpivirin...
 
ABE IBE PBE
ABE IBE PBEABE IBE PBE
ABE IBE PBE
 
Mdr tuberculosis updates
Mdr tuberculosis updatesMdr tuberculosis updates
Mdr tuberculosis updates
 
An exploratory analysis of the crash 2 rct
An exploratory analysis of the crash 2 rctAn exploratory analysis of the crash 2 rct
An exploratory analysis of the crash 2 rct
 
5 nmj 2-1
5   nmj 2-15   nmj 2-1
5 nmj 2-1
 
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
 
Paul frohna -PK-PD Modeling and the QTc Issue (part 2- Approaches to QTc Eval...
Paul frohna -PK-PD Modeling and the QTc Issue (part 2- Approaches to QTc Eval...Paul frohna -PK-PD Modeling and the QTc Issue (part 2- Approaches to QTc Eval...
Paul frohna -PK-PD Modeling and the QTc Issue (part 2- Approaches to QTc Eval...
 
DM Garby_Vitamin A E AACC 2011
DM Garby_Vitamin A  E AACC 2011DM Garby_Vitamin A  E AACC 2011
DM Garby_Vitamin A E AACC 2011
 
Lu-177 Dotatate External Dosimetry- An Update from 2013_Crimson Publishers
Lu-177 Dotatate External Dosimetry- An Update from 2013_Crimson PublishersLu-177 Dotatate External Dosimetry- An Update from 2013_Crimson Publishers
Lu-177 Dotatate External Dosimetry- An Update from 2013_Crimson Publishers
 
Probit and logit model
Probit and logit modelProbit and logit model
Probit and logit model
 
Role of chemotherapy in carcinoma stomach
Role of chemotherapy in carcinoma stomachRole of chemotherapy in carcinoma stomach
Role of chemotherapy in carcinoma stomach
 
S00259 011-2008-5
S00259 011-2008-5S00259 011-2008-5
S00259 011-2008-5
 
(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters
 
VIH. novedades terapéuticas
VIH. novedades terapéuticasVIH. novedades terapéuticas
VIH. novedades terapéuticas
 

Recently uploaded

Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
ssusera4ec7b
 
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT

Recently uploaded (20)

Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdf
 
TEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdfTEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdf
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptx
 
VILLAGE ATTACHMENT For rural agriculture PPT.pptx
VILLAGE ATTACHMENT For rural agriculture  PPT.pptxVILLAGE ATTACHMENT For rural agriculture  PPT.pptx
VILLAGE ATTACHMENT For rural agriculture PPT.pptx
 
MSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdfMSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdf
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptx
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil Record
 
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
 
A Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert EinsteinA Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert Einstein
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
 

