SlideShare a Scribd company logo
1 of 15
Miljöeffekter vid användning av
elektrobränslen inom transportsektorn
Elin Malmgren, Selma Brynolf, Julia Hansson, Maria Grahn I 2021.01
2021-01-17
Framtidens transportbränslen
Järnväg
Flyg
Sjöfart
Väg (korta
avstånd)
Väg (längre
avstånd)
Elektrolysör
CO2
Vatten
Produktion av
elektrobränslen
ENERGIKÄLLOR ENERGIBÄRARE FRAMDRIVNINGSTEKNIKER TRANSPORTSÄTT
FCV
(bränsleceller)
Nuvarande
forskningsfokus
BEV, PHEV
(batterielektrisk)
Induktiv och
ledande
elektrisk
ICEV, HEV
(förbränningsmotor
er och hybrider)
Elektricitet
Flytande
bränslen
Fossilt
Biomassa
Sol,vind etc
Gas
Vätgas
2021-01-17
Miljöeffekterna
Miljöeffekter vid användning av elektrobränslen inom transportsektorn
Målet att gå igenom den litteratur som publiserats om
elektrobränslen och summera resultaten kring deras
miljöpåverkan.
3
2021-01-17
Litteraturen
Litteraturstudie
• Scopus sökning
• 58 vetenskapliga artiklar
• 41 direkt relevant
• 17 livscykelanalyser
• 11 olika typer av miljöeffekter
• 8 olika bränslen
• Metan
• Metanol
• Bensin
• Diesel
• OME
• DME
• Kerosene
• nC8H8
4
2021-01-17
[J]
Råmaterialutvinning
• Gruvdrift
• Vattenanvändning
• Odling av lignocellulosa
• Organiskt avfall
• …
Elektrolysör
• Alkaline
• PEM
• SOEL
• …
End of
life
Distribution
• Rörledning
• Skeppstransport
• Bränslestations-
distribution
• Lastbilstransport
• …
Kapitalvaror
Bränsleanvändning
• Förbränning i tungt
fordon
• Förbränning i personbil
• Flygplan
• Balansering av energi-
överskott i elsystemet
• …
Koldioxidinfångning
• Rengöring av rökgaser
• Uppgradering av
biogas
• Transport av ren ström
• Termisk förgasning
• …
Bränslesyntes
• Fischer-Tropsch
• Metanol syntes
• DME syntes
• OME syntes
• …
Energiproduktion
• Electricitetsproduktion
• Värmeproduktion
• …
Koldioxid"production”
• Biogasanläggning
• Direct air capture
• Naturgaskraftverk
• Kolkraftverk
• Avfallsförbrännings-
anläggning
• Förgasning av biomassa
• …
Vattenproduktion
• Destillering
• Avjonisering
• …
Produktion av
kapitalvaror
Distribution av
kapitalvaror
Användning av
kapitalvaror
End of life för
kapitalvaror
[A]
[B]
[I]
[C]
[E]
[D]
[F]
[G]
[H]
2021-01-17
Klimatpåverkan
• Stora variationer i de övergripande siffrorna
• Mer liknande resultat vid närmare analys
• Huvudsakliga utsläppskällorna är
• Elektricitetsproduktion
• Koldioxidinfångning
• Naturgas som värmekälla
6
-50
80
22.48
27.57
57.7
62.79
38.88
40.04
-40
-20
-40
300
-87
473
-101.5
-97
-62
-59
-54.5
-4.8
6
38.5
49
174
-200 -100 0 100 200 300 400 500 600
[2]
[4]
[9] - wind power
[9] - wind power
[9] - NG heat
[9] - NG heat
[9] - electric boiler
[9] - electric boiler
[8] - min
[8] - max
[10] - min
[10] - max
[10] - min*
[10] - max*
[1]
[1]
[10] - 2050 min
[10] - 2050 max
[2]
[8] - min
[4]
[8] - max
[10] - 2020 min
[10] - 2020 max
DMEOMEMetanMetanol
g CO2 eq./MJ bränsle
Fig. Utsläpp av växthusgaser enligt olika studier – Vagga-till-tank
2021-01-17
Avgörande aspekter
• Flera studier pepar på att elektrobränslen ger lägre
utsläpp än fossila bränslen om en hög andel
förnyelsebar el används [5,8-10,21,22,27,31,36]
• Valet av koldioxidkälla eller metodiken för att hantera
koldioxidkällan påverkar resultaten
• Val av källa för värmetillförsel viktig
7
18.2
29
12
3
8
330
650
11
28
14.1
16.7
0 100 200 300 400 500 600 700
[19]
[21]
[21]
[10] - 2050 min
[10] - 2050 max
[10] - 2020 min
[10] - 2020 max
[35]
[35]
[19]
[19]
DieselFlyg
g CO2 eq./MJ bränsle
Fig. Utsläpp av växthusgaser enligt olika studier – Vagga-till-grav
2021-01-17
Land och vatten
Direkt landanvändning och vattenförbrukning
• Omnämns som centrala för jämförelser med bioalternativ
• Endast enkla analyser identifierade [35],[38]
• Stökiometriska samband i huvudsak användan för vattenkonsumption
8
Vattenkonsumtion i elektrolysören
(kg H2O/kg H2)
[8], [9], [12],
[21], [22],
[28]
8.85-9
[4] 11.23
[30] 11.36
[4] 13.5
[29] 16.68
2021-01-17
Andra miljöeffekter
Giftighet för människan, partikelemissioner, övergödning och försurning
• Andra utsläpp än vad som traditionellt tittar på behöver tas med i analyserna
• Materielbehov i byggprocesser driver elektrobränslenas påverkan på människors hälsa [1, 24, 29]
• Övergödning och försurning berörs, och verkar vara liknande dagens fossila i de analyser
som gjorts [5,20]
• OME som inblandningsbränsle minskar hälsoutsläpp[17]
• DME har formaldehyde som restprodukt vilket kan leda till negativa hälsoeffekter [2]
• Huvudfokuset har varit på klimateffekter
9
2021-01-17
Slutsats
Resultaten pekar på att en övergång till elektrobränslen skulle minska
miljöeffekterna jämfört med fossila bränslen och är därmed ettvkompliment
till biogena alternativ, men mer forskning som jämför elektrobränslen med
framtidens förnyelsebara drivlinor behövs.
10
2021-01-17
Iva Ridjan Skov,
Aahlborg Universitet
Andrei David Korberg,
Aahlborg Universitet Tim Wallington,
Ford
Jim Anderson,
Ford
Selma Brynolf
Maria Grahn Elin Malmgren
Julia Hansson
Tack till mina medförfattare!
Både i detta utdrag och artikeln som helhet
2021-01-17
Referenser
12 1/17/2021
1. Biernacki, P.; Röther, T.; Paul, W.; Werner, P.; Steinigeweg, S. Environmental impact of the excess electricity conversion into methanol. Journal of Cleaner Production 2018, 191, 87-98, doi:10.1016/j.jclepro.2018.04.232.
2. Matzen, M.; Demirel, Y. Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment. Journal of Cleaner Production 2016, 139, 1068-1077,
doi:10.1016/j.jclepro.2016.08.163.
3. Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. International Journal of
Hydrogen Energy 2016, 41, 16444-16462, doi:10.1016/j.ijhydene.2016.05.199.
4. Fernández-Dacosta, C.; Shen, L.; Schakel, W.; Ramirez, A.; Kramer, G.J. Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector. Applied Energy 2019, 236, 590-
606, doi:10.1016/j.apenergy.2018.11.055.
5. Sternberg, A.; Bardow, A. Life Cycle Assessment of Power-to-Gas: Syngas vs Methane. ACS Sustainable Chemistry & Engineering 2016, 4, 4156-4165, doi:10.1021/acssuschemeng.6b00644.
6. Walker, S.B.; van Lanen, D.; Mukherjee, U.; Fowler, M. Greenhouse gas emissions reductions from applications of Power-to-Gas in power generation. Sustainable Energy Technologies and Assessments 2017, 20, 25-32,
doi:10.1016/j.seta.2017.02.003.
7. Castellani, B.; Rinaldi, S.; Bonamente, E.; Nicolini, A.; Rossi, F.; Cotana, F. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization. Sci Total Environ 2018, 615, 404-411,
doi:10.1016/j.scitotenv.2017.09.254.
8. Hoppe, W.; Thonemann, N.; Bringezu, S. Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers. Journal of Industrial Ecology 2018, 22, 327-340, doi:10.1111/jiec.12583.
9. Bokinge, P.; Heyne, S.; Harvey, S. Renewable OME from biomass and electricity—Evaluating carbon footprint and energy performance. Energy Science & Engineering 2020, 8, 2587-2598, doi:10.1002/ese3.687.
10. Artz, J.; Muller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem Rev 2018, 118, 434-
504, doi:10.1021/acs.chemrev.7b00435.
11. Albrecht, F.G.; Nguyen, T.-V. Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis. Energy 2020, 192, doi:10.1016/j.energy.2019.116511.
12. Albrecht, F.G.; Nguyen, T.-V. Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis. Energy 2020, 192, 116511, doi:10.1016/j.energy.2019.116511.
13. Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Tzimas, E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy 2016, 161, 718-732,
