SlideShare a Scribd company logo
1 of 2
Download to read offline
Ley	1	
Second-generation of tunable pH-sensitive phosphoramidate-based
linkers for controlled release (co-first author, manuscript submitted)
A library of phosphoramidate-based cleavable linkers was synthesized via
late-stage diversification for efficiency and using cost-effective amines as
representatives of cytotoxic drugs or self-immolative spacers. Drug
release of each linker was monitored by 31
P NMR at pH 3.0 – 7.4 at 37 o
C.
These stability studies prove that our hydrophilic cleavable linker is
tunable by adjusting the distance between the neighboring carboxylic acid
and phosphorus core. This pH-sensitive scaffold can release amine-
containing drugs or self-immolative spacers at varying rates for controlled
release applications, such as antibody-drug conjugates (ADCs) and small-
molecule drug conjugates (SMDCs).
	
	
	
	
	
	
	
Figure 2. (A) Raw
stacked NMR data for
2a (1.11 ppm) at pH
5.5. Peak at 1.74 ppm
is hydrolytic product.
(B) Compiled and
fitted data for area of
2a (blue) normalized
to standard and its
hydrolytic product
(red).
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Table 1. Half-life in hours (% RSD) at 37 o
C
pH 3.0 4.5 5.5 6.5 7.4
1a 0.20 (9.0) 2.59 (1.5) 17.6 (3.2) stablea
stablea
2a 0b
0.66 (7.0) 2.13 (1.1) 7.78 (1.6) 29.6 (5.2)
3a 17.7 (3.9) stablea
stablea
stablea
stablea
5a 36.8 (4.5) stablea
stablea
stablea
stablea
6a stablea
stablea
stablea
stablea
stablea
1b 0b
0b
0.23 (3.2) 0.73 (5.5%) 6.02 (1.4)
2b 0b
0b
0b
0.08 (9.7) 0.84 (6.6)
3b 0.23 (3.0) 2.24 (1.4) 17.1 (1.4) stablea
stablea
5b 0.51 (3.7) 9.24 (2.1) 27.0 (4.8) stablea
stablea
6b 0.34 (3.2) 5.25 (1.2) 25.1 (5.6) stablea
stablea
1c 0b
0.08 (5.8) 0.79 (2.4) 2.16 (1.6) 13.1 (2.9)
2c 0b
0b
0.08 (17.7) 0.31 (9.9) 2.33 (1.2)
3c 0.96 (2.7) 7.60 (1.8) 29.8 (6.9) stablea
stablea
4c 1.98 (0.9) 17.0 (1.7) 29.8 (6.6) stablea
stablea
5c 2.71 (0.8) 22.1 (2.8) stablea
stablea
stablea
6c 2.27 (1.1) 18.4 (3.9) stablea
stablea
stablea
1d 0b
0b
0.07 (16.5) 0.19 (6.4) 1.57 (2.5)
3d 0.13 (3.9) 0.98 (1.6) 6.64 (1.5) 18.6 (4.3) stablea