Spatial Evolutionary Epidemiology of Drug Resistance

  • 1. Evolutionary epidemiology of drug resistance A spatial model Florence D´ebarre, Thomas Lenormand, Sylvain Gandon CNRS UMR 5175, CEFE, Montpellier, France October 30, 2008
  • 2. Introduction Models Results Conclusion Supp Introduction Antimicrobial drugs and life expectancy
  • 3. Introduction Models Results Conclusion Supp Introduction Antimicrobial drugs and life expectancy But emergence of drug resistance Penicillin consumption in 2000 %ofdrug-resistantSpneumoniae Goossens (2005)
  • 4. Introduction Models Results Conclusion Supp Introduction Antimicrobial drugs and life expectancy But emergence of drug resistance Penicillin consumption in 2000 %ofdrug-resistantSpneumoniae Goossens (2005)
  • 5. Introduction Models Results Conclusion Supp Introduction Antimicrobial drugs and life expectancy But emergence of drug resistance Treatment is not applied uniformly . . . Penicillin consumption in 2000 %ofdrug-resistantSpneumoniae Goossens (2005)
  • 6. Introduction Models Results Conclusion Supp Introduction Questions: What is the impact of the heterogeneity of treatment?
  • 7. Introduction Models Results Conclusion Supp Introduction Questions: What is the impact of the heterogeneity of treatment? on the persistence of drug-sensitive parasites (WT)
  • 8. Introduction Models Results Conclusion Supp Introduction Questions: What is the impact of the heterogeneity of treatment? on the persistence of drug-sensitive parasites (WT) on the spread of drug-resistance
  • 9. Introduction Models Results Conclusion Supp Introduction Questions: What is the impact of the heterogeneity of treatment? on the persistence of drug-sensitive parasites (WT) on the spread of drug-resistance Which spatial pattern best prevents the propagation of drug resistant parasites?
  • 10. Introduction Models Results Conclusion Supp Model: local changes Epidemiology S IWT Drug-sensitive IR Drug-resistant Susceptible individuals Infected individuals
  • 11. Introduction Models Results Conclusion Supp Model: local changes Epidemiology S IWT Drug-sensitive IR Drug-resistant Susceptible individuals Infected individuals β transmission
  • 12. Introduction Models Results Conclusion Supp Model: local changes Epidemiology S IWT Drug-sensitive IR Drug-resistant Susceptible individuals Infected individuals β transmission γ recovery
  • 13. Introduction Models Results Conclusion Supp Model: local changes Epidemiology S IWT Drug-sensitive IR Drug-resistant Susceptible individuals Infected individuals β transmission γ recovery In a well-mixed population: R0 = Nβ γ
  • 14. Introduction Models Results Conclusion Supp Model: local changes Epidemiology S IWT Drug-sensitive IR Drug-resistant Susceptible individuals Infected individuals β transmission γ recovery In a well-mixed population: R0 = Nβ γ Heterogeneous environment TREATED UNTREATED x 0 -qT L (1-qT) L L qT proportion of treated areas L environmental grain
  • 15. Introduction Models Results Conclusion Supp Model: local changes Epidemiology S IWT Drug-sensitive IR Drug-resistant Susceptible individuals Infected individuals β transmission γ recovery In a well-mixed population: R0 = Nβ γ Heterogeneous environment TREATED UNTREATED x 0 -qT L (1-qT) L L TREATED x UNTREATED UNTREATED L qT proportion of treated areas L environmental grain
  • 16. Introduction Models Results Conclusion Supp Treatment and Resistance Effects on parameters UNTREATEDTREATED Treatment's effect x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 WT,T WT: drug-sensitive R: drug-resistant
  • 17. Introduction Models Results Conclusion Supp Treatment and Resistance Effects on parameters Cost of resistance R UNTREATEDTREATED R Treatment's effect x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 R R0 WT,T WT: drug-sensitive R: drug-resistant
  • 18. Introduction Models Results Conclusion Supp The full model Reaction-diffusion ∂IWT ∂t = βWT(x)IWT(N − IWT − IR) − γWT(x)IWT + σ2 2 ∂2IWT ∂x2 ∂IR ∂t = βRIR(N − IWT − IR) − γRIR + σ2 2 ∂2IR ∂x2