doi:10.1016/j.apenergy.2015.07.067.
14. Llera, E.; Romeo, L.M.; Bailera, M.; Osorio, J.L. Exploring the integration of the power to gas technologies and the sustainable transport. International Journal of Energy Production and Management 2018, 3, 1-9, doi:10.2495/eq-
v3-n1-1-9.
15. Daggash, H.A.; Patzschke, C.F.; Heuberger, C.F.; Zhu, L.; Hellgardt, K.; Fennell, P.S.; Bhave, A.N.; Bardow, A.; Mac Dowell, N. Closing the carbon cycle to maximise climate change mitigation: power-to-methanolvs.power-to-direct
air capture. Sustain Energ Fuels 2018, 2, 1153-1169, doi:10.1039/c8se00061a.
16. Schmidt, P.; Batteiger, V.; Roth, A.; Weindorf, W.; Raksha, T. Power-to-Liquids as Renewable Fuel Option for Aviation: A Review. Chem Ing Tech 2018, 90, 127-140, doi:10.1002/cite.201700129.
17. Deutz, S.; Bongartz, D.; Heuser, B.; Kätelhön, A.; Schulze Langenhorst, L.; Omari, A.; Walters, M.; Klankermayer, J.; Leitner, W.; Mitsos, A., et al. Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of
CO2-based oxymethylene ether as a drop-in fuel. Energ Environ Sci 2018, 11, 331-343, doi:10.1039/c7ee01657c.
18. Monaco, F.; Lanzini, A.; Santarelli, M. Making synthetic fuels for the road transportation sector via solid oxide electrolysis and catalytic upgrade using recovered carbon dioxide and residual biomass. J Clean Prod 2018, 170, 160-
173, doi:10.1016/j.jclepro.2017.09.141.
19. Bongartz, D.; Dore, L.; Eichler, K.; Grube, T.; Heuser, B.; Hombach, L.E.; Robinius, M.; Pischinger, S.; Stolten, D.; Walther, G., et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green
carbon dioxide. Appl Energ 2018, 231, 757-767, doi:10.1016/j.apenergy.2018.09.106.
20. Koj, J.C.; Wulf, C.; Linssen, J.; Schreiber, A.; Zapp, P. Utilisation of excess electricity in different Power-to-Transport chains and their environmental assessment. Transportation Research Part D: Transport and Environment 2018,
64, 23-35, doi:10.1016/j.trd.2018.01.016.
21. Liu, C.M.; Sandhu, N.K.; McCoy, S.T.; Bergerson, J.A. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer-Tropsch fuel production. Sustain. Energy Fuels 2020, 4, 3129-3142,
doi:10.1039/c9se00479c.
2021-01-1713
22. Uusitalo, V.; Väisänen, S.; Inkeri, E.; Soukka, R. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis. Energy Conversion and Management 2017,
134, 125-134, doi:10.1016/j.enconman.2016.12.031.
23. Collet, P.; Flottes, E.; Favre, A.; Raynal, L.; Pierre, H.; Capela, S.; Peregrina, C. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl Energ 2017, 192, 282-295,
doi:10.1016/j.apenergy.2016.08.181.
24. Zhang, X.; Bauer, C.; Mutel, C.L.; Volkart, K. Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Appl Energ 2017, 190, 326-338, doi:10.1016/j.apenergy.2016.12.098.
25. Vo, T.T.Q.; Xia, A.; Rogan, F.; Wall, D.M.; Murphy, J.D. Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis. Clean Technologies and Environmental Policy 2016,
19, 689-703, doi:10.1007/s10098-016-1250-8.
26. Parra, D.; Zhang, X.; Bauer, C.; Patel, M.K. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Appl Energ 2017, 193, 440-454, doi:10.1016/j.apenergy.2017.02.063.
27. Koj, J.C.; Wulf, C.; Zapp, P. Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments. Renewable and Sustainable Energy Reviews 2019, 112, 865-879,
doi:10.1016/j.rser.2019.06.029.
28. Trieb, F.; Moser, M.; Kern, J. Liquid Solar Fuel – Liquid hydrocarbons from solar energy and biomass. Energy 2018, 153, 1-11, doi:10.1016/j.energy.2018.04.027.
29. Tschiggerl, K.; Sledz, C.; Topic, M. Considering environmental impacts of energy storage technologies: A life cycle assessment of power-to-gas business models. Energy 2018, 160, 1091-1100, doi:10.1016/j.energy.2018.07.105.
30. Vo, T.T.Q.; Rajendran, K.; Murphy, J.D. Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry? Applied Energy
2018, 228, 1046-1056, doi:10.1016/j.apenergy.2018.06.139.
31. Bongartz, D.; Doré, L.; Eichler, K.; Grube, T.; Heuser, B.; Hombach, L.E.; Robinius, M.; Pischinger, S.; Stolten, D.; Walther, G., et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon
dioxide. Appl Energ 2018, 231, 757-767, doi:10.1016/j.apenergy.2018.09.106.
32. Hoppe, W.; Thonemann, N.; Bringezu, S. Life Cycle Assessment of Carbon Dioxide–Based Production of Methane and Methanol and Derived Polymers. J Ind Ecol 2018, 22, 327-340, doi:10.1111/jiec.12583.
33. Sternberg, A.; Bardow, A. Power-to-What? – Environmental assessment of energy storage systems. Energ Environ Sci 2015, 8, 389-400, doi:10.1039/c4ee03051f.
34. Zhang, X.J.; Witte, J.; Schildhauer, T.; Bauer, C. Life cycle assessment of power-to-gas with biogas as the carbon source. Sustain Energ Fuels 2020, 4, 1427-1436, doi:10.1039/c9se00986h.
35. Schmitt, C.M. Research in Clinical Practice. Gastrointestinal Endoscopy Clinics of North America 2006, 16, 751-773.
36. Goh, C.S.; Lee, K.T. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy
Reviews 2010, 14, 842-848.
37. Liu, X.; Elgowainy, A.; Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem 2020, 22, 5751-5761, doi:10.1039/d0gc02301a.
38. Searle, S.; Christensen, A. Decarbonization Potential of Electrofuels in the European Union. White paper. International Council on Clean Transportation (ICCT), Washington DC, USA 2018.
39. Hannula, I.; Reiner, D.M. Near-Term Potential of Biofuels, Electrofuels, and Battery Electric Vehicles in Decarbonizing Road Transport. Joule 2019, 3, 2390-2402, doi:10.1016/j.joule.2019.08.013.
40. Chisalita, D.-A.; Petrescu, L.; Cormos, C.-C. Environmental evaluation of european ammonia production considering various hydrogen supply chains. Renewable and Sustainable Energy Reviews 2020, 130,
doi:10.1016/j.rser.2020.109964.
41. Hansson, J.; Brynolf, S.; Fridell, E.; Lehtveer, M. The Potential Role of Ammonia as Marine Fuel-Based on Energy Systems Modeling and Multi-Criteria Decision Analysis. Sustainability-Basel 2020, 12, doi:ARTN 3265
10.3390/su12083265.
2021-01-17
Referenser för systembildF) Cradle to grave, not including electricity source nor CC: Fernández-
Dacosta, et al. 2019
G) Cradle-to-grave, including elecvtricty not including CC or water: KOj
2018, Walker 2017
Cradle-to-grave including CC, not energy, water nor distribution
H) Cradle to grave inc. energy production and CC, distriubution:
Bongartz, et al. 2018, Uusitalo 2017 Collet 2017, Zhang 2017
I) Cradle to grave inc. carbon production and energy production:
Deutz, et al. 2018,
J) Crade-to-grave including CG production and end of life, and carbon
production, CC, Energy production , water, and electrolysis, not
distribution: Liu 2020, Matzen 2016
Cradle to grave including capital goods:
A) Gate to gate, and electricity production: Perez-Fortes 2016
B) Cradle to gate: ; Tschiggerl, et al. 2018 ; Matzen and
Demirel 2016; Pérez-Fortes, et al. 2016a; Sternberg and
Bardow 2016; Walker, et al. 2017; Artz, et al. 2018
C) Cradle to gate inc. carbon capture and energy production:
Biernacki, et al. 2018 (however only for one of the cases, the
other no energy production included), Bokinge 2020, Artz 2018
D) Cradle to gate inc. carbon capture, energy production and
water production: Hoppe 2018
E) Cradle to gate inc. carbon production, carbon capture, raw
material extraction and energy production: Sternberg 2016
Miljöeffekter vid användning av elektrobränslen inom transportsektorn