4d 0.24 (3.8) 2.09 (1.2) 10.3 (2.0) 30.4 (6.0) stablea
5d 0.31 (2.3) 2.73 (0.8) 16.6 (2.4) stablea
stablea
6d 0.34 (4.7) 2.80 (8.7) 12.6 (3.9) stablea
stablea
a
No detectable decomposition over 8 h; b
Complete decomposition in << 5 min
Scheme 1. (i) (PhO)2P(O)H, py, -5 o
C to rt; (ii) BnOH; (iii) BrCCl3 or CCl4, CH2Cl2, -15 o
C; (iv) Amine.HCl,
Et3N, cat. 4-DMAP for 1c-d and 2a-c; (v) H2, 10% Pd/C, KHCO3 (aq), 1,4-dioxanes
O
N
H
R2
HO
R3
n
O
N
H
R2
O
R3
n
P
H
OBn
O
N
P
O
N
H
OBn
O
R3
R2 OR1
nm
i, ii iii, iv v
1a-d
2a-c
3a-d
4c-d
5a-d
6a-d
N
P
O
N
H
OH
O
R3
R2 OR1
nm
1a-d: m=0 or 2; n=1; R1=H or Me; R2=CO2H; R3=H
2a-c: m=0 or 2; n=1; R1=H or Me; R2=CO2H; R3=Me
3a-d: m=0 or 2; n=2; R1=H or Me; R2=CO2H; R3=H
4c-d: m=2; n=3; R1=H or Me; R2=CO2H; R3=H
5a-d: m=0 or 2; n=1; R1=H or Me; R2=R3=H
6a-d: m=0 or 2; n=2; R1=H or Me; R2=R3=H
Figure 1. Series of tunable pH-sensitive
phosphoramidate-based linkers
0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
0.0	 1.0	 2.0	 3.0	 4.0	 5.0	 6.0	 7.0	 8.0	
Norm.	Int.	Area	
Time	(h)	
Linker	2a	
Hydrolytic	Product	
H
N
P
O
N
H
OH
O
HO2C O
7a
HO
P
O
N
H
OH
O
HO2C O
hydrolytic
product
A B
2a
Ley	2	
Synthesis and evaluation of
constrained phosphoramidate
inhibitors of prostate-specific
membrane antigen
A series of phosphoramidate-based
inhibitors for prostate cancer were
prepared based on 4-trans-
hydroxyproline to minimize interaction
between the α-carboxylate of the P1
residue and the phosphorus center.
These scaffolds were designed to
withstand harsher conditions required
for installing 68
Ga and 177
Lu in
radiotheranostic applications and proved
to exhibit enhanced stability without loss
of potency.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Table 3. Inhibition potency of
phosphoramidate inhibitorsa
Entry IC50 (nM)
3 27 (3)
4 19 (1)
5 1.3 (0.08)
6 0.4 (0.05)
7a 60 (11)
7b 357 (29)
8a 79 (6)
8b 112 (8)
9a 2.6 (0.2)
9b 3.0 (0.3)
10a 1.3 (0.2)
10b 11 (0.8)
a
Standard deviation in parentheses
Table 2. Comparative stability of
representative phosphoramidates at pH 4.5
Entry Temp (o
C) t1/2 (min)
6 50 75
6 70 12
10a 50 105
10a 70 32
