SlideShare a Scribd company logo
1 of 259
04/07/15 1
RENAL PHYSIOLOGYRENAL PHYSIOLOGY
LECTURE 1&2:LECTURE 1&2:
Kidney Structure, Functional RelationshipKidney Structure, Functional Relationship
& Glomerular filtration& Glomerular filtration
By
DR. P MURAMBIWA
04/07/15 2
 
“Kidneys  are  master  chemists  with  main  roles 
of protecting us from pleasures of eating and 
drinking,  and  thus  their  dysfunction  speeds 
our early death." 
04/07/15 3
04/07/15 4
OBJECTIVES 1:OBJECTIVES 1:
• Outline how body fluids are distributed.
•  Summarize the ionic composition of intra-
    and extracellular fluids.
• Identify the main regions of the kidney. 
•  Draw a labelled diagram of a nephron.
•  Summarize the ultrastructural features of 
different parts of the nephron.
•  Draw a labelled diagram of the blood supply 
of the nephron.
04/07/15 5
04/07/15 6
 
 
Plasma,  the  extracellular  fluid  within  the 
vascular system
 
Interstitial,  the extracellular fluid outside the 
fluid  vascular  system  and  separated 
by the capillary endothelium
Transcellular  the extracellular fluid separated 
fluids,  from  the  plasma  by  an  epithelial 
layer  and  the  capillary  endothelium 
e.g.,  synovial  fluid,  fluids  in  the 
urinary  tracts,  aqueous  &  vitreous 
humour  in  the  eye  and 
cerebrospinal fluid.
04/07/15 7
Renal Cortex
Renal Medulla
Minor
calyx
Renal Pelvis
Renal Artery
Renal
Pyramid
Renal Vein
Ureter
04/07/15 9
         Two distinct regions; 
 
    The cortex, darker outer region                
 
    Medulla a pale inner region  
The medulla further subdivides into conical
areas called pyramids. 
 
Renal
Cortex
Renal
Medulla
Cortical
Nephron
Juxtamedullary
Nephron
osmotic gradient formation
04/07/15 11
           
04/07/15 12
Efferent
Arteriole
Peritubular
capillaries
(cortical nephrons)
Vasa
Recta
(juxtamedullary
nephrons)
collecting
duct
Loop of
Henle
• The vasa recta
plays a critical role
in urine formation.
Blood Supply
to the Nephrons
Characteristics of the
renal blood flow:
1.High blood flow.
1200 ml/min, or 20-21 %
of the cardiac output.
94% to the cortex
2. Two capillary beds
High hydrostatic pressure in
glomerular capillary (about
60 mmHg) and low
hydrostatic pressure in
peritubular capillaries (about
13 mmHg)Vesa Recta
04/07/15 18
Why such a high blood flow?
 
To sustain a high rate of filtration of plasma in 
     
    the glomeruli
Blood flow is not distributed uniformly within 
     
       
04/07/15 19
FUNCTIONS OF THE KIDNEYSFUNCTIONS OF THE KIDNEYS
♦ Regulation  of  the  osmotic  pressure  of 
the  plasma  and  other  extracellular 
fluids 
♦ Regulation  of  the  excretion  of  sodium 
and water and hence the volume of the     
extracellular fluid
♦  Regulation of individual  concentrations 
of    many  electrolytes  in  the  extracellular 
fluid
 
04/07/15 20
Regulation  of  plasma  [bicarbonate]  and 
therefore the hydrogen ion concentration           
 
  The  kidneys  eliminate  metabolic  waste 
products such as urea.
 
They also eliminate many foreign compounds
from  the  body,  including  drugs  such  as 
penicillin.
 
The  kidneys  produce  erythropoietin,  renin, 
kallikrein,  that  leads  to  the  formation  of  kinins 
and various prostaglandins 
04/07/15 21
 ♦ Kidneys have several special metabolic functions. 
They are responsible for converting the inactive form 
of vitamin D to its active form, 1,25-dihydroxy-
vitamin D3
. 
The kidneys synthesize ammonia from amino acids. 
 
The kidneys can synthesize glucose from      
non-carbohydrate sources. 
Kidneys are sites for degradation of several 
polypeptide hormones, including insulin, glucagon, 
and parathyroid hormone. 
04/07/15 22
OBJECTIVES 2:OBJECTIVES 2:
 
  Define the basic processes of GFR
 
•   State  the  sites  in  the  glomerulus  for  restriction  of 
macromolecules
 
•  State the determinants of GFR. 
 
•   Why is renal auto-regulation important?
Summary-Processes occurring in the Nephron
Filtration
Reabsorption Secretion
Excretion
04/07/15 24
GLOMERULAR FILTRATIONGLOMERULAR FILTRATION
• Filtration  =  the  bulk  flow  of  a  solvent 
            through  a  filter  carrying  with  it 
            substances  small  enough  to 
       pass through the filter. 
• Kidney      =  separation  of  compounds  into 
    glomerular filtrate.
The Renal Corpuscle
Composed of Glomerulus and Bowman’s capsule
04/07/15 26
04/07/15 28
FILTRATION IN THE KIDNEYFILTRATION IN THE KIDNEY
    Ultrafiltration 
      At  the  glomerulus  and  the  Bowman’s  capsule  = 
separation  of  plasma  water  and  its  non-protein 
constituents that enter the Bowman's space. 
    Every minute = 125 ml of plasma is forced through the 
glomerular  membrane  into  the  tubule  by  hydrostatic 
pressure within the glomerulus.
Glomerular filtration barrier
04/07/15 30
04/07/15 31
RENAL PHYSIOLOGYRENAL PHYSIOLOGY
LECTURE 1 & 2 CONT’D:LECTURE 1 & 2 CONT’D:
Kidney Structure, Functional RelationshipKidney Structure, Functional Relationship
& Glomerular filtration Rate& Glomerular filtration Rate
By
DR. P MURAMBIWA
Glomerular Filtration barrier
GLOMERULAR
FILTRATION RATE
• It is a bulk flow process in which water
and all low molecular weight substances
including small peptides move together
from the glomerular capillaries into the
bowman”s capsule
WHAT SUBSTANCES ARE
FILTERED?
• All plasma constituents except for
• 1) high molecular weight substances such
as plasma proteins like albumins and
globulins i.e. those whose RMM is higher
than 68 000
• 2) substances that are protein bound
such as calcium and fatty acids
CONTD
• Large molecules with a net negative
charge because the glomerular surface is
negatively charged hence repulsion
occurs i.e. proteins
• NB THE FILTRATE CONTAINS THE
SAME AMOUNTS OF SUBSTANCES
AS THERE ARE IN PLASMA EXCEPT
FOR PROTEINS AND PROTEIN
BOUND SUBSTANCES.
Forces governing GFR and RBF
FORCES INVOLVED IN
GLOMERULAR FILTRATION
• Glomerular capillary pressure
=60mmHg
• Fluid pressure in the bowman” s space
=15mmHg
• Osmotic force due to protein in plasma
=29mmHg
FORCES FAVOURING
FILTRATION
• Glomerular capillary pressure
FORCES OPPOSING
FILTRATION
• Fluid pressure in bowman space
• Osmotic force due to protein in plasma
NET FILTRATION PRESSURE IS
POSITIVE-FAVOURS FILTRATION
CONTD
• Osmotic force due to protein higher than
in all other arterioles because of loss of
large quantities of water by glomerular
filtration process
GLOMERULAR
FILTRATION RATE
• It refers to VOLUME of fluid filtered
from the glomerulus into bowman space
PER UNIT TIME.
FACTORS AFFECTING GFR
• Changes in renal blood flow
• changes in glomerular capillary
hydrostatic pressure due to
1) changes in systemic blood pressure
2) afferent or efferent arteriolar
constriction
CONTD
• Changes of hydrostatic pressure in Bowman”s
capsule due to
 1) ureteral obstruction
 2) edema of kidney inside tight renal capsule
• changes in concentration of plasma proteins
due to
 1) dehydration
 2) hypoproteinaemia- however, these are minor
factors
SUMMARY OF FACTORS
AFFECTING GFR
• Net filtration pressure.
• Permeability of corpuscular membrane
• Surface area available for filtration to
occur
PHYSIOLOGICAL
REGULATION OF GFR
• It is not fixed but regulated by
1) hormones
2) neural input to the 2 arterioles
3) neural and hormonal input to
mesangial cells
GFR DECREASED BY
Constriction of AA
Dilatation of EA
Contraction of mesangial cells that
surround the glomerular capillaries
thereby reducing the surface area of
capillaries available for filtration, hence
at any given net filtration pressure GFR
will be reduced
AGENTS CAUSING
CONTRACTION OF MESANGIAL
CELLS
Angiotensin II
Vasopressin
Nor-epinephrine
Histamine
AGENTS CAUSING RELAXATION
OF MESANGIAL CELLS
ANP
Dopamine
cAMP
GFR IS INCREASED BY
• Constriction of EA
• Dilatation of AA
• NB SIMULTANEOUS DILATATION
AND RELAXATION OF THE 2
ARTERIOLES HAS NO NET EFFECT
ON GFR
04/07/15 52
        CONCEPT OF CLEARANCECONCEPT OF CLEARANCE
 RBF and GFR can be measured by clearance 
methods.
 