More Related Content

What's hot

Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...Marcellus Drilling News
 
Lyubovsky argus methanol forum sept 2018
Lyubovsky argus methanol forum sept 2018Lyubovsky argus methanol forum sept 2018
Lyubovsky argus methanol forum sept 2018Maxim Lyubovsky
 
Behavior change from individuals to institutions – keynote by mike vandenbergh
Behavior change from individuals to institutions – keynote by mike vandenberghBehavior change from individuals to institutions – keynote by mike vandenbergh
Behavior change from individuals to institutions – keynote by mike vandenberghTNenergy
 
The role of electrofuel technologies in Europe
The role of electrofuel technologies in EuropeThe role of electrofuel technologies in Europe
The role of electrofuel technologies in EuropeWouter de Heij
 
The Intelligent Energy System Infrastructure For The Future
The Intelligent Energy System Infrastructure For The FutureThe Intelligent Energy System Infrastructure For The Future
The Intelligent Energy System Infrastructure For The FutureGlenn Klith Andersen
 
NNFCC market review bioenergy issue seven october 2012
NNFCC market review bioenergy issue seven october 2012NNFCC market review bioenergy issue seven october 2012
NNFCC market review bioenergy issue seven october 2012NNFCC
 
IEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyIEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyDan Arthur
 
Digital Transformations Over the Next Decade in Energy and the Environment
Digital Transformations Over the Next Decade in Energy and the EnvironmentDigital Transformations Over the Next Decade in Energy and the Environment
Digital Transformations Over the Next Decade in Energy and the EnvironmentLarry Smarr
 
Ipcc srren2011-summary forpolicymakers
Ipcc srren2011-summary forpolicymakersIpcc srren2011-summary forpolicymakers
Ipcc srren2011-summary forpolicymakersEduardo Zolezzi
 
Bunaken Island | Nov-15 | Renewable and island energy activities
Bunaken Island | Nov-15 | Renewable and island energy activitiesBunaken Island | Nov-15 | Renewable and island energy activities
Bunaken Island | Nov-15 | Renewable and island energy activitiesSmart Villages
 

What's hot (13)

Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
Mahattan Institute Report on the Reasons for U.S. Increase in Oil & Gas Produ...
 
Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...
Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...
Whole-systems BECCS analysis - presentation given by Niall Mac Dowell at the ...
 
Lyubovsky argus methanol forum sept 2018
Lyubovsky argus methanol forum sept 2018Lyubovsky argus methanol forum sept 2018
Lyubovsky argus methanol forum sept 2018
 
Behavior change from individuals to institutions – keynote by mike vandenbergh
Behavior change from individuals to institutions – keynote by mike vandenberghBehavior change from individuals to institutions – keynote by mike vandenbergh
Behavior change from individuals to institutions – keynote by mike vandenbergh
 
The role of electrofuel technologies in Europe
The role of electrofuel technologies in EuropeThe role of electrofuel technologies in Europe
The role of electrofuel technologies in Europe
 
The Intelligent Energy System Infrastructure For The Future
The Intelligent Energy System Infrastructure For The FutureThe Intelligent Energy System Infrastructure For The Future
The Intelligent Energy System Infrastructure For The Future
 
NNFCC market review bioenergy issue seven october 2012
NNFCC market review bioenergy issue seven october 2012NNFCC market review bioenergy issue seven october 2012
NNFCC market review bioenergy issue seven october 2012
 
IEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyIEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of Energy
 
Thorium
ThoriumThorium
Thorium
 
Digital Transformations Over the Next Decade in Energy and the Environment
Digital Transformations Over the Next Decade in Energy and the EnvironmentDigital Transformations Over the Next Decade in Energy and the Environment
Digital Transformations Over the Next Decade in Energy and the Environment
 
Educause09 Smarr Arnaud
Educause09 Smarr ArnaudEducause09 Smarr Arnaud
Educause09 Smarr Arnaud
 
Ipcc srren2011-summary forpolicymakers
Ipcc srren2011-summary forpolicymakersIpcc srren2011-summary forpolicymakers
Ipcc srren2011-summary forpolicymakers
 
Bunaken Island | Nov-15 | Renewable and island energy activities
Bunaken Island | Nov-15 | Renewable and island energy activitiesBunaken Island | Nov-15 | Renewable and island energy activities
Bunaken Island | Nov-15 | Renewable and island energy activities
 

Similar to Miljöeffekter vid användning av elektrobränslen inom transportsektorn

Environmental asessement of switching to renewable energy sources
Environmental asessement of switching to renewable energy sourcesEnvironmental asessement of switching to renewable energy sources
Environmental asessement of switching to renewable energy sourcesSaad_Sarfraz
 
Prediction of recovery energy from ultimate analysis of waste generation in ...
Prediction of recovery energy from ultimate analysis of waste  generation in ...Prediction of recovery energy from ultimate analysis of waste  generation in ...
Prediction of recovery energy from ultimate analysis of waste generation in ...IJECEIAES
 
Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...
Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...
Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...WWW.ERFC.GR
 
184_presentation_20210606_132102.pptx
184_presentation_20210606_132102.pptx184_presentation_20210606_132102.pptx
184_presentation_20210606_132102.pptxArockiaFenil1
 
Role of clean energy in climate change
Role of clean energy in climate changeRole of clean energy in climate change
Role of clean energy in climate changeMd. Ayatullah Khan
 
7)risk approach for potential of solar, hydrogen and convention power mu...
7)risk approach for potential of solar,      hydrogen and convention power mu...7)risk approach for potential of solar,      hydrogen and convention power mu...
7)risk approach for potential of solar, hydrogen and convention power mu...Oladokun Sulaiman
 
Renewable energy and sustainable development
Renewable energy and sustainable developmentRenewable energy and sustainable development
Renewable energy and sustainable developmentDr.Raja R
 
Just add hydrogen – Making the most out of a limited resource
Just add hydrogen – Making the most out of a limited resourceJust add hydrogen – Making the most out of a limited resource
Just add hydrogen – Making the most out of a limited resourceIlkka Hannula
 
Review on Sustainable Energy Potential
Review on Sustainable Energy PotentialReview on Sustainable Energy Potential
Review on Sustainable Energy Potentialiosrjce
 
The role of bioenergy in the uk's decarbonisation strategy
The role of bioenergy in the uk's decarbonisation strategyThe role of bioenergy in the uk's decarbonisation strategy
The role of bioenergy in the uk's decarbonisation strategyDecarboN8
 
green hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranthgreen hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranthManojManu249373
 
Are we ready to flip the switch on clean energy?
Are we ready to flip the switch on clean energy?Are we ready to flip the switch on clean energy?
Are we ready to flip the switch on clean energy?University of Calgary
 
1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdf1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdfrishan16
 
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...IAEME Publication
 
Strategic Paths to the Future Energy System
Strategic Paths to the Future Energy SystemStrategic Paths to the Future Energy System
Strategic Paths to the Future Energy Systemswissnex San Francisco
 
Modelling alternative fuel production technologies for the Danish energy and ...
Modelling alternative fuel production technologies for the Danish energy and ...Modelling alternative fuel production technologies for the Danish energy and ...
Modelling alternative fuel production technologies for the Danish energy and ...IEA-ETSAP
 

Similar to Miljöeffekter vid användning av elektrobränslen inom transportsektorn (20)

Environmental asessement of switching to renewable energy sources
Environmental asessement of switching to renewable energy sourcesEnvironmental asessement of switching to renewable energy sources
Environmental asessement of switching to renewable energy sources
 
Optimization
OptimizationOptimization
Optimization
 
Prediction of recovery energy from ultimate analysis of waste generation in ...
Prediction of recovery energy from ultimate analysis of waste  generation in ...Prediction of recovery energy from ultimate analysis of waste  generation in ...
Prediction of recovery energy from ultimate analysis of waste generation in ...
 
Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...
Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...
Constantinos Balaras - Institute for Environmental Research & Sustainable Dev...
 
184_presentation_20210606_132102.pptx
184_presentation_20210606_132102.pptx184_presentation_20210606_132102.pptx
184_presentation_20210606_132102.pptx
 
Role of clean energy in climate change
Role of clean energy in climate changeRole of clean energy in climate change
Role of clean energy in climate change
 
7)risk approach for potential of solar, hydrogen and convention power mu...
7)risk approach for potential of solar,      hydrogen and convention power mu...7)risk approach for potential of solar,      hydrogen and convention power mu...
7)risk approach for potential of solar, hydrogen and convention power mu...
 
Renewable energy and sustainable development
Renewable energy and sustainable developmentRenewable energy and sustainable development
Renewable energy and sustainable development
 
3.pdf
3.pdf3.pdf
3.pdf
 
Just add hydrogen – Making the most out of a limited resource
Just add hydrogen – Making the most out of a limited resourceJust add hydrogen – Making the most out of a limited resource
Just add hydrogen – Making the most out of a limited resource
 
Review on Sustainable Energy Potential
Review on Sustainable Energy PotentialReview on Sustainable Energy Potential
Review on Sustainable Energy Potential
 
The role of bioenergy in the uk's decarbonisation strategy
The role of bioenergy in the uk's decarbonisation strategyThe role of bioenergy in the uk's decarbonisation strategy
The role of bioenergy in the uk's decarbonisation strategy
 
green hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranthgreen hydrogen fuel cell ppt by chiranth
green hydrogen fuel cell ppt by chiranth
 
Lca electric vehicles
Lca electric vehiclesLca electric vehicles
Lca electric vehicles
 
Are we ready to flip the switch on clean energy?
Are we ready to flip the switch on clean energy?Are we ready to flip the switch on clean energy?
Are we ready to flip the switch on clean energy?
 
1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdf1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdf
 
Green Energy
Green EnergyGreen Energy
Green Energy
 
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
 
Strategic Paths to the Future Energy System
Strategic Paths to the Future Energy SystemStrategic Paths to the Future Energy System
Strategic Paths to the Future Energy System
 
Modelling alternative fuel production technologies for the Danish energy and ...
Modelling alternative fuel production technologies for the Danish energy and ...Modelling alternative fuel production technologies for the Danish energy and ...
Modelling alternative fuel production technologies for the Danish energy and ...
 

Recently uploaded

Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝soniya singh
 
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...henrik385807
 
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...Krijn Poppe
 
The 3rd Intl. Workshop on NL-based Software Engineering
The 3rd Intl. Workshop on NL-based Software EngineeringThe 3rd Intl. Workshop on NL-based Software Engineering
The 3rd Intl. Workshop on NL-based Software EngineeringSebastiano Panichella
 
LANDMARKS AND MONUMENTS IN NIGERIA.pptx
LANDMARKS  AND MONUMENTS IN NIGERIA.pptxLANDMARKS  AND MONUMENTS IN NIGERIA.pptx
LANDMARKS AND MONUMENTS IN NIGERIA.pptxBasil Achie
 
SBFT Tool Competition 2024 -- Python Test Case Generation Track
SBFT Tool Competition 2024 -- Python Test Case Generation TrackSBFT Tool Competition 2024 -- Python Test Case Generation Track
SBFT Tool Competition 2024 -- Python Test Case Generation TrackSebastiano Panichella
 
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)Basil Achie
 
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfOpen Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfhenrik385807
 
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...NETWAYS
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AITatiana Gurgel
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...NETWAYS
 
Genesis part 2 Isaiah Scudder 04-24-2024.pptx
Genesis part 2 Isaiah Scudder 04-24-2024.pptxGenesis part 2 Isaiah Scudder 04-24-2024.pptx
Genesis part 2 Isaiah Scudder 04-24-2024.pptxFamilyWorshipCenterD
 
call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@vikas rana
 
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...NETWAYS
 
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 
Simulation-based Testing of Unmanned Aerial Vehicles with Aerialist
Simulation-based Testing of Unmanned Aerial Vehicles with AerialistSimulation-based Testing of Unmanned Aerial Vehicles with Aerialist
Simulation-based Testing of Unmanned Aerial Vehicles with AerialistSebastiano Panichella
 
Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...
Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...
Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...NETWAYS
 
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfCTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfhenrik385807
 
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Pooja Nehwal
 

Recently uploaded (20)

Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in Sarojini Nagar Market Delhi 💯 Call Us 🔝8264348440🔝
 
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
CTAC 2024 Valencia - Sven Zoelle - Most Crucial Invest to Digitalisation_slid...
 
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
Presentation for the Strategic Dialogue on the Future of Agriculture, Brussel...
 
The 3rd Intl. Workshop on NL-based Software Engineering
The 3rd Intl. Workshop on NL-based Software EngineeringThe 3rd Intl. Workshop on NL-based Software Engineering
The 3rd Intl. Workshop on NL-based Software Engineering
 
LANDMARKS AND MONUMENTS IN NIGERIA.pptx
LANDMARKS  AND MONUMENTS IN NIGERIA.pptxLANDMARKS  AND MONUMENTS IN NIGERIA.pptx
LANDMARKS AND MONUMENTS IN NIGERIA.pptx
 
SBFT Tool Competition 2024 -- Python Test Case Generation Track
SBFT Tool Competition 2024 -- Python Test Case Generation TrackSBFT Tool Competition 2024 -- Python Test Case Generation Track
SBFT Tool Competition 2024 -- Python Test Case Generation Track
 
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
NATIONAL ANTHEMS OF AFRICA (National Anthems of Africa)
 
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdfOpen Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
Open Source Strategy in Logistics 2015_Henrik Hankedvz-d-nl-log-conference.pdf
 
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Rohini Delhi 💯Call Us 🔝8264348440🔝
 
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
OSCamp Kubernetes 2024 | Zero-Touch OS-Infrastruktur für Container und Kubern...
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AI
 
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
OSCamp Kubernetes 2024 | A Tester's Guide to CI_CD as an Automated Quality Co...
 
Genesis part 2 Isaiah Scudder 04-24-2024.pptx
Genesis part 2 Isaiah Scudder 04-24-2024.pptxGenesis part 2 Isaiah Scudder 04-24-2024.pptx
Genesis part 2 Isaiah Scudder 04-24-2024.pptx
 
call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@call girls in delhi malviya nagar @9811711561@
call girls in delhi malviya nagar @9811711561@
 
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
Open Source Camp Kubernetes 2024 | Running WebAssembly on Kubernetes by Alex ...
 