Figure 4. PET/CT image (20 min static scan)
of male nude mouse bearing a CWR22Rv1
tumor xenograft at 2 h post-injection of
[18
F]10a. Arrow indicates tumor placement.
CO2H
N
O
∗∗
P
O
OH
H
N CO2H
CO2H
H
N
∗∗
O
CO2H
n
O
O
N
H
F
9a: *2S, *4R, n=0
9b: *2R, *4S, n=0
10a: *2S, *4R, n=1
10b: *2R, *4S, n=1
CO2H
N
O
∗∗
P
O
OH
H
N CO2H
CO2H
H
N
∗∗
O
CO2H
O
N
H
7a: *2S, *4R, n=0
7b: *2R, *4S, n=0
8a: *2S, *4R, n=1
8b: *2R, *4S, n=1
P
O
OH
H
N CO2H
CO2H
O
CO2H
N
H
O
H
N
CO2H
N
H
O
H
n
3: n=0
4: n=1
P
O
OH
H
N CO2H
CO2H
O
CO2H
N
H
O
H
N
CO2H
N
H
O
n
5: n=0
6: n=1
O
F
n
H
P
O
OH
H
N CO2H
CO2H
O
1
CO2H
N
H
O
H2N
CO2H
P
O
OH
H
N CO2H
CO2H
O
2
H
N CO2H
O
H2N
CO2H
A
B
Figure 3. (A) Current phosphoramidate inhibitors of PSMA 1-6. (B)
Phosphoramidate inhibitors of PSMA with enhanced stability 7a-10b.
HN
∗∗
∗∗
CO2H
OH
HN
∗∗
∗∗
CO2Bn
OH
CO2Bn
N
O
∗∗H
N
∗∗
OH
CO2Bn
R
CO2Bn
N
O
∗∗
P
O
BnO
H
N
∗∗
O
CO2Bn
R
H
CO2Bn
N
O
∗∗
P
O
BnO
H
N
∗∗
O
CO2Bn
R
H
N CO2Bn
CO2Bn
a b c,d e f, R = Boc
g, R = Cbz
7a: *2S, *4R
7b: *2R, *4S
CO2Bn
N
O
∗∗
P
O
BnO
H2N
∗∗
O
CO2Bn
H
N CO2Bn
CO2Bn
h
n
O
OH
O
N
H
F
O
OH
N
H
Cbz
h
CO2Bn
N
O
∗∗
P
O
BnO
H
N CO2Bn
CO2Bn
H
N
∗∗
O
CO2Bn
O
N
H
Cbz
CO2Bn
N
O
∗∗
P
O
BnO
H
N CO2Bn
CO2Bn
H
N
∗∗
O
CO2Bn
n
O
O
N
H
F
i
i
8a: *2S, *4R
8b: *2R, *4S
9a: *2S, *4R, n=0
9b: *2R, *4S, n=0
10a: *2S, *4R, n=1
10b: *2R, *4S, n=1
21a: *2S, *4R, n=0
21b: *2R, *4S, n=0
22a: *2S, *4R, n=1
22b: *2R, *4S, n=1
11a: *2S, *4R
11b: *2R, *4S
12a: *2S, *4R
12b: *2R, *4S
13a: *2S, *4R, R=Boc
13b: *2R, *4S, R=Boc
14a: *2S, *4R, R=Cbz
14b: *2R, *4S, R=Cbz
15a: *2S, *4R, R=Boc
15b: *2R, *4S, R=Boc
16a: *2S, *4R, R=Cbz
16b: *2R, *4S, R=Cbz
17a: *2S, *4R, R=Boc
17b: *2R, *4S, R=Boc
18a: *2S, *4R, R=Cbz
18b: *2R, *4S, R=Cbz
19a: *2S, *4R
19b: *2R, *4S
20a: *2S, *4R
20b: *2R, *4S
Scheme 2. (a) BnOH, p-toluene-SO3H, Benzene, 125 o
C, 20 h reflux; (b) R-Glu-OBzl (R=Cbz or Boc), HBTU, Et3N,
DMF; (c) (PhO)2P(O)H, pyridine, -5 o
C to rt, 2 h; (d) BnOH, rt, 3 h; (e) H-Glu(OBzl)-OBzl HCl, CCl4, Et3N, CH3CN; (f)
30% TFA/CH2Cl2, rt, 1.5 h; (g) H2, 10% Pd/C, K2CO3, ddH2O, 1,4-dioxanes; (h) HBTU, Et3N, DMF; (i) H2, 10% Pd/C,
K2CO3, ddH2O, 1,4-dioxanes