  Clearance of a substance is the volume of blood 
cleared of the substance in unit time. 
 
      The units of clearance are usually volume/time, 
(ml/min).
Renal handling of different substances
04/07/15 54
To calculate the clearance of a substance three
 values must be measured.
[Substance]  in  plasma
=
Px
   
[Substance]  in  urine
=
04/07/15 55
Clearance of Na+
 when given the following:
 
PNa+
 
=     142 mmol/l
UNa+
 
=      71 mmol/l
V
04/07/15 56
GFR MEASUREMENTGFR MEASUREMENT
 GFR = amount of filtrate that flows out of 
the  renal  corpuscles  of  both  kidneys 
every minute. 
 How do we measure GFR?
 Substance  used  must  have  the  following  
properties:
 freely filtered, small and must not bind to 
plasma protein.
04/07/15 57
♣ 
must  not  be  secreted  or  reabsorbed  (  actively  or 
passively )
                   
 
must not be toxic.
                   
 
must not be metabolized.
 
 
04/07/15 58
MEASUREMENTMEASUREMENT  WITH INULINWITH INULIN 
 Inulin is not a normal constituent of the body.
 
    Inulin (MW 5500) is freely transferred  across the 
glomerular membrane in the  same way as  small 
molecules such as urea or Cl-
. 
 
  Molecular weights have shown that molecular 
weight of 10,000 pass freely
04/07/15 59
 
We need to know the following:
     
  Urine    [inulin] 
(  UIn
  )        =
60 mg/ml
     
04/07/15 60
  Normal GFR is 125 ml/min (180 litres/day) in a 
normal man. 
 
  Varies with body size; therefore the value is 
normally  given  as  125  ml/min/1.73  m2
  body  surface  in 
young  man,  the  body  surface  area  is  10%  less  in 
females.
 
  GFR is low in infants and decreases in old age. 
 
Creatinine is:
 End product of muscle creatine
metabolism
 Used in clinical setting to measure
GFR but less accurate than inulin
method
 Small amount secreted from the
tubule
Creatinine used clinically to measure GFR
04/07/15 62
   
  MEASUREMENT OF RENAL BLOOD FLOW (RBF)MEASUREMENT OF RENAL BLOOD FLOW (RBF)

Using indirect methods.  

substance should meet the following criteria:
 
04/07/15 63
Para-amminohippuric acid (PAH) is widely used to
    estimate RBF. 
 
[PAH]  should  not  exceed  the  Tm
  since  the  substance  is 
eliminated from the kidney by both filtration and secretion 
 The amount of PAH excreted =  amount of PAH 
filtered + the amount that is being secreted.  
 
04/07/15 64
AUTOREGULATION OF GFRAUTOREGULATION OF GFR
• Changes  in  blood  pressure  have  little  effect  on 
RBF and GFR. 
 
• In  haemorrhage,  there  are  increases  in 
sympathetic  nervous  activity  to  the  kidney 
causing vasoconstriction. 
• Renal  vasoconstriction  is  attenuated  by 
prostaglandins. 
04/07/15 65
The  most  widely  accepted  explanation  is  that  of  the 
myogenic theory. 
 
This states that " Increase in wall distension of afferent 
arterioles  brought 
about  by  an 
increase  in  perfusion  pressure  causes  automatic 
contraction of the smooth muscle fibres in vessel walls 
thereby  increasing  resistance  to  flow  so  keeping  the 
flow  constant  despite  the  increase  in  perfusion 
pressure."         
Mechanisms of glomerulotubular balance and
tubuloglomerular feedback-Intra-renal mechanism
2934
Tubuloglomerular feedback
Myogenic mechanism of the autoregulation
04/07/15 69
04/07/15 70
04/07/15 71
CONCEPT OF FILTRATION FRACTIONCONCEPT OF FILTRATION FRACTION
 Filtration fraction= CI
= 125ml/min
CPAH
600ml/min
 ~ 20% in normal man
04/07/15 72
RENAL PHYSIOLOGYRENAL PHYSIOLOGY
LECTURE 3 & 4:
TRANSPORT PROCESSES IN THE PROXIMALTRANSPORT PROCESSES IN THE PROXIMAL
TUBULETUBULE
By
DR. P MURAMBIWA
 
04/07/15 73
OBJECTIVES:OBJECTIVES:
1. State major characteristics of proximal-tubular
system for reabsorption and secretion of
electrolytes.
2. What are the pathways for sodium reabsorption
across the proximal tubule epithelium?
3. Describe the renal handling of various organic and
inorganic substances.
74
 INTRODUCTIONINTRODUCTION
The proximal tubule = a major site where many
substances are reabsorbed such as :
Na+
Cl-
H2O
HCO3
-
Glucose
Amino acids
Urea
04/07/15 76
REABSORPTION AND SECRETIONREABSORPTION AND SECRETION
• Indicate the direction of movement of substances
• Reabsorption = transfer out of the tubular fluid and
returned to peritubular capillaries that surround
tubules.
• Reabsorption is a selective process, and the sites of the
nephron handle the filtrate in tubules differently.
• Secretion = movement of substances across the tubule
epithelium
Renal handling of different substances
Summary-Processes occurring in the Nephron
Filtration
Reabsorption Secretion
Excretion
PROXIMAL CONVOLUTED
TUBULE (PCT)
Found in cortex
15 mm long and 55µm in diameter
single layer of cells
luminal edges with brush border
convolution increases length hence
increase contact between tubular cells
and luminal fluid thereby facilitating
reclamation
04/07/15 79
04/07/15 80
SODIUM AND WATER REABSORPTION
REABSORPTION OF
SODIUM
04/07/15 81
% NaCl Reabsorbed
♦Proximal Tubule 67%
Loop of Henle (Ascending) 25%
Distal Tubule 5%
Collecting Duct 2%
Excreted in Urine % Variable
82
 Daily sodium intake = daily sodium loss =10.50g
 Sodium gain in the body occurs via:
Food intake
 Sodium loss in the body can occur via:
menstrual flow in females
feces especially diarrhea
urine
at times GIT loses by vomiting
sweat
hemorrhage where salt and water may be quite high
Daily Sodium Balance
Two pathways of the absorption
Lumen
Plasma
Cells
Transcellular
Pathway
Paracellular
transport
04/07/15 85
Passive Transport
Diffusion
04/07/15 87
NaNa++
HANDLINGHANDLING
Reabsorption of 60 - 70% Na+
is by active
process.
The Na+
reabsorption is associated with Cl-
and
HCO3
-
and H2
O.
The reabsorption of Na+
is primary and active
and is shown by many arguments.
88
 The net gain and loss of sodium and water are regulated
by the kidney over a wide range
BOTH SODIUM AND WATER ARE:
small
circulate free in plasma
not secreted
reabsorbed above 99% hence their absorption is
linked i.e water reabsorption is dependant on
sodium reabsorption.
COUPLING OF WATER TO SODIUM
REABSORPTION IN PCT
COUPLING OF WATER TO SODIUM
REABSORPTION IN PCT
Na+
reabsorption in PCT
Primary Active Transport
Secondary Active Transport
Na+
glucose
Na+
H+
out in out in
co-transport counter-transport
(symport) (antiport)
Co-transporters will move one
moiety, e.g. glucose, in the
same direction as the Na+
.
Counter-transporters will move
one moiety, e.g. H+
, in the
opposite direction to the Na+
.
Tubula
r
lumen
Tubular Cell
Interstitial
Fluid
Tubula
r
lumen
Tubular Cell
Interstitial
Fluid
04/07/15 94
Transport is abolished by cooling.
Replacement of sodium by any other cation
(Lithium) greatly reduces reabsorption of
H2
O and other solutes.
04/07/15 95
Reabsorption continues at almost normal rates after
substitution of Cl- by various other anions, nitrate and
perchlorate.
Replacement of Na+
with HCO3
-
reduces
Na+
reabsorption, but by less than half
Mannitol in the lumen, reduces [NaCl]
Inhibition of Na+ - K+ ATPase by oubain.
04/07/15 96
04/07/15 97
 Na+
EXTRUSION
 Cl-
REABSORPTION
 H2
O REABSORPTION
 UPTAKE OF NaCl AND H2
O
The uptake of Na+
, Cl-
and H2O from lateral
intercellular spaces into peritubular capillaries
04/07/15 98
Na+
Cl-
Na+
Cl-
H2
O πLI
πcap
πLIS
CapillaryLumen
- πcap = capillary hydrostatic pressure
- πLIS = oncotic pressure in the lateral
spaces
+ πLIS = oncotic pressure in the capillary
+ πcap = hydrostatic pressure in lateral
spaces
UPTAKE α (πcap + πLIS) – (πLIS + πcap)
H2O
πLIS
πcap
04/07/15 99
RENAL PHYSIOLOGYRENAL PHYSIOLOGY
LECTURE 3 & 4: CONT’D
TRANSPORT PROCESSES IN THE PROXIMALTRANSPORT PROCESSES IN THE PROXIMAL
TUBULETUBULE
By
DR. P MURAMBIWA
 