  • 19. Introduction Models Results Conclusion Supp The full model Reaction-diffusion ∂IWT ∂t = βWT(x)IWT(N − IWT − IR) − γWT(x)IWT + σ2 2 ∂2IWT ∂x2 ∂IR ∂t = βRIR(N − IWT − IR) − γRIR + σ2 2 ∂2IR ∂x2
  • 20. Introduction Models Results Conclusion Supp The full model Reaction-diffusion ∂IWT ∂t = βWT(x)IWT(N − IWT − IR) − γWT(x)IWT + σ2 2 ∂2IWT ∂x2 ∂IR ∂t = βRIR(N − IWT − IR) − γRIR + σ2 2 ∂2IR ∂x2
  • 21. Introduction Models Results Conclusion Supp The full model Reaction-diffusion ∂IWT ∂t = βWT(x)IWT(N − IWT − IR) − γWT(x)IWT + σ2 2 ∂2IWT ∂x2 ∂IR ∂t = βRIR(N − IWT − IR) − γRIR + σ2 2 ∂2IR ∂x2
  • 22. Introduction Models Results Conclusion Supp The full model Reaction-diffusion ∂IWT ∂t = βWT(x)IWT(N − IWT ) − γWT(x)IWT + σ2 2 ∂2IWT ∂x2
  • 23. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Sasaki (2004)
  • 24. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Sasaki (2004) Trivial when RWT,T 0 > 1 (always persists) UNTREATEDTREATED x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 WT,T 1
  • 25. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Sasaki (2004) Trivial when RWT,T 0 > 1 (always persists) When RWT,T 0 < 1 . . . UNTREATEDTREATED x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 WT,T 1
  • 26. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Sasaki (2004) Trivial when RWT,T 0 > 1 (always persists) When RWT,T 0 < 1 . . . UNTREATEDTREATED x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 WT,T 1 How to? Study the stability of the IWT = 0 equilibrium
  • 27. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1   
  • 28. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1   
  • 29. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1   
  • 30. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1   
  • 31. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1    Proportion of treated area qT Localdensityof infectedindividuals prediction σ = 1
  • 32. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1    Proportion of treated area qT Localdensityof infectedindividuals σ = 5
  • 33. Introduction Models Results Conclusion Supp Eradication of the drug-sensitive strain (WT) Condition for the eradication (1 − qT) L √ 2 σ < 1 γU WT R WT,U 0 − 1 arctan    − γT WT R WT,T 0 − 1 γU WT R WT,U 0 − 1 tanh qTL √ 2 σ −γT WT RT 0 − 1    Conclusion Migration and local selection have antagonistic effects
  • 34. Introduction Models Results Conclusion Supp Evolution of drug-resistance Suppose now that there are also drug-resistant parasites. How does the heterogeneity of treatment affect the evolution of drug-resistance?
  • 35. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only
  • 36. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only When RWT,T 0 > 1 R UNTREATEDTREATED R x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 R R0 WT,T
  • 37. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only When RWT,T 0 > 1 R UNTREATEDTREATED R x Basic Reproductive Numbers (R0) WT WT R0 WT,U R0 R R0 WT,T 1
  • 38. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only Approximation Real solution qT L L IWT/N x
  • 39. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only Approximation Real solution qT L L IWT/N 1 - 1/R0 WT,T 1 - 1/R0 WT,U x
  • 40. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only Approximation Real solution qT L L IWT/N 1 - 1/R0 WT,T 1 - 1/R0 WT,U x Low migration approximation qT L L IWT/N 1 - 1/R0 WT,T 1 - 1/R0 WT,U x
  • 41. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites How to Study the stability of the equilibrium with the drug-sensitive strain only Approximation Real solution qT L L IWT/N 1 - 1/R0 WT,T 1 - 1/R0 WT,U x Low migration approximation qT L L IWT/N 1 - 1/R0 WT,T 1 - 1/R0 WT,U x τ = 1 − 1/RWT,U 0 1 − 1/RWT,T 0
  • 42. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites τ = 1 − 1/RWT,U 0 1 − 1/RWT,T 0
  • 43. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites τ = 1 − 1/RWT,U 0 1 − 1/RWT,T 0 Invasion Condition qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1         