More Related Content

What's hot

Ch ip pcr validation
Ch ip pcr validationCh ip pcr validation
Ch ip pcr validation
pavlevrljicak
 
BR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-ENBR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-EN
dmend129
 
P2 o5 in fertilizer
P2 o5 in fertilizerP2 o5 in fertilizer
P2 o5 in fertilizer
singlethien
 

What's hot (14)

Geeeeeee
GeeeeeeeGeeeeeee
Geeeeeee
 
Project pre
Project preProject pre
Project pre
 
Ch ip pcr validation
Ch ip pcr validationCh ip pcr validation
Ch ip pcr validation
 
Usp biotherapeutics - biological medicines
Usp  biotherapeutics - biological medicinesUsp  biotherapeutics - biological medicines
Usp biotherapeutics - biological medicines
 
BR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-ENBR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-EN
 
Steinhoff, Tobias: Uncertainty analysis for calculations of the marine carbon...
Steinhoff, Tobias: Uncertainty analysis for calculations of the marine carbon...Steinhoff, Tobias: Uncertainty analysis for calculations of the marine carbon...
Steinhoff, Tobias: Uncertainty analysis for calculations of the marine carbon...
 
Satnami sir lacture 17 01 2020 1
Satnami sir lacture 17 01 2020 1Satnami sir lacture 17 01 2020 1
Satnami sir lacture 17 01 2020 1
 
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
 
Persistence of 4-Nonylphenol and, Octhylphenol in Sediment from the Anzali We...
Persistence of 4-Nonylphenol and, Octhylphenol in Sediment from the Anzali We...Persistence of 4-Nonylphenol and, Octhylphenol in Sediment from the Anzali We...
Persistence of 4-Nonylphenol and, Octhylphenol in Sediment from the Anzali We...
 
Quang pho hong ngoai
Quang pho hong ngoaiQuang pho hong ngoai
Quang pho hong ngoai
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
Optimizing solid core_30955
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
 
P2 o5 in fertilizer
P2 o5 in fertilizerP2 o5 in fertilizer
P2 o5 in fertilizer
 
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
 

Similar to Corinne Ley Research Summary

postertemplate_plc_v36_final2
postertemplate_plc_v36_final2postertemplate_plc_v36_final2
postertemplate_plc_v36_final2
Patrick Cavins
 
Htos Presentation
Htos PresentationHtos Presentation
Htos Presentation
benmz101
 
Graphene and ionic liquid matrices for metallodrug and bacteria analysis
Graphene and ionic liquid matrices for metallodrug and bacteria analysisGraphene and ionic liquid matrices for metallodrug and bacteria analysis
Graphene and ionic liquid matrices for metallodrug and bacteria analysis
Hani Nasser Abdelhamid
 
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Dmitry Novikov
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATION
Paulami Bose
 
MacPherson 1998 EST
MacPherson 1998 ESTMacPherson 1998 EST
MacPherson 1998 EST
Jalal Hawari
 

Similar to Corinne Ley Research Summary (20)

SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
 
postertemplate_plc_v36_final2
postertemplate_plc_v36_final2postertemplate_plc_v36_final2
postertemplate_plc_v36_final2
 
Htos Presentation
Htos PresentationHtos Presentation
Htos Presentation
 
PhD presentation-V.Mogilireddy
PhD presentation-V.MogilireddyPhD presentation-V.Mogilireddy
PhD presentation-V.Mogilireddy
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
 
Simultaneous Electrochemical Measurement using Paper Fluidic Channel on CMOS ...
Simultaneous Electrochemical Measurement using Paper Fluidic Channel on CMOS ...Simultaneous Electrochemical Measurement using Paper Fluidic Channel on CMOS ...
Simultaneous Electrochemical Measurement using Paper Fluidic Channel on CMOS ...
 
Graphene and ionic liquid matrices for metallodrug and bacteria analysis
Graphene and ionic liquid matrices for metallodrug and bacteria analysisGraphene and ionic liquid matrices for metallodrug and bacteria analysis
Graphene and ionic liquid matrices for metallodrug and bacteria analysis
 
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activitySynthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
Synthesis of new 2 h pyrano[3,2-h]quinolines with potential biological activity
 
PHA(Eng)
PHA(Eng)PHA(Eng)
PHA(Eng)
 
عرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxعرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptx
 
عرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptxعرض تحليل الي م3_095500.pptx
عرض تحليل الي م3_095500.pptx
 
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATION
 
PhD work
PhD workPhD work
PhD work
 
3
33
3
 
MacPherson 1998 EST
MacPherson 1998 ESTMacPherson 1998 EST
MacPherson 1998 EST
 
BMCL Angibaud_ten Holte
BMCL Angibaud_ten HolteBMCL Angibaud_ten Holte
BMCL Angibaud_ten Holte
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
 
Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...
Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...
Synthesis, spectroscopic, magnetic properties and superoxide dismutase (SOD) ...
 