04/07/15 100
GLUCOSE AND AMINO ACID REABSORPTION
Glucose & amino acids
Co-transported with sodium
04/07/15 102
Transport processes for amino acid
transport (Tm
limited).
 for basic amino acids and cysteine
 for glutamic and aspartic acids
 for neutral acids
 imino acids
 for glycine
Glucose / Amino acid Co-Transport-PCT
Na+
Glucose or
Amino acid
Na+
H+
out in out in
co-transport counter-transport
(symport) (antiport)
Co-transporters will move one
moiety, e.g. glucose, in the
same direction as the Na+
.
Counter-transporters will move
one moiety, e.g. H+
, in the
opposite direction to the Na+
.
Tubula
r
lumen
Tubular Cell
Interstitial
Fluid
Tubula
r
lumen
Tubular Cell
Interstitial
Fluid
CONCEPT OF TRANSPORT MAXIMUM (Tm)
 Refers to limit to the amount of substance that the
renal tubule can transport per unit time.
 Under normal circumstances Tm is not exceeded but
due to excess ingestion or disease the plasma
concentration of a substance increases and exceed Tm
hence substance appear in urine such as
 glycosuria
 aminoaciduria
04/07/15 105
GLUCOSE TRANSPORT & CONCEPT OF TRANSPORT MAXIMUM
04/07/15 106
HYDROGEN ION SECRETION ANDHYDROGEN ION SECRETION AND
BICARBONATE REABSORPTIONBICARBONATE REABSORPTION
BICARBONATE HANDLING
BICARBONATE IS FREELY
FILTRABLE
• it undergoes reabsorption in the
• 1)PCT
• 2)ASCENDING LOOP OF HENLE
• 3)CORTICAL COLLECTING DUCTS
• bicarbonate reabsorption is an ACTIVE
PROCESS VIA:
04/07/15 108
• Processes in the kidney that
consume most of the hydrogen
ions secreted by the tubular
epithelium.
• Processes in the kidney that lead
to generation of new bicarbonate
to replace depleted plasma
bicarbonate reserves.
BICARBONATE REABSORPTION
04/07/15 111
 BICARBONATE REABSORPTION
bicarbonate reabsorption is an ACTIVE
PROCESS VIA:
 HYDROGEN ION ATPase pumps
 HYDROGEN ION/POTTASIUM ION ATPase pumps
 SODIUM ION/HYDROGEN ION COUNTER-
TRANSPORTERS
 BICARBONATE ION EXCRETION = BICARBONATE
FILTERED + BICARBONATE SECRETED-BICARBONATE
REABSORBED
 BICARBONATE REABSORPTION STARTS IN THE
CELL
 carbon dioxide + water = carbonic acid
 carbonic acid dissociates to form bicarbonate ion and
hydrogen ion
 bicarbonate ion is transported to the interstitial fluid then to
plasma while hydrogen ion is actively transported into the
lumen to combine with filtered bicarbonate to form water
and carbon dioxide which diffuse back to the cell for use in
the next cycle of bicarbonate reabsorption
ADDITION OF NEW
BICARBONATE TO PLASMA
COMBINATION OF SECRETED
BICARBONATE WITH NON
BICARBONATE BUFFERS
RENAL PRODUCTION AND
SECRETION OF AMMONIUM occurring
in the PCT
RENAL METABOLISM OF GLUTAMINE AND
EXCRETION OF AMMONIM ION
• Glutamine (amino acid) can be co transported
with sodium or can be from the interstitial fluid
where it is metabolized by the cell to form
ammonium ion and bicarbonate ion
• the ammonium ion is then secreted in counter
transport with sodium to be excreted in urine-
this leads to a net gain of bicarbonate ion
Usually about 25 times bicarbonate is filtered
more than any other buffer hence all secreted
hydrogen combine with bicarbonate in lumen
until all has been used up before combining with
other buffers of which hydrogen phosphate is the
most vital
 there is a net gain of bicarbonate in this case vital as a
way of compensating acidosis
04/07/15 118
ACID PHOSPHATE EXCRETIONACID PHOSPHATE EXCRETION
04/07/15 120
04/07/15 121
REABSORPTION OF UREAREABSORPTION OF UREA
• 50%-reabsorbed by simple
diffusion in the PCT.
• 30% is reabsorbed in the DISTAL
CONVOLUTED TUBULE
• 50% reabsorbed by FACILITATED DIFUSSION
VIA UREA TRANSPORTERS IN THE THIN
ASCENDING LIMBS OF THE LOOP OF HENLE.
124
 SUMMARYSUMMARY
This Lecture identified and described the
following:
 Pathways for sodium reabsorption across
the proximal tubule epithelium
 How Na+
and water reabsorption occur in the
proximal convoluted tubule.
 How substances like glucose, aminoacids,
Bicarbonate, urea are reabsorbed
04/07/15 125
RENAL PHYSIOLOGYRENAL PHYSIOLOGY
LECTURE 5&6:LECTURE 5&6:
COUNTER-CURRENT MULTIPLIER AND EXCHANGE SYSTEMSCOUNTER-CURRENT MULTIPLIER AND EXCHANGE SYSTEMS
By
DR. P MURAMBIWA
04/07/15 126
CORTEX
MEDULLA
Early
diluting
segment
Cortical
collecting
tubule
Outer
medullary
collecting
duct
Inner
medullary
collecting
duct
Thin
ascending
limb
Thick
ascending
limb
Thin
descending
limb
Proximal
straight tubule
Proximal
convoluted tubule
Bowman’s
capsule
Macula
densa
Late
diluting
segment
04/07/15 127
INTRODUCTIONINTRODUCTION
The fluid entering the loop of Henle is isotonic to
plasma
Animals such as birds and mammals, those with long
loops of Henle, urine produced may be more
concentrated than plasma (hypertonic).
This suggests that some processes that influence movement
of water or perhaps some electrolytes.
The loops of Henle are considered to be Counter-current
Multiplier Systems.
04/07/15 128
OBJECTIVES:OBJECTIVES:
What is the difference between Counter-current
Multiplication and Counter-current Exchange Systems?
Describe the role played by:
a) loops of Henle,
b) vasa recta, c) collecting ducts, d) ADH, and
e) urea
in the production of an osmotically
concentrated urine.
04/07/15 129
COUNTER-CURRENT MULTIPLICATION MECHANISMCOUNTER-CURRENT MULTIPLICATION MECHANISM
Hypothesis:
Proposes that the loop of Henle can produce a small
osmotic gradient between the ascending and
descending limbs that can be multiplied into a large
longitudinal gradient by the countercurrent
arrangement in the two limbs.
Wirz, Hargitay & Kuhn (1951)
04/07/15 130
Operation of the loop of Henle as a
countercurrent multiplier system
04/07/15 134
04/07/15 135
 
04/07/15 138
 ASCENDING LIMBASCENDING LIMB
 
  Actively extrudes NaCl into the medullary    
      interstitium, but is impermeable to water. 
 
 Process uses a Na+
 - K+
 ATPase 
 
 Cl-
 is actively transported.  
 
  Stoichiometry of 1Na+
, 2Cl-
 and lK+
  
     
04/07/15 139
Much of the K+
 leaks back into the tubular  
    lumen so that it is predominantly NaCl that 
   accumulates in the medullary interstitium. 
 
Osmolality in the medullary interstitium is
    increased and that of the fluid in the
   ascending limb is decreased.
NaCl transport in the thick ascending limb of the
loop of Henle
Na+ reabsorption in thick ascending loop of Henle
04/07/15 142
THE DESCENDING LIMBTHE DESCENDING LIMB
Highly permeable to H2O and to a lesser extent to  NaCl
 
Urea  is  added  to  the  medullary  interstitium  from  the 
collecting  duct by diffusion down a concentration
gradient 
 
Collecting  duct  tubules  urea  concentration  rises       
because of water reabsorption. 
 
The medullary collecting tubule is permeable to urea in 
the presence of antidiuretic hormone (ADH). 
04/07/15 143
THE OSMOTIC GRADIENTTHE OSMOTIC GRADIENT
• Only juxtamedullary nephrons contribute
• NaCl is added to the medullary interstitium.
• Ascending limb is highly impermeable to H2O.
• H2O extraction from the descending limb
increases the [NaCl]
04/07/15 144
• In the cortical collecting duct system, in the
presence of ADH, the osmolality increases to
become iso-osmotic with plasma.
• High [urea] in the medullary interstitium
provides an osmolality additional to that of
NaCl.
Na+ Reabsorption-Cortical Collecting Duct
04/07/15 146
  UREA AND COUNTER-CURRENTUREA AND COUNTER-CURRENT  MULTIPLICATIONMULTIPLICATION
 
♦Urea is delivered to the distal tubule and hence the 
   collecting ducts. 
 