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Vaishnavi 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Vaishnavi 🤌 8250192130 🚀 Vip Call Girls Kolkata
 
Simulation-based Testing of Unmanned Aerial Vehicles with Aerialist
Simulation-based Testing of Unmanned Aerial Vehicles with AerialistSimulation-based Testing of Unmanned Aerial Vehicles with Aerialist
Simulation-based Testing of Unmanned Aerial Vehicles with Aerialist
 
Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...
Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...
Open Source Camp Kubernetes 2024 | Monitoring Kubernetes With Icinga by Eric ...
 
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdfCTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
CTAC 2024 Valencia - Henrik Hanke - Reduce to the max - slideshare.pdf
 
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
Navi Mumbai Call Girls Service Pooja 9892124323 Real Russian Girls Looking Mo...
 

Miljöeffekter vid användning av elektrobränslen inom transportsektorn

  • 1. Miljöeffekter vid användning av elektrobränslen inom transportsektorn Elin Malmgren, Selma Brynolf, Julia Hansson, Maria Grahn I 2021.01
  • 2. 2021-01-17 Framtidens transportbränslen Järnväg Flyg Sjöfart Väg (korta avstånd) Väg (längre avstånd) Elektrolysör CO2 Vatten Produktion av elektrobränslen ENERGIKÄLLOR ENERGIBÄRARE FRAMDRIVNINGSTEKNIKER TRANSPORTSÄTT FCV (bränsleceller) Nuvarande forskningsfokus BEV, PHEV (batterielektrisk) Induktiv och ledande elektrisk ICEV, HEV (förbränningsmotor er och hybrider) Elektricitet Flytande bränslen Fossilt Biomassa Sol,vind etc Gas Vätgas
  • 3. 2021-01-17 Miljöeffekterna Miljöeffekter vid användning av elektrobränslen inom transportsektorn Målet att gå igenom den litteratur som publiserats om elektrobränslen och summera resultaten kring deras miljöpåverkan. 3
  • 4. 2021-01-17 Litteraturen Litteraturstudie • Scopus sökning • 58 vetenskapliga artiklar • 41 direkt relevant • 17 livscykelanalyser • 11 olika typer av miljöeffekter • 8 olika bränslen • Metan • Metanol • Bensin • Diesel • OME • DME • Kerosene • nC8H8 4
  • 5. 2021-01-17 [J] Råmaterialutvinning • Gruvdrift • Vattenanvändning • Odling av lignocellulosa • Organiskt avfall • … Elektrolysör • Alkaline • PEM • SOEL • … End of life Distribution • Rörledning • Skeppstransport • Bränslestations- distribution • Lastbilstransport • … Kapitalvaror Bränsleanvändning • Förbränning i tungt fordon • Förbränning i personbil • Flygplan • Balansering av energi- överskott i elsystemet • … Koldioxidinfångning • Rengöring av rökgaser • Uppgradering av biogas • Transport av ren ström • Termisk förgasning • … Bränslesyntes • Fischer-Tropsch • Metanol syntes • DME syntes • OME syntes • … Energiproduktion • Electricitetsproduktion • Värmeproduktion • … Koldioxid"production” • Biogasanläggning • Direct air capture • Naturgaskraftverk • Kolkraftverk • Avfallsförbrännings- anläggning • Förgasning av biomassa • … Vattenproduktion • Destillering • Avjonisering • … Produktion av kapitalvaror Distribution av kapitalvaror Användning av kapitalvaror End of life för kapitalvaror [A] [B] [I] [C] [E] [D] [F] [G] [H]
  • 6. 2021-01-17 Klimatpåverkan • Stora variationer i de övergripande siffrorna • Mer liknande resultat vid närmare analys • Huvudsakliga utsläppskällorna är • Elektricitetsproduktion • Koldioxidinfångning • Naturgas som värmekälla 6 -50 80 22.48 27.57 57.7 62.79 38.88 40.04 -40 -20 -40 300 -87 473 -101.5 -97 -62 -59 -54.5 -4.8 6 38.5 49 174 -200 -100 0 100 200 300 400 500 600 [2] [4] [9] - wind power [9] - wind power [9] - NG heat [9] - NG heat [9] - electric boiler [9] - electric boiler [8] - min [8] - max [10] - min [10] - max [10] - min* [10] - max* [1] [1] [10] - 2050 min [10] - 2050 max [2] [8] - min [4] [8] - max [10] - 2020 min [10] - 2020 max DMEOMEMetanMetanol g CO2 eq./MJ bränsle Fig. Utsläpp av växthusgaser enligt olika studier – Vagga-till-tank
  • 7. 2021-01-17 Avgörande aspekter • Flera studier pepar på att elektrobränslen ger lägre utsläpp än fossila bränslen om en hög andel förnyelsebar el används [5,8-10,21,22,27,31,36] • Valet av koldioxidkälla eller metodiken för att hantera koldioxidkällan påverkar resultaten • Val av källa för värmetillförsel viktig 7 18.2 29 12 3 8 330 650 11 28 14.1 16.7 0 100 200 300 400 500 600 700 [19] [21] [21] [10] - 2050 min [10] - 2050 max [10] - 2020 min [10] - 2020 max [35] [35] [19] [19] DieselFlyg g CO2 eq./MJ bränsle Fig. Utsläpp av växthusgaser enligt olika studier – Vagga-till-grav
  • 8. 2021-01-17 Land och vatten Direkt landanvändning och vattenförbrukning • Omnämns som centrala för jämförelser med bioalternativ • Endast enkla analyser identifierade [35],[38] • Stökiometriska samband i huvudsak användan för vattenkonsumption 8 Vattenkonsumtion i elektrolysören (kg H2O/kg H2) [8], [9], [12], [21], [22], [28] 8.85-9 [4] 11.23 [30] 11.36 [4] 13.5 [29] 16.68
  • 9. 2021-01-17 Andra miljöeffekter Giftighet för människan, partikelemissioner, övergödning och försurning • Andra utsläpp än vad som traditionellt tittar på behöver tas med i analyserna • Materielbehov i byggprocesser driver elektrobränslenas påverkan på människors hälsa [1, 24, 29] • Övergödning och försurning berörs, och verkar vara liknande dagens fossila i de analyser som gjorts [5,20] • OME som inblandningsbränsle minskar hälsoutsläpp[17] • DME har formaldehyde som restprodukt vilket kan leda till negativa hälsoeffekter [2] • Huvudfokuset har varit på klimateffekter 9