  • 44. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites τ = 1 − 1/RWT,U 0 1 − 1/RWT,T 0 Invasion Condition qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1         
  • 45. Introduction Models Results Conclusion Supp Invasion of the drug-resistant parasites τ = 1 − 1/RWT,U 0 1 − 1/RWT,T 0 Invasion Condition qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1          Proportion of treated area qT Localdensityofdrug- resistantindividuals prediction
  • 46. Introduction Models Results Conclusion Supp Conditions for coexistence Find the criteria for the invasion of drug-sensitive parasites in a population of drug-resistant parasites (exact)
  • 47. Introduction Models Results Conclusion Supp Conditions for coexistence Find the criteria for the invasion of drug-sensitive parasites in a population of drug-resistant parasites (exact) Coexistence when reciprocal invasion
  • 48. Introduction Models Results Conclusion Supp Conditions for coexistence Find the criteria for the invasion of drug-sensitive parasites in a population of drug-resistant parasites (exact) Coexistence when reciprocal invasion Proportion of treated area qT ScaledsizeoftheenvironmentL√2/σ COEXISTENCE DRUG-RESISTANT ONLY DRUG-SENSITIVE ONLY Invasion of the drug- resistant parasites Invasion of the drug- sensitive parasitesdecreasingmigration
  • 49. Introduction Models Results Conclusion Supp Beyond R0 R0 is a ratio . . . Illustration with the drug-resistant parasites.
  • 50. Introduction Models Results Conclusion Supp Beyond R0 R0 is a ratio . . . Illustration with the drug-resistant parasites. RR 0 = N βR γR = 1.36
  • 51. Introduction Models Results Conclusion Supp Beyond R0 R0 is a ratio . . . Illustration with the drug-resistant parasites. RR 0 = N βR γR = 1.36 Costs on recovery γ S IWT IR Fast dynamics
  • 52. Introduction Models Results Conclusion Supp Beyond R0 R0 is a ratio . . . Illustration with the drug-resistant parasites. RR 0 = N βR γR = 1.36 Costs on recovery γ S IWT IR Fast dynamics Costs on transmission β S IWT IR Slow dynamics
  • 53. Introduction Models Results Conclusion Supp Beyond R0 R0 is a ratio . . . Illustration with the drug-resistant parasites. RR 0 = N βR γR = 1.36 Costs on recovery γ qTL L x Fast dynamics Costs on transmission β S IWT IR Slow dynamics Total prevalence IWT+IR N Proportion of drug-resistance IR IWT+IR
  • 54. Introduction Models Results Conclusion Supp Beyond R0 R0 is a ratio . . . Illustration with the drug-resistant parasites. RR 0 = N βR γR = 1.36 Costs on recovery γ qTL L x Fast dynamics Costs on transmission β qTL L x Slow dynamics Total prevalence IWT+IR N Proportion of drug-resistance IR IWT+IR
  • 55. Introduction Models Results Conclusion Supp Beyond R0 RR 0 = N βR γR = 1.36 Costs on recovery γ qTL L x Fast dynamics Costs on transmission β qTL L x Slow dynamics Conclusion The R0s do not tell everything; the repartition of the effects between transmission (β) and recovery (γ) rates also matters !
  • 56. Introduction Models Results Conclusion Supp Generalization: two-host system Invasion of drug-resistant parasites With a two-host system (e.g. vector-borne disease): Drug-sensitive Drug-resistant S IWT IR VWT Vs VR HOST 1 HOST 2
  • 57. Introduction Models Results Conclusion Supp Generalization: two-host system Invasion of drug-resistant parasites One host qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1         
  • 58. Introduction Models Results Conclusion Supp Generalization: two-host system Invasion of drug-resistant parasites One host qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1          Two hosts qTL √ 2 σe > 1 ΓR RR 0 R WT,T 0 − 1 arctan        τk 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σe ΓR − RR 0 R WT,U 0 − 1         
  • 59. Introduction Models Results Conclusion Supp Generalization: two-host system Invasion of drug-resistant parasites One host qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1          Two hosts qTL √ 2 σe > 1 ΓR RR 0 R WT,T 0 − 1 arctan        τk 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σe ΓR − RR 0 R WT,U 0 − 1          σ2 e = σ2 V/νR + σ2 H/γR 1/νR + 1/γR