♦In the presence of ADH water is reabsorbed. 
 
♦In the medullary collecting ducts ADH causes the
   urea and water reabsorption. 
 
♦The high interstitial urea concentration leads to the
   diffusion of some urea into the loop of Henle, to
   return to the collecting duct.
ADH/Arginine vasopressin
UREA DISTRIBUTION
 50%-reabsorbed by simple diffusion in the PCT.
 30% is reabsorbed in the DISTAL CONVOLUTED
TUBULE
 50% reabsorbed by FACILITATED DIFUSSION VIA
UREA TRANSPORTERS IN THE THIN ASCENDING
LIMBS OF THE LOOP OF HENLE.
 15% LOST IN URINE DAILY.
04/07/15 150
 
                   
SUMMARY OF THE FEATURES THAT PROMOTE
COUNTERCURRENT MULTIPLIER
 COUNTERCURRENT MULTIPLIER 
-basically  depends on the ability of the 
loops of henle to create and maintain a 
hyper-osmotioc medullary interstitium.
Features making this possible are:
apposition of the thin descending and 
thin ascending loops of Henle (hairpin 
turn of the loops of henle)
apposition of the vasa recti (vessels 
originating from the efferent arteriole-
hairpin turn of the vasa recti)
the thin descending limb is 
impermeable to sodium chloride but 
permeable to water
the thin ascending limb is impermeable 
to both sodium chloride and  water and 
has no active transport mechanism for 
sodium chloride
The thick ascending limb is 
impermeable to both water and sodium 
chloride but has active transport for 
sodium chloride
the distal tubule has active transport 
for sodium chloride but is impermeable 
to water
the cortical collecting duct is 
permeable to water, & has active 
transport for sodium chloride
Both medullarly and cortical  
collecting ducts are controlled by 
vasopressin. 
urea, a freely permeable and highly 
filtrable substance also helps in the 
maintenance of a hyper osmotic 
intestitium in the medulla.
Countercurrent exchanger system- Vasa recta
04/07/15 156
COUNTERCURRENT EXCHANGE SYSTEMCOUNTERCURRENT EXCHANGE SYSTEM
 Vasa recta = capillaries from efferent arterioles of the
juxtamedullary nephrons
 Blood flow = 50 - 100 ml/min of which perhaps 5 ml/min
reaches the papillae.
 The vasa recta have a hairpin arrangement and dip down
into the medulla.
 This arrangement ensures close contact between ascending
and descending vasa recta and between ascending and
descending loops of Henle.
04/07/15 157
The vasa recta, like capillaries, elsewhere are
permeable to water and solutes.
In the ascending vasa recta the plasma  regains the 
water and solutes.  
O2
 and CO2
 also undergo a countercurrent exchange in 
  the vasa recta.
 
As the descending vasa recta enter the increasingly  
hypertonic  medullary  interstitium,  water  is 
osmotically abstracted from the blood vessel, so 
that  the  osmolality  of  the  blood  (and  its  viscosity)  are 
increased.
 IN SUMMARY THE COUNTERCURRENT
EXCHANGER-OCCURS IN THE VASA RECTI BY
SIMPLE DIFFUSION OF SODIUM CHLORIDE
INTO, AND WATER OUT OF THE DISCENDING
LIMB WHILE IN THE ASCENDING LIMB THERE IS
DIFFUSION OF SALT OUT, AND WATER INTO THE
LIMB HENCE MEDULLARLY SALT WASHOUT IS
PREVENTED.
04/07/15 159
04/07/15 160
  LECTURE SUMMARY
The  Counter-current  mechanism  permits  the  kidney  to 
excrete urine with varying osmolalities.
 
The  primary  event  in  this  process  is  active  NaCl 
transport  out  the  thick  ascending  limb  of  the  loop  of 
Henle into the medullary interstitium.
04/07/15 161
ACTIVITY 4ACTIVITY 4
 
 
 
1.  How do processes for sodium and water
     reabsorption in the collecting ducts and 
      proximal  convoluted tubules differ? 
 
2.  Describe the role of counter-current 
multiplier system in  urine concentration.
 
3.  State how changes in medullary blood flow or
 loop flow rates may impede concentration of 
      urine.
 
4.  State the action of ADH and the nephron sites 
     on which it  acts. 
        
RENAL PHYSIOLOGYRENAL PHYSIOLOGY
LECTURE 7 & 8:
THE RENAL CONTROL OF SODIUM AND POTASSIUM
EXCRETION
&
RENAL ACID BASE BALANCE
By
DR. P MURAMBIWA
OBJECTIVESOBJECTIVES:
1a. Explain renal sodium and potassium handling and factors 
that control their handling.
1b. What determines the effectiveness of a pH buffer?
2. List chemical buffers present in:
(a)   extracellular fluid (b) intracellular fluid (c) bone (d) urine
   
3. What  leads  to  the  generation  of  new  bicarbonate  in  the 
kidney to replace depleted plasma bicarbonate reserves?
 
4. Which  process  in  the  kidney  consumes  most  of  the 
hydrogen ions secreted by the tubular epithelium? 
THE RENAL CONTROL OF SODIUM AND POTASSIUM
EXCRETION
04/07/15 165
 
• In several types of disease, Na+
 balance becomes 
deranged by the failure of the kidneys to excrete 
Na+
 normally. 
• The processes involved in renal Na+
 handling are 
discussed  in  this  Lecture  to  enable  you  to 
understand  underlying  factors  that  may  be 
associated with impairment in kidney function.
 
04/07/15 166
• Conditions associated with  NaConditions associated with  Na++
 Deficiency. Deficiency.
♠ Disorder Manifestation
                               
• Severe diarrhoea hyponatremia 
  especially 
infants            
                                                              
• Diuresis  hyponatremia
• Severe sweating hyponatremia
• Adrenal insufficiency hyponatremia 
•  SIADH  (  Inappropriate hyponatremia
ADH secretion). 
                     
                
04/07/15 167
• Diseases associated with KDiseases associated with K++
 deficiency. deficiency.
♥ Disorder Manifestation.
  • Laxatives   hypokalaemia 
• Vomiting  hypokalaemia
• Diarrhoea hypokalaemia
• Gastrointestinal hypokalaemia
• Surgical drainage loss hypokalaemia
• Metabolic alkalosis hypokalaemia
• Metabolic acidosis hyperkalaemia
 
 
04/07/15 168
    TUBULAR NaTUBULAR Na++
 REABSORPTION REABSORPTION
 • Controlled by both humoral factors and
   physical factors. 
 • Sites = proximal tubule, ascending loop of
        Henle,  distal  tubule  and  the  collecting 
duct or a combination of these sites.
 
 An alteration in GFR changes the filtered 
 Na+
 load 
04/07/15 169
Na+
 EXCRETION
•   GFR can be altered is by changing 
   glomerular capillary pressure.
 
•  Hydrostatic  and  plasma  oncotic  pressures  can 
also influence tubular handling of Na+
.
 
• Hydrostatic  and  plasma  oncotic  pressures  in 
the peritubular.  
 
04/07/15 170
•  Increases in blood pressure (30-60mmHg) above 
control  values  (105  -  130  mm  Hg)  in 
anaesthetised  rats  have  been  seen  to  cause 
natriuresis.   
            
 Suggested  that    arterial  blood  pressure  wash 
out an osmotic gradient to decrease not only in 
Na+
  reabsorption,  but  also  in  the  ability  of 
vasopressin to concentrate urine.
 ♣ Renal  vasodilation  in  anaesthetised  dogs
induced by either Ach or prostaglandin has           
been noted to increase Na+
 excretion and urine 
          flow without changes in GFR.
04/07/15 171
PHYSICAL FACTORSPHYSICAL FACTORS  
  •  Changes in the blood perfusing the 
kidneys
 
• Expansion of the ECF volume leads 
to increased blood volume and 
increased  systemic  arterial 
pressure. 
 
• Increased  fluid  pressure  decreases 
proximal   tubular Na+
 reabsorption.
04/07/15 172
• Increased  blood  volume  also  causes  a  dilution  of 
plasma  proteins  by  that  lowering  plasma  oncotic 
(colloid osmotic) pressure. 
 
 Physical  factors,  HOWEVER,  play  only  a      subsidiary 
role in regulating sodium  excretion.
 
 
 
04/07/15 173
NEURAL CONTROLNEURAL CONTROL
 ☻Claude  Bernad  (1859)  showed  that  section  of  the 
greater  splanchnic  nerve  (interruption  of  a  major 
part  of  the  sympathetic  supply  to  the  kidney) 
increased urine flow in the anaesthetised dog.
 
• Interruption  of  a  major  part  of  the  sympathetic 
supply to the kidney increases urine flow.  
 