  • 10. 2021-01-17 Slutsats Resultaten pekar på att en övergång till elektrobränslen skulle minska miljöeffekterna jämfört med fossila bränslen och är därmed ettvkompliment till biogena alternativ, men mer forskning som jämför elektrobränslen med framtidens förnyelsebara drivlinor behövs. 10
  • 11. 2021-01-17 Iva Ridjan Skov, Aahlborg Universitet Andrei David Korberg, Aahlborg Universitet Tim Wallington, Ford Jim Anderson, Ford Selma Brynolf Maria Grahn Elin Malmgren Julia Hansson Tack till mina medförfattare! Både i detta utdrag och artikeln som helhet
  • 12. 2021-01-17 Referenser 12 1/17/2021 1. Biernacki, P.; Röther, T.; Paul, W.; Werner, P.; Steinigeweg, S. Environmental impact of the excess electricity conversion into methanol. Journal of Cleaner Production 2018, 191, 87-98, doi:10.1016/j.jclepro.2018.04.232. 2. Matzen, M.; Demirel, Y. Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment. Journal of Cleaner Production 2016, 139, 1068-1077, doi:10.1016/j.jclepro.2016.08.163. 3. Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. International Journal of Hydrogen Energy 2016, 41, 16444-16462, doi:10.1016/j.ijhydene.2016.05.199. 4. Fernández-Dacosta, C.; Shen, L.; Schakel, W.; Ramirez, A.; Kramer, G.J. Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector. Applied Energy 2019, 236, 590- 606, doi:10.1016/j.apenergy.2018.11.055. 5. Sternberg, A.; Bardow, A. Life Cycle Assessment of Power-to-Gas: Syngas vs Methane. ACS Sustainable Chemistry & Engineering 2016, 4, 4156-4165, doi:10.1021/acssuschemeng.6b00644. 6. Walker, S.B.; van Lanen, D.; Mukherjee, U.; Fowler, M. Greenhouse gas emissions reductions from applications of Power-to-Gas in power generation. Sustainable Energy Technologies and Assessments 2017, 20, 25-32, doi:10.1016/j.seta.2017.02.003. 7. Castellani, B.; Rinaldi, S.; Bonamente, E.; Nicolini, A.; Rossi, F.; Cotana, F. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization. Sci Total Environ 2018, 615, 404-411, doi:10.1016/j.scitotenv.2017.09.254. 8. Hoppe, W.; Thonemann, N.; Bringezu, S. Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers. Journal of Industrial Ecology 2018, 22, 327-340, doi:10.1111/jiec.12583. 9. Bokinge, P.; Heyne, S.; Harvey, S. Renewable OME from biomass and electricity—Evaluating carbon footprint and energy performance. Energy Science & Engineering 2020, 8, 2587-2598, doi:10.1002/ese3.687. 10. Artz, J.; Muller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem Rev 2018, 118, 434- 504, doi:10.1021/acs.chemrev.7b00435. 11. Albrecht, F.G.; Nguyen, T.-V. Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis. Energy 2020, 192, doi:10.1016/j.energy.2019.116511. 12. Albrecht, F.G.; Nguyen, T.-V. Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis. Energy 2020, 192, 116511, doi:10.1016/j.energy.2019.116511. 13. Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Tzimas, E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy 2016, 161, 718-732, doi:10.1016/j.apenergy.2015.07.067. 14. Llera, E.; Romeo, L.M.; Bailera, M.; Osorio, J.L. Exploring the integration of the power to gas technologies and the sustainable transport. International Journal of Energy Production and Management 2018, 3, 1-9, doi:10.2495/eq- v3-n1-1-9. 15. Daggash, H.A.; Patzschke, C.F.; Heuberger, C.F.; Zhu, L.; Hellgardt, K.; Fennell, P.S.; Bhave, A.N.; Bardow, A.; Mac Dowell, N. Closing the carbon cycle to maximise climate change mitigation: power-to-methanolvs.power-to-direct air capture. Sustain Energ Fuels 2018, 2, 1153-1169, doi:10.1039/c8se00061a. 16. Schmidt, P.; Batteiger, V.; Roth, A.; Weindorf, W.; Raksha, T. Power-to-Liquids as Renewable Fuel Option for Aviation: A Review. Chem Ing Tech 2018, 90, 127-140, doi:10.1002/cite.201700129. 17. Deutz, S.; Bongartz, D.; Heuser, B.; Kätelhön, A.; Schulze Langenhorst, L.; Omari, A.; Walters, M.; Klankermayer, J.; Leitner, W.; Mitsos, A., et al. Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energ Environ Sci 2018, 11, 331-343, doi:10.1039/c7ee01657c. 18. Monaco, F.; Lanzini, A.; Santarelli, M. Making synthetic fuels for the road transportation sector via solid oxide electrolysis and catalytic upgrade using recovered carbon dioxide and residual biomass. J Clean Prod 2018, 170, 160- 173, doi:10.1016/j.jclepro.2017.09.141. 19. Bongartz, D.; Dore, L.; Eichler, K.; Grube, T.; Heuser, B.; Hombach, L.E.; Robinius, M.; Pischinger, S.; Stolten, D.; Walther, G., et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Appl Energ 2018, 231, 757-767, doi:10.1016/j.apenergy.2018.09.106. 20. Koj, J.C.; Wulf, C.; Linssen, J.; Schreiber, A.; Zapp, P. Utilisation of excess electricity in different Power-to-Transport chains and their environmental assessment. Transportation Research Part D: Transport and Environment 2018, 64, 23-35, doi:10.1016/j.trd.2018.01.016. 21. Liu, C.M.; Sandhu, N.K.; McCoy, S.T.; Bergerson, J.A. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer-Tropsch fuel production. Sustain. Energy Fuels 2020, 4, 3129-3142, doi:10.1039/c9se00479c.