  • 60. Introduction Models Results Conclusion Supp Generalization: two-host system Invasion of drug-resistant parasites One host qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1          Two hosts qTL √ 2 σe > 1 ΓR RR 0 R WT,T 0 − 1 arctan        τk 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σe ΓR − RR 0 R WT,U 0 − 1          σ2 e = σ2 V/νR + σ2 H/γR 1/νR + 1/γR ΓR = 1 1/γR + 1/νR
  • 61. Introduction Models Results Conclusion Supp Generalization: two-host system Invasion of drug-resistant parasites One host qTL √ 2 σ > 1 √ γR RR 0 R WT,T 0 − 1 arctan        τ 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σ √ γR − RR 0 R WT,U 0 − 1          Two hosts qTL √ 2 σe > 1 ΓR RR 0 R WT,T 0 − 1 arctan        τk 2 − RR 0 R WT,U 0 − 1 RR 0 R WT,T 0 − 1 tanh   (1 − qT) L √ 2 σe ΓR − RR 0 R WT,U 0 − 1          σ2 e = σ2 V/νR + σ2 H/γR 1/νR + 1/γR ΓR = 1 1/γR + 1/νR
  • 62. Introduction Models Results Conclusion Supp Take Home Message Beyond R0: Costs repartition between transmission and recovery The local R0 are not enough ! What is the R0 at the whole population scale ?
  • 63. Introduction Models Results Conclusion Supp Take Home Message Beyond R0: Costs repartition between transmission and recovery The local R0 are not enough ! What is the R0 at the whole population scale ? Critical width of the treatment area Migration selection balance Wiping out the resistant strains → cline models in population genetics
  • 64. Introduction Models Results Conclusion Supp Acknowledgements UMR 5175 Centre d’´Ecologie Fonctionnelle et ´Evolutive Montpellier, France UMR 2724 G´en´etique et ´Evolution des maladies infectieuses Montpellier, France Minus van Baalen, Mark Kirkpatrick, Guillaume Martin, Andrew Park, Oph´elie Ronce, Fran¸cois Rousset
  • 65. Introduction Models Results Conclusion Supp and thank you for your attention
  • 66. Introduction Models Results Conclusion Supp
  • 67. Introduction Models Results Conclusion Supp Supplementary Materials R WT = (1 − qT) L √ 2 σ γU WT R WT,U 0 − 1 1 arctan   − γT WT R WT,T 0 −1 γU WT R WT,U 0 −1 tanh qTL √ 2 σ −γT WT RT 0 − 1  
  • 68. Introduction Models Results Conclusion Supp Supplementary Materials R WT = (1 − qT) L √ 2 σ γU WT R WT,U 0 − 1 1 arctan   − γT WT R WT,T 0 −1 γU WT R WT,U 0 −1 tanh qTL √ 2 σ −γT WT RT 0 − 1  
  • 69. Introduction Models Results Conclusion Supp Supplementary Materials R WT = (1 − qT) L √ 2 σ γU WT R WT,U 0 − 1 1 arctan   − γT WT R WT,T 0 −1 γU WT R WT,U 0 −1 tanh qTL √ 2 σ −γT WT RT 0 − 1   RWT > 1
  • 70. Introduction Models Results Conclusion Supp Two-host model Equivalent migration σe σ2 e = σ2 V/νR + σ2 H/γR 1/νR + 1/γR
  • 71. Introduction Models Results Conclusion Supp Two-host model Equivalent migration σe σ2 e = σ2 V/νR + σ2 H/γR 1/νR + 1/γR Initial density (WT) Calculated either in the human (τH) or vector (τV) compartments
  • 72. Introduction Models Results Conclusion Supp Two-host model Critical Size With k =H or k =V: qTL √ 2 σe > 1 s arctan τ2 k α tanh α √ s (1 − qT)L √ 2 σe
  • 73. Introduction Models Results Conclusion Supp Two-host model Critical Size With k =H or k =V: qTL √ 2 σe > 1 s arctan τ2 k α tanh α √ s (1 − qT)L √ 2 σe s ≈ RR 0 RWT,T 0 − 1 1 1/γR + 1/νR α ≈ − RR 0 RWT,U 0 − 1 RR 0 RWT,T 0 − 1
  • 74. Introduction Models Results Conclusion Supp Cost and evolution of resistance γU WT βU WT Recovery rate γR TransmissionβR
  • 75. Introduction Models Results Conclusion Supp Cost and evolution of resistance γU WT βU WT Recovery rate γR TransmissionβR
  • 76. Introduction Models Results Conclusion Supp Cost and evolution of resistance γU WT βU WT Recovery rate γR TransmissionβR Critical size easierinvasion
  • 77. Introduction Models Results Conclusion Supp Cost and evolution of resistance γU WT βU WT Recovery rate γR TransmissionβR Critical size easierinvasion
  • 78. Introduction Models Results Conclusion Supp Cost and evolution of resistance γU WT βU WT Recovery rate γR TransmissionβR Critical size easierinvasion