04/07/15 174
♥ Sympathetic fibres from the splanchnic nerves enter 
the kidney as a nerve plexus along the walls of the 
renal artery.
 
• Sympathetic  fibres  from  the  splanchnic  nerves 
innervate three distinct structures             
♥ the  renal  vasculature,  particularly  along    the 
arteries and arterioles;
♥ the juxtaglomerular apparatus;
♥ the proximal tubule and other parts of
the nephron.
04/07/15 175
– The nerve-mediated Na+
reabsorption
involves an initial activation of ∝1
adrenoceptors.
 
04/07/15 176
♦ HORMONAL REGULATION 
Condition  Na+
mmol/l 
K+
mmol/l 
Cl-
 
mmol/l 
HCO3
-
mmol/l
Normal
Adrenal 
insufficiency 
(Addison’s disease)
Primary 
Aldosteronism 
142
 
120
 
148 
4.5
    
 
 6.7
 
 2.4 
105
 
   
 
85
 
 96 
25
 
  
25 
41
04/07/15 177
• Aldosterone is involved in the regulation of Na+
 
reabsorption.  
             
• Site of action is the epithelial cells of the distal 
convoluted tubules and collecting ducts.
• Glandular epithelial cells in the bowel mucosa, 
salivary and sweat glands.   
 
04/07/15 178
• Aldosterone  is  implicated  in  instances  of  fluid  and  electrolyte 
abnormalities associated with some diseases. 
 
•  Increased quantities of ALDOSTERONE in the urine of patients 
with  primary  and  secondary  hypertension,  congestive  heart 
failure, liver cirrhossis and nephrosis
 •  Elevated levels of aldosterone are also found in the urine of
pregnant women.
• Aldosterone  promotes  Na+
  reabsorption  in  exchange  for 
increased excretion of K+
, H+
 and NH4
+
 ion in humans.
04/07/15 179
Nuclear membraneCell membrane
(Transcription)
(TRANSLATION) mRNA 
ribosomes
avidin
DNA
Acidic protein
               
 
 
 
 
 
 
 
 
 
 
             
 
♦ MECHANISM OF ALDOSTERONE  ACTIONMECHANISM OF ALDOSTERONE  ACTION
 
04/07/15 180
• Mineralocorticoid Escape Phenomenon
∀ ♦♦ EFFECTS ON GFR AND RBFEFFECTS ON GFR AND RBF
 
• Aldosterone  and  glucocorticoids  are  necessary 
for the maintenance of GFR and RBF. 
              
 
  ♦♦ ALDOSTERONE SYNTHESISALDOSTERONE SYNTHESIS
•  ACTH  promotes  steroidgenesis  in  the 
adrenal cortex 
 
04/07/15 181
•  Angiotensin II and plasma levels of Na+
 
or K+
 
 
 •  Plasma sodium (PNa+ )
 
• K+
  ions  also  exert  a  stimulatory  effect  on 
aldosterone biosynthesis by acting directly  on 
the zona glomerulosa cells 
04/07/15 182
♦♦RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM 
(RAAS)(RAAS)
Influences Na+
 excretion in two different ways.
   A direct renal action of AII
   An influence of AII over aldosterone synthesis 
 
   AII acts directly on the adrenal cortex to enhance
   aldosterone synthesis.
  Macula densa cells within the distal tubule are
  believed  to act as sensors.
Macula
densa
(vasoconstrictors
and vasodilators)
Efferent
arteriole
Glomerular
capillaries
Proximal
tubule
Bowman’s
capsule
Urinary space
Juxtaglomerular
(Granular) cells
(renin)
Renal
nerves
Afferent
arteriole
Distal
tubule
04/07/15 184
04/07/15 187
• Alteration of NaCl concentration is accompanied by
changes in renin secretion.
(plasma globulin synthesized by the liver) 
Angiotensinogen 
↓ Renin (Aspartyl proteinase)
        Angiotensin I (Decapeptide)
↓ Converting Enzyme in Pulmonary                   
Circulation   INHIBITED BY CAPTOPRIL
      Angiotensin II (Octapeptide)
     ↓  INHIBITED BY SARALISIN
         Angiotensin III
04/07/15 188
♦♦ RENIN RELEASERENIN RELEASE
•  Increased sympathetic activity
Reduction of the extracellular fluid volume and/or the 
effective circulating volume will decrease systemic 
arterial blood pressure. 
• Baroreceptor  reflexes  will  subsequently  increase 
sympathetic activity to arterioles.  
• The  main  baroreceptors  are  in  the  carotid  arteries 
(carotid sinuses). 
04/07/15 189
Sympathetic  nerve  activity  causes  renin  release, 
mediated  by  α1
-adrenergic  receptors  and  activated 
by circulating catecholamines 
Decreased wall tension in the afferent arterioles. 
• Decreased  renal  perfusion  pressure  leads  to 
increased renin release from the granular cells. 
• The macula densa mechanism
04/07/15 190
• Changes  in  the  delivery  of  NaCl  to  the 
macula  densa  (composition  of  fluid  in 
ascending limb detected)
• The macula densa stimulus releases PGI2
that
acts on the granular cells to release renin.
04/07/15 191
♦♦ EFFECTS RAASEFFECTS RAAS         
 A II constricts efferent arterioles, to  reduce 
peritubular capillary pressure.
    
 A II increases reabsorption of Na+
 in  the 
    distal tubule.
 
 A  II  promotes  aldosterone  synthesis  in 
the  zona glomerulosa. 
   
 Stimulates thirst sensation in the brain.
04/07/15 192
2934
Tubuloglomerular feedback
04/07/15 194
• De Bold (1982) demonstrated that the artrial extracts 
caused  a  rapid  30-fold  increase  in  NaCl  excretion 
coupled with an increase in urine flow in the rat.  
 
•  Atrial cardiac cells produce ANP. 
 
• Atrial  stretch  leads  to  an  increase  in  the  circulating 
level of ANP.
• Effects of ANP are modulated via specific cell surface 
receptors  that  when  bound  to,increase  intracellular 
levels of cyclic guanosine monophosphate (cGMP). 
04/07/15 195
• Atrial extracts increase GFR in  isolated 
perfused kidney.  
 
• A  high  density  of  ANF  receptors  has 
been  seen  in  adrenal  glomerulosa 
membranes.  
    