  • 13. 2021-01-1713 22. Uusitalo, V.; Väisänen, S.; Inkeri, E.; Soukka, R. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis. Energy Conversion and Management 2017, 134, 125-134, doi:10.1016/j.enconman.2016.12.031. 23. Collet, P.; Flottes, E.; Favre, A.; Raynal, L.; Pierre, H.; Capela, S.; Peregrina, C. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl Energ 2017, 192, 282-295, doi:10.1016/j.apenergy.2016.08.181. 24. Zhang, X.; Bauer, C.; Mutel, C.L.; Volkart, K. Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Appl Energ 2017, 190, 326-338, doi:10.1016/j.apenergy.2016.12.098. 25. Vo, T.T.Q.; Xia, A.; Rogan, F.; Wall, D.M.; Murphy, J.D. Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis. Clean Technologies and Environmental Policy 2016, 19, 689-703, doi:10.1007/s10098-016-1250-8. 26. Parra, D.; Zhang, X.; Bauer, C.; Patel, M.K. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Appl Energ 2017, 193, 440-454, doi:10.1016/j.apenergy.2017.02.063. 27. Koj, J.C.; Wulf, C.; Zapp, P. Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments. Renewable and Sustainable Energy Reviews 2019, 112, 865-879, doi:10.1016/j.rser.2019.06.029. 28. Trieb, F.; Moser, M.; Kern, J. Liquid Solar Fuel – Liquid hydrocarbons from solar energy and biomass. Energy 2018, 153, 1-11, doi:10.1016/j.energy.2018.04.027. 29. Tschiggerl, K.; Sledz, C.; Topic, M. Considering environmental impacts of energy storage technologies: A life cycle assessment of power-to-gas business models. Energy 2018, 160, 1091-1100, doi:10.1016/j.energy.2018.07.105. 30. Vo, T.T.Q.; Rajendran, K.; Murphy, J.D. Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry? Applied Energy 2018, 228, 1046-1056, doi:10.1016/j.apenergy.2018.06.139. 31. Bongartz, D.; Doré, L.; Eichler, K.; Grube, T.; Heuser, B.; Hombach, L.E.; Robinius, M.; Pischinger, S.; Stolten, D.; Walther, G., et al. Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Appl Energ 2018, 231, 757-767, doi:10.1016/j.apenergy.2018.09.106. 32. Hoppe, W.; Thonemann, N.; Bringezu, S. Life Cycle Assessment of Carbon Dioxide–Based Production of Methane and Methanol and Derived Polymers. J Ind Ecol 2018, 22, 327-340, doi:10.1111/jiec.12583. 33. Sternberg, A.; Bardow, A. Power-to-What? – Environmental assessment of energy storage systems. Energ Environ Sci 2015, 8, 389-400, doi:10.1039/c4ee03051f. 34. Zhang, X.J.; Witte, J.; Schildhauer, T.; Bauer, C. Life cycle assessment of power-to-gas with biogas as the carbon source. Sustain Energ Fuels 2020, 4, 1427-1436, doi:10.1039/c9se00986h. 35. Schmitt, C.M. Research in Clinical Practice. Gastrointestinal Endoscopy Clinics of North America 2006, 16, 751-773. 36. Goh, C.S.; Lee, K.T. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews 2010, 14, 842-848. 37. Liu, X.; Elgowainy, A.; Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem 2020, 22, 5751-5761, doi:10.1039/d0gc02301a. 38. Searle, S.; Christensen, A. Decarbonization Potential of Electrofuels in the European Union. White paper. International Council on Clean Transportation (ICCT), Washington DC, USA 2018. 39. Hannula, I.; Reiner, D.M. Near-Term Potential of Biofuels, Electrofuels, and Battery Electric Vehicles in Decarbonizing Road Transport. Joule 2019, 3, 2390-2402, doi:10.1016/j.joule.2019.08.013. 40. Chisalita, D.-A.; Petrescu, L.; Cormos, C.-C. Environmental evaluation of european ammonia production considering various hydrogen supply chains. Renewable and Sustainable Energy Reviews 2020, 130, doi:10.1016/j.rser.2020.109964. 41. Hansson, J.; Brynolf, S.; Fridell, E.; Lehtveer, M. The Potential Role of Ammonia as Marine Fuel-Based on Energy Systems Modeling and Multi-Criteria Decision Analysis. Sustainability-Basel 2020, 12, doi:ARTN 3265 10.3390/su12083265.
  • 14. 2021-01-17 Referenser för systembildF) Cradle to grave, not including electricity source nor CC: Fernández- Dacosta, et al. 2019 G) Cradle-to-grave, including elecvtricty not including CC or water: KOj 2018, Walker 2017 Cradle-to-grave including CC, not energy, water nor distribution H) Cradle to grave inc. energy production and CC, distriubution: Bongartz, et al. 2018, Uusitalo 2017 Collet 2017, Zhang 2017 I) Cradle to grave inc. carbon production and energy production: Deutz, et al. 2018, J) Crade-to-grave including CG production and end of life, and carbon production, CC, Energy production , water, and electrolysis, not distribution: Liu 2020, Matzen 2016 Cradle to grave including capital goods: A) Gate to gate, and electricity production: Perez-Fortes 2016 B) Cradle to gate: ; Tschiggerl, et al. 2018 ; Matzen and Demirel 2016; Pérez-Fortes, et al. 2016a; Sternberg and Bardow 2016; Walker, et al. 2017; Artz, et al. 2018 C) Cradle to gate inc. carbon capture and energy production: Biernacki, et al. 2018 (however only for one of the cases, the other no energy production included), Bokinge 2020, Artz 2018 D) Cradle to gate inc. carbon capture, energy production and water production: Hoppe 2018 E) Cradle to gate inc. carbon production, carbon capture, raw material extraction and energy production: Sternberg 2016

Editor's Notes

  1. Miljöeffekter  vid användning av elektrobränslen inom transportsektorn Författare: Elin Malmgren, Selma Brynolf, Julia Hansson, Maria Grahn I 2021.01 Publikation kommande i foro av en bredare review över elektrobränslesartiklar
  2. Det saknas studier som tar med materialanvändningen i fordon och kapital, speglar också I att få studier jämför miljöeffekterna med elektrisk drift eller bränsleceller.
  3. FT diesel, OME, DME – värme central Vilken exakt nivå av gram växthusgaser per kWh från elen som skulle leda till minskningar varierar. Där vissa studier föreslår att utsläpp i nivåer med dagens tyska elmarknad vore nog medans andra föreslår att lägre nivåer krävs . Dessa resultat är dock känsliga för antaganden kring metodik för att beräkna utsläppen och vilka energikällor som används i bränsleproduktionen.
  4. Det är känt att konsumptionen av vatten är högre än så för elektrolysören I sig självt, men siffror upp till 18 liter på kg vätgas