04/07/15 196
♥♥ ACTIONS OF ANPACTIONS OF ANP
♠Inhibition of aldosterone secretion
♠Reduction of renin release
♠Reduces the release of vasopressin
♠Natriuresis and diuresis.
04/07/15 197
▲▲ ANP/ALDOSTERONEANP/ALDOSTERONE
• A high density of ANF receptors has
been seen in adrenal glomerulosa
membranes.
04/07/15 198
REGULATION OF BODY KREGULATION OF BODY K++
• Body K+
= contains 3 - 4 mmoles
= 2% of this is extracellular and its maintenance
is essential for life.
= Maintenance = regulation of renal excretion.
04/07/15 199
• RENAL HANDLING OF KRENAL HANDLING OF K++
♦In the proximal tubule 80-90% of the filtered
K+
is reabsorbed.
♦In the descending (thin) limb of the loop of
Henle, K+
is secreted, but K+
is reabsorbed
from the ascending limb with Na+
and Cl-
.
♦In the early distal tubule that is functionally
similar to the ascending limb of Henle, Na+
,
Cl-
and K+
reabsorption occurs.
04/07/15 200
♦The late distal tubule and subsequent
segments of the collecting duct system
secrete K+
into the tubular fluid.
♦The rate of K+
secretion is also influenced
by the rate of Na+
reabsorption.
♦Diuretics will increase the rate of K+
secretion.
04/07/15 201
 KK++
EXCRETIONEXCRETION
• Aldosterone is the only hormonal control
over K+
output.
• The K+
losing effects of aldosterone do
not exhibit the "escape phenomenon.
• Increases in plasma concentration of K+
directly influence aldosterone synthesis.
Summary of Na+ and K+ handling
Strenuous exercise
Cell lysis
Metabolic acidosisMetabolic Alkalosis
B-adrenergic blockadeB-adrenergic stimulation
Aldosterone deficiency
(addison’s disease)
Conn’s syndrome (excess
aldosterone)
Insulin deficiency (diabetes
mellitus)
Insulin
Factors that shift K+ out of
cells (Increase EC K+)
Factors that shift K+ into
cells (Decrease EC K+)
04/07/15 207
• HYPOKALAEMIA CAUSESHYPOKALAEMIA CAUSES
• Gastrointestinal tract or kidneys losses
Persistent vomiting or diarrhoea or the use of diuretics
• Excess insulin.
• Insulin increases K+
entry into cells that the
extracellular levels fall.
• Alkalosis reduces proximal tubular HCO-
3
absorption
and reduces Na+
reabsorption, therefore more NaHCO3
and water in the tubule.
04/07/15 208
• EFFECTS OF HYPOKALAEMIAEFFECTS OF HYPOKALAEMIA
 Symptom free until plasma K+
level has fallen to
approximately 2 - 2.5 mmol/l.
• Initial symptom is muscle weakness until death
occurs when the respiratory function is affected.
 In hypokalaemia the time cardiac muscle takes to
repolarize = prolonged.
K+
deficiency also causes derangements of metabolism.
04/07/15 209
Hypokalaemia also affects vascular tone,
causing vasoconstriction.
Polyuria and thirst are present because the
renal response to ADH is impaired by
hypokalaemia that patients are unable to
produce urine.
Treatment consists of oral administration of
potassium salt.
04/07/15 210
HYPERKALAEMIA CAUSESHYPERKALAEMIA CAUSES
• Ingestion of excess K+
causes a rise in plasma
levels of K+
.
• Acidosis may also cause hyperkalaemia when the
body's K+
stores are normal.
• Insulin causes entry of K+
into cells, therefore
deficiency will lead to hyperkalaemia.
04/07/15 211
• Another cause of hyperkalaemia is
breakdown of cells as in severe trauma, or
treatment with cytotoxic drugs.
• Hyperkalaemia can also occur due to
decreased K+
excretion in renal failure due
reduction in functioning nephrons.
04/07/15 212
EFFECTS OF HYPERKALAEMIAEFFECTS OF HYPERKALAEMIA
Excitable cells are unable to conduct action
potentials and muscle weakness follows.
Loop diuretics can be used to promote K+
excretion.
Insulin can also be used to promote K+
entry into
cells.
The effects of hyperkalaemia on muscle can be
corrected by Ca2+
administration.
04/07/15 213
04/07/15 214
♦♦ RENAL CALCIUM HANDLINGRENAL CALCIUM HANDLING
• In the proximal tubule, calcium reabsorption parallels
that of sodium and water.
• Ca2+
is positively charged and therefore entry into the
tubular cell is favoured by the electrical gradient.
• A calcium-activated ATPase facilitates transport.
04/07/15 215
• In addition a Ca2+
counter transport out of the cell
coupled to passive Na+
entry occurs (ratio 3Na+
entering for 1Ca++
leaving).
• Ca2+
reasorption in the ascending limb of the loop of
Henle is similar to that has been described before
for the proximal tubule.
• Furosemide that inhibits NaCl transport in this
region also inhibits Ca2+
reabsorption.
04/07/15 216
A Ca2+
- ATPase facilitates Ca2+
transport in the
ascending limb of the loop of Henle.
Calcium is reabsorbed under the influence of
parathormone.
The physiological regulation of Ca2+
reabsorption
occurs in the cortical thick ascending limb and
distal tubule.
04/07/15 217
♦♦ HANDLING OF PHOSPHATEHANDLING OF PHOSPHATE
Two forms acid phosphate,
• Acid H2
PO4
-
and alkaline phosphate HPO=
4
.
Phosphate is freely filtered in the nephron.
Ratio of 4:1 alkaline to acid phosphate is present in
the filtrate.
• The only hormone that regulates renal tubular
phosphate transport is PTH.
04/07/15 218
• Other hormones such as calcitonin, glucagon and
insulin may also influence renal phosphate
transport.
• PTH, calcitonin and glucagon increase renal
phosphate excretion while insulin reduces
phosphate excretion.
• Hypocalcaemia is common in renal failure patients.
04/07/15 219
• Acidosis decreases the plasma levels of
ionized Ca++
while alkalosis has the
opposite effect.
• The characteristic feature of low plasma
calcium is tetany, convulsions and muscle
cramps.
04/07/15 220
SUMMARY-CONTRIBUTION OF THESUMMARY-CONTRIBUTION OF THE
DIFFERENT NEPHRON SEGMENTSDIFFERENT NEPHRON SEGMENTS
• Nephron segment Major Functions
____________________________________
Glomerulus Forms an ultrafiltrate of
plasma
Proximal tubule Reabsorbs isosmotically
70 percent of the filtered
NaCl and H2
O
04/07/15 221
• Proximal tubule Reabsorbs K+
, glucose amino acids, calcium,
phosphate, magnesium, urea, uric acid,
and bicarbonate (by H+
secretion)
Secretes H+
, ammonia, and organic acids
and bases
• Loop of Henle Countercurrent multiplier; reabsorbs NaCl in
excess of H2
O.
Major site of active regulation of magnesium
excretion
04/07/15 222
• Distal tubule Reabsorb a small
and connecting fraction of filtered
segment NaCl Major site of
active regulation of
calcium excretion
• Collecting tubules Site of final
modification of the
urine;
Reabsorb NaCl; urine
NaCl concentration
can be reduced to less
than 1 mmol/L
RENAL ACID BASE BALANCE
 WHY MAINTAIN ACIDWHY MAINTAIN ACID
BASE BALANCE?BASE BALANCE?
Requirements for normal metabolism
• Fluctuations in pH cause significant
changes in H+
concentrations.
• The pH of the blood of a normal man is
alkaline and it is maintained within a small
range of about 7.37 to 7.42.
BICARBONATE BUFFER SYSTEMBICARBONATE BUFFER SYSTEM
          
[H+
]
nmol/l
pH pCO2
(mm-Hg)
[HCO-
3
]
m mol/l
Arterial 40 7.42 40 24
Venous 46 7.35 46 25
                        
MAJOR SOURCES OF ACIDMAJOR SOURCES OF ACID
CO2
+ H2
O ⇔ H2
CO3
⇔ H+
+ HCO-
3
In Western diets approximately 40 to 60
mmoles of non-carbonic acids mainly
from protein metabolism.
Phosphoric acid from the catabolism of
phospholipids makes a minor
contribution to daily production of non-
carbonic acids.
OTHERSOTHERS
The production of lactic acid during
muscular exercise and during hypoxia
 
The production of aceto-acetic acid and β-
OH
butyric acid during uncontrolled diabetes
mellitus
Therefore it is vital that a mechanism be
developed to defend the system from
fluctuations in H+
ions.
BUFFERS OF THE KIDNEY
HCO-
3
/CO2
Phosphate
Ammonia
HCO-
3
/CO2
Phosphate
Ammonia
CO-
3
/CO2
HCO-
3
regulated in proximal tubule – distal
tubule and collecting duct
Phosphate
Two phosphate salts
disodium hydrogen phosphate (alkaline)
Na2
HPO4
Sodium dihydrogen phosphate (acid)
NaH2
PO4
.
The normal ratio 4 :1 alkaline to acid and
can be changed H+
secretion - mainly distal 
Ammonia
Conversion of glutamine to glutamic acid and
α- ketoglutarate
NH3
diffuses into the tubule to combine with H+
forming NH4
+
that has a much lower permeance
than NH3
.
The kidney can greatly increase NH3
production
in acidosis.
This is one of the main ways in which the kidney
responds to an acid load.
 EFFECTS OF DISTURBANCES OF pHEFFECTS OF DISTURBANCES OF pH
♣ Hyperkalaemia due to movement of potassium
from cells into the extracellular fluid and the
depression of renal secretion of K+
♥ Widespread loss of smooth muscle tone that
produces a severe drop in arterial pressure.
 For prolonged periods (weeks to months)
leaching of minerals from bones
(osteoporosis).
 Effect of decreased H+
ion concentration raised
pH is tetany or spasm of muscles.
 ACID BASE DISTURBANCESACID BASE DISTURBANCES
Divided into two categories
♣ Disturbances of Respiratory origin
 Respiratory acidosis
 Respiratory alkalosis
♣ Disturbances of Non-Respiratory origin
 Metabolic acidosis
 Metabolic alkalosis
♦ "Metabolic" refers to acid-base disturbances
that effect the CO-
3
/CO2
buffer system by
means other than altering pCO2
.
 RESPIRATORY ACIDOSIS
♣ The respiratory system is unable to remove sufficient
pCO2
from the body to maintain normal pCO2
.
 [CO2
] + H2
O ⇔  H2
CO3
⇔ HCO-
3
+ H+
       
♣ Consequence = ↑↑ [H] and ↑ [HCO-
3
] pH
RENAL COMPENSATIONRENAL COMPENSATION
                     ♦ Definitions
•Compensation is the restoration of
pH towards normal though [HCO-
3
]
and/or pCO2
is still disturbed.
•Correction is the restoration of normal
pH, [HCO-
3
] and pCO2
.
♣ A change in [H+
] = H+
secretion from the renal
tubular cells.
♣ Sufficient to reabsorb HCO-
3
though plasma HCO-
3
is raised – therefore generates increased HCO-
3
for
the plasma.
♣ The increased H+
leading to increased plasma
[HCO-
3
] is the RENALCOMPENSATION for respiratory
acidosis.
♣ The pH is restored to normal but [HCO-
3
] is elevated.
♣ Respiratory acidosis is associated with hypercapnia,
pCO2
= 48 mmHg in arterial blood.
♥ CAUSES OF RESPIRATORY ACIDOSISCAUSES OF RESPIRATORY ACIDOSIS

Chronic bronchitis
 Obstruction of airway by a foreign body
 Mechanical injuries of the chest
 Infections directly affecting the respiratory
centre and brain stem.
 Anaesthetics such as morphine barbiturates,
depressants of respiration
 RESPIRATORY ALKALOSISRESPIRATORY ALKALOSIS
♣ Excessive removal of CO2
from the
body
= arterial pCO2
below 35mmHg.
↓CO2
+ H2
O ⇔ H2
CO3
⇔ ↓ ↓ H+
+
↓HCO3
-
      
↓
 pCO2
and consequent  in [H+
] in the renal
tubule H+
secretion
♣ Therefore, HCO-
3
is excreted in the urine and
plasma [HCO-
3
] falls further.
♣ In the kidney the defect leads to a change in pH
increasing H+
ions in the blood that will lead to
decreased H+
secretion and therefore HCO3
-
reabsorption.
 METABOLIC ALKALOSISMETABOLIC ALKALOSIS
♣ Acid base disturbances by means other
than altering the pCO2
=  pH =  H+
in the blood = H+
secretion = HCO3
-
re-absorption.
H2
O + CO2
⇔ H2
CO3
⇔ H+
+ ↑↑ HCO3
-
 + OH-
♣ Metabolic alkalosis = addition of OH-
ions
♣Hypoxia =  respiration = hypocapnia-
hyperventilation = respiratory alkalosis.
♣The decreased level of H+
acts on the chemo
receptors to reduce ventilation resulting in the
increase of pCO2
.
♣This is RESPIRATORY COMPENSATION
for metabolic alkalosis.
 
 
♣ This compensation brings down the pH,
but further increases the plasma
concentration of HCO3
-
.
♣ The reduced H+
secretion in the renal
tubules leading to low HCO3
-
is the RENAL
COMPENSATION for renal alkalosis
  METABOLIC ACIDOSISMETABOLIC ACIDOSIS
♣ Caused by excessive ingestion of acids
and production of H+
ions from the body.
♣ Addition of H+
ions drives the reaction to
the left resulting in the depletion of
plasma levels of HCO3
-
.
CO2
+ H2
O ⇔ H2
CO3
⇔ H+
+ ↓↓ HCO3
-
 + H+
 
♣ This direct loss of HCO3
-
leads to a
change in pH.
– This change in pH acting on the
chemoreceptors stimulates respiration so
that pCO2
falls. This is respiratory
compensation for metabolic acidosis.
04/07/15 248
SUMMARYSUMMARY
• The kidneys are the major site of sodium output and
regulation of extracellular fluid volume.
• Renal Na+ excretion is influenced by GFR, aldosterone,
peritubular capillary
• Starling forces, renal sympathetic nerve activity, diuretics etc.
• The kidneys normally maintain potassium balance by
excreting most ingested
potassium.
SUMMARY CONTINUED
The kidney is involved in the maintenance of pH.
• The processes involved include regulation of
H+
secretion.
• Urinary acidification involves re-absorption of
filtered bicarbonate, excretion of acid and
ammonia.
• The kidneys compensate for acidosis by
adding large quantities of new bicarbonate to
the blood.
 
• When an individual is acidotic for more than a few
days, there occurs a marked increase in ammonia
synthesis.
• When an alkalosis exists, the kidneys compensate
by secreting too little acid to accomplish complete
re-absorption of filtered bicarbonate, thus leading
to excretion of bicarbonate
• A diuretic is a substance that increase the rate 
of urine output.
• It cause natriuresis (increased sodium output), 
and this in turn cause diuresis (increased water 
output)
Diuretics and their mechanisms
Early distal tubuleInhibit H secretion
and HCO-3
reabsorption
Thiazides
(chlorothiazides)
Thick ascending
limb
Inhibits Na-K-Cl
co-transport in
luminal membrane
Loop (Furosemide)
Mainly proximal
tubule
Inhibit water and
solute reabsorption
Osmotic
(Mannitol)
Site of actionMechanism of
action
Class of diuretics
Collecting tubulesBlock entry of Na
into the channels
of luminal
membrane
Sodium channels
blockers
(Amiloride)
Collecting tubulesInhibit aldosterone
action
Competitive
inhibitors of
aldosterone
(Spironolactone)
Proximal tubuleInhibit secretion of
H+ and
reabsorption of
HCO-3
Carbonic
anhydrase
Inhibitors
(Acetazolamide)
• Basic processes involved in the filling and 
emptying of the bladder
3 muscles are involved
Detrusor muscle-smooth 
(parasympathetic)
Internal urethral sphincter-smooth 
(sympathetic)
External urethral  sphincter-skeletal 
(somatic motor neurone)
MICTURITION OR URINATION
Micturition reflex
stretch
receptors
• 1) APs generated by stretch receptors
• 2) reflex arc generates APs that
• 3) stimulate smooth muscle lining bladder
• 4) relax internal urethral sphincter (IUS)
• 5) stretch receptors also send APs to Pons
• 6) if it is o.k. to urinate
– APs from Pons excite smooth muscle of bladder 
and relax IUS
– relax external urethral sphincter
• 7) if not o.k. inhibitory impulses from pons inhibit 
micturition
Micturition reflex
THE END

More Related Content

What's hot (20)

Renal Handling of Glucose, organic acid, uric acid and protein
Renal Handling of Glucose, organic acid, uric acid and proteinRenal Handling of Glucose, organic acid, uric acid and protein
Renal Handling of Glucose, organic acid, uric acid and protein
 
Mechanism of formation of urine
Mechanism of formation of urineMechanism of formation of urine
Mechanism of formation of urine
 
Urine formation Glomerular Filtration
Urine formation Glomerular FiltrationUrine formation Glomerular Filtration
Urine formation Glomerular Filtration
 
Renal physiology 2
Renal physiology 2Renal physiology 2
Renal physiology 2
 
Renal blood flow & jga
Renal blood flow & jgaRenal blood flow & jga
Renal blood flow & jga
 
Renal physiology 5
Renal physiology 5Renal physiology 5
Renal physiology 5
 
URINE FORMATION
URINE FORMATIONURINE FORMATION
URINE FORMATION
 
Renal nicnas-2012 copy
Renal nicnas-2012 copyRenal nicnas-2012 copy
Renal nicnas-2012 copy
 
dr fawzy lecture 13
dr fawzy lecture 13dr fawzy lecture 13
dr fawzy lecture 13
 
Renal haemodynamics
Renal haemodynamicsRenal haemodynamics
Renal haemodynamics
 
Renal phsyiology edited
Renal phsyiology editedRenal phsyiology edited
Renal phsyiology edited
 
Functional characteristics of nephron. rmc
Functional characteristics of nephron. rmcFunctional characteristics of nephron. rmc
Functional characteristics of nephron. rmc
 
Gfr factors. 17.02.13.
Gfr factors. 17.02.13.Gfr factors. 17.02.13.
Gfr factors. 17.02.13.
 
201 urinary
201 urinary201 urinary
201 urinary
 
EVENTS OF URINE FORMATION (The Guyton and Hall physiology)
EVENTS OF URINE FORMATION (The Guyton and Hall physiology)EVENTS OF URINE FORMATION (The Guyton and Hall physiology)
EVENTS OF URINE FORMATION (The Guyton and Hall physiology)
 
JUXTA GLOMERULAR apparatus
JUXTA GLOMERULAR apparatus JUXTA GLOMERULAR apparatus
JUXTA GLOMERULAR apparatus
 
Urine formation
Urine formation Urine formation
Urine formation
 
GFR & REGULATION
GFR & REGULATIONGFR & REGULATION
GFR & REGULATION
 
Renal processing of glomerular filtrate
Renal processing of glomerular filtrateRenal processing of glomerular filtrate
Renal processing of glomerular filtrate
 
Renal handling of water
Renal handling of waterRenal handling of water
Renal handling of water
 

Viewers also liked

Re absorption and secretion by nephron
Re absorption and secretion by nephronRe absorption and secretion by nephron
Re absorption and secretion by nephronAmir Bahadur
 
‫Physiology of the kidney proff ahmed donia ‫‬
‫Physiology of the kidney proff ahmed donia ‫‬‫Physiology of the kidney proff ahmed donia ‫‬
‫Physiology of the kidney proff ahmed donia ‫‬FarragBahbah
 
Aging kidney-structural-and-functional-changes ayman seddik
Aging kidney-structural-and-functional-changes ayman seddikAging kidney-structural-and-functional-changes ayman seddik
Aging kidney-structural-and-functional-changes ayman seddikAyman Seddik
 
Development of kidney and ureter
Development of kidney and ureterDevelopment of kidney and ureter
Development of kidney and ureterKushagra Garg
 
Embryonic development of the urogenital system
Embryonic development of the urogenital systemEmbryonic development of the urogenital system
Embryonic development of the urogenital systemAsheer Khan
 
Embryology urogenital system
Embryology    urogenital systemEmbryology    urogenital system
Embryology urogenital systemMBBS IMS MSU
 
Renal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. Gawad
Renal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. GawadRenal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. Gawad
Renal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. GawadNephroTube - Dr.Gawad
 
Anatomy and physiology of urinary system
Anatomy and physiology of urinary systemAnatomy and physiology of urinary system
Anatomy and physiology of urinary systemMichael John Pendon
 
Anatomy and Physilogy of Urinary System (Renal System)
Anatomy and Physilogy of Urinary System (Renal System)Anatomy and Physilogy of Urinary System (Renal System)
Anatomy and Physilogy of Urinary System (Renal System)Yana Paculanan
 

Viewers also liked (12)

Cellular and molecular biology of the kidney
Cellular and molecular biology of the kidneyCellular and molecular biology of the kidney
Cellular and molecular biology of the kidney
 
Re absorption and secretion by nephron
Re absorption and secretion by nephronRe absorption and secretion by nephron
Re absorption and secretion by nephron
 
‫Physiology of the kidney proff ahmed donia ‫‬
‫Physiology of the kidney proff ahmed donia ‫‬‫Physiology of the kidney proff ahmed donia ‫‬
‫Physiology of the kidney proff ahmed donia ‫‬
 
Aging kidney-structural-and-functional-changes ayman seddik
Aging kidney-structural-and-functional-changes ayman seddikAging kidney-structural-and-functional-changes ayman seddik
Aging kidney-structural-and-functional-changes ayman seddik
 
Development of kidney and ureter
Development of kidney and ureterDevelopment of kidney and ureter
Development of kidney and ureter
 
Development of Kidney
Development of KidneyDevelopment of Kidney
Development of Kidney
 
Embryonic development of the urogenital system
Embryonic development of the urogenital systemEmbryonic development of the urogenital system
Embryonic development of the urogenital system
 
CME: Kidney - Anatomy & Physiology
CME: Kidney - Anatomy & PhysiologyCME: Kidney - Anatomy & Physiology
CME: Kidney - Anatomy & Physiology
 
Embryology urogenital system
Embryology    urogenital systemEmbryology    urogenital system
Embryology urogenital system
 
Renal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. Gawad
Renal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. GawadRenal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. Gawad
Renal Physiology (I) - Kidney Function & Physiological Anatomy - Dr. Gawad
 
Anatomy and physiology of urinary system
Anatomy and physiology of urinary systemAnatomy and physiology of urinary system
Anatomy and physiology of urinary system
 
Anatomy and Physilogy of Urinary System (Renal System)
Anatomy and Physilogy of Urinary System (Renal System)Anatomy and Physilogy of Urinary System (Renal System)
Anatomy and Physilogy of Urinary System (Renal System)
 

Similar to 1 mb ch b-pm renal-uz-combined slides-11-3-15

Determinants of Glomerular filtration Rate.pptx
Determinants of Glomerular filtration Rate.pptxDeterminants of Glomerular filtration Rate.pptx
Determinants of Glomerular filtration Rate.pptxLeviteDeliverance
 
Physiology of urine formation and kidney function test swati mam
Physiology of urine formation and kidney function test  swati mamPhysiology of urine formation and kidney function test  swati mam
Physiology of urine formation and kidney function test swati mamDr Praman Kushwah
 
A Chapter 8- Renal Physiology-1.ppt
A Chapter 8- Renal Physiology-1.pptA Chapter 8- Renal Physiology-1.ppt
A Chapter 8- Renal Physiology-1.pptMaruMengeshaWorku18B
 
urineformation-160601155205.pptx
urineformation-160601155205.pptxurineformation-160601155205.pptx
urineformation-160601155205.pptxAparnaReddy59
 
Accurate assessment of kidney function in the critically
Accurate assessment of kidney function in the criticallyAccurate assessment of kidney function in the critically
Accurate assessment of kidney function in the criticallyAbdul Rahman Shaikh
 
Unit 8: Kidney Functions and disorders
Unit 8: Kidney Functions and disordersUnit 8: Kidney Functions and disorders
Unit 8: Kidney Functions and disordersDrElhamSharif
 
Renal physiology and its anesthetic implications
Renal physiology and its anesthetic implicationsRenal physiology and its anesthetic implications
Renal physiology and its anesthetic implicationsSathya Prabu
 
Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...
Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...
Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...Hussein Sakr
 
Nephrology
NephrologyNephrology
Nephrologybabarali
 
Glomerular filtrate rate GFR's regulation (1).pptx
Glomerular filtrate rate GFR's regulation  (1).pptxGlomerular filtrate rate GFR's regulation  (1).pptx
Glomerular filtrate rate GFR's regulation (1).pptxAbdulGhayur1
 
L1-Renal physiology 2018.ppt
L1-Renal physiology 2018.pptL1-Renal physiology 2018.ppt
L1-Renal physiology 2018.pptZarka Sarwar
 
Renal anatomy and physiology in relation.pptx
Renal anatomy and physiology in relation.pptxRenal anatomy and physiology in relation.pptx
Renal anatomy and physiology in relation.pptxibrahimelkathiri1
 
Fisiologi Renal Smamda 7 November 2022.pptx
Fisiologi Renal Smamda 7 November 2022.pptxFisiologi Renal Smamda 7 November 2022.pptx
Fisiologi Renal Smamda 7 November 2022.pptxsatriyodwisuryantoro
 
Functions of kidney
Functions of kidneyFunctions of kidney
Functions of kidneyrohini sane
 
Urine formation -1 zydus.pptx
Urine formation -1 zydus.pptxUrine formation -1 zydus.pptx
Urine formation -1 zydus.pptxPandian M
 
STUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptx
STUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptxSTUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptx
STUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptxDr. Aniket Shilwant
 

Similar to 1 mb ch b-pm renal-uz-combined slides-11-3-15 (20)

Determinants of Glomerular filtration Rate.pptx
Determinants of Glomerular filtration Rate.pptxDeterminants of Glomerular filtration Rate.pptx
Determinants of Glomerular filtration Rate.pptx
 
Physiology of urine formation and kidney function test swati mam
Physiology of urine formation and kidney function test  swati mamPhysiology of urine formation and kidney function test  swati mam
Physiology of urine formation and kidney function test swati mam
 
A Chapter 8- Renal Physiology-1.ppt
A Chapter 8- Renal Physiology-1.pptA Chapter 8- Renal Physiology-1.ppt
A Chapter 8- Renal Physiology-1.ppt
 
urineformation-160601155205.pptx
urineformation-160601155205.pptxurineformation-160601155205.pptx
urineformation-160601155205.pptx
 
urine formtion.pptx
urine formtion.pptxurine formtion.pptx
urine formtion.pptx
 
Accurate assessment of kidney function in the critically
Accurate assessment of kidney function in the criticallyAccurate assessment of kidney function in the critically
Accurate assessment of kidney function in the critically
 
Unit 8: Kidney Functions and disorders
Unit 8: Kidney Functions and disordersUnit 8: Kidney Functions and disorders
Unit 8: Kidney Functions and disorders
 
Renal physiology and its anesthetic implications
Renal physiology and its anesthetic implicationsRenal physiology and its anesthetic implications
Renal physiology and its anesthetic implications
 
Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...
Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...
Renal physiology, renal blood flow, autoregulation, golmerular filtration. hu...
 
04 GFR.pptx
04 GFR.pptx04 GFR.pptx
04 GFR.pptx
 
Renal 1.pptx
Renal 1.pptxRenal 1.pptx
Renal 1.pptx
 
Nephrology
NephrologyNephrology
Nephrology
 
Glomerular filtrate rate GFR's regulation (1).pptx
Glomerular filtrate rate GFR's regulation  (1).pptxGlomerular filtrate rate GFR's regulation  (1).pptx
Glomerular filtrate rate GFR's regulation (1).pptx
 
L1-Renal physiology 2018.ppt
L1-Renal physiology 2018.pptL1-Renal physiology 2018.ppt
L1-Renal physiology 2018.ppt
 
Renal anatomy and physiology in relation.pptx
Renal anatomy and physiology in relation.pptxRenal anatomy and physiology in relation.pptx
Renal anatomy and physiology in relation.pptx
 
Fisiologi Renal Smamda 7 November 2022.pptx
Fisiologi Renal Smamda 7 November 2022.pptxFisiologi Renal Smamda 7 November 2022.pptx
Fisiologi Renal Smamda 7 November 2022.pptx
 
Functions of kidney
Functions of kidneyFunctions of kidney
Functions of kidney
 
A RENAL ppt.pptx
A RENAL ppt.pptxA RENAL ppt.pptx
A RENAL ppt.pptx
 
Urine formation -1 zydus.pptx
Urine formation -1 zydus.pptxUrine formation -1 zydus.pptx
Urine formation -1 zydus.pptx
 
STUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptx
STUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptxSTUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptx
STUDY OF BASIC FUNDAMENTALS OF URINE FORMATION PHYSIOLOGY.pptx
 

1 mb ch b-pm renal-uz-combined slides-11-3-15