Dv35694700
Dv35694700Dv35694700
Dv35694700
 

Corinne Ley Research Summary

  • 1. Ley 1 Second-generation of tunable pH-sensitive phosphoramidate-based linkers for controlled release (co-first author, manuscript submitted) A library of phosphoramidate-based cleavable linkers was synthesized via late-stage diversification for efficiency and using cost-effective amines as representatives of cytotoxic drugs or self-immolative spacers. Drug release of each linker was monitored by 31 P NMR at pH 3.0 – 7.4 at 37 o C. These stability studies prove that our hydrophilic cleavable linker is tunable by adjusting the distance between the neighboring carboxylic acid and phosphorus core. This pH-sensitive scaffold can release amine- containing drugs or self-immolative spacers at varying rates for controlled release applications, such as antibody-drug conjugates (ADCs) and small- molecule drug conjugates (SMDCs). Figure 2. (A) Raw stacked NMR data for 2a (1.11 ppm) at pH 5.5. Peak at 1.74 ppm is hydrolytic product. (B) Compiled and fitted data for area of 2a (blue) normalized to standard and its hydrolytic product (red). Table 1. Half-life in hours (% RSD) at 37 o C pH 3.0 4.5 5.5 6.5 7.4 1a 0.20 (9.0) 2.59 (1.5) 17.6 (3.2) stablea stablea 2a 0b 0.66 (7.0) 2.13 (1.1) 7.78 (1.6) 29.6 (5.2) 3a 17.7 (3.9) stablea stablea stablea stablea 5a 36.8 (4.5) stablea stablea stablea stablea 6a stablea stablea stablea stablea stablea 1b 0b 0b 0.23 (3.2) 0.73 (5.5%) 6.02 (1.4) 2b 0b 0b 0b 0.08 (9.7) 0.84 (6.6) 3b 0.23 (3.0) 2.24 (1.4) 17.1 (1.4) stablea stablea 5b 0.51 (3.7) 9.24 (2.1) 27.0 (4.8) stablea stablea 6b 0.34 (3.2) 5.25 (1.2) 25.1 (5.6) stablea stablea 1c 0b 0.08 (5.8) 0.79 (2.4) 2.16 (1.6) 13.1 (2.9) 2c 0b 0b 0.08 (17.7) 0.31 (9.9) 2.33 (1.2) 3c 0.96 (2.7) 7.60 (1.8) 29.8 (6.9) stablea stablea 4c 1.98 (0.9) 17.0 (1.7) 29.8 (6.6) stablea stablea 5c 2.71 (0.8) 22.1 (2.8) stablea stablea stablea 6c 2.27 (1.1) 18.4 (3.9) stablea stablea stablea 1d 0b 0b 0.07 (16.5) 0.19 (6.4) 1.57 (2.5) 3d 0.13 (3.9) 0.98 (1.6) 6.64 (1.5) 18.6 (4.3) stablea 4d 0.24 (3.8) 2.09 (1.2) 10.3 (2.0) 30.4 (6.0) stablea 5d 0.31 (2.3) 2.73 (0.8) 16.6 (2.4) stablea stablea 6d 0.34 (4.7) 2.80 (8.7) 12.6 (3.9) stablea stablea a No detectable decomposition over 8 h; b Complete decomposition in << 5 min Scheme 1. (i) (PhO)2P(O)H, py, -5 o C to rt; (ii) BnOH; (iii) BrCCl3 or CCl4, CH2Cl2, -15 o C; (iv) Amine.HCl, Et3N, cat. 4-DMAP for 1c-d and 2a-c; (v) H2, 10% Pd/C, KHCO3 (aq), 1,4-dioxanes O N H R2 HO R3 n O N H R2 O R3 n P H OBn O N P O N H OBn O R3 R2 OR1 nm i, ii iii, iv v 1a-d 2a-c 3a-d 4c-d 5a-d 6a-d N P O N H OH O R3 R2 OR1 nm 1a-d: m=0 or 2; n=1; R1=H or Me; R2=CO2H; R3=H 2a-c: m=0 or 2; n=1; R1=H or Me; R2=CO2H; R3=Me 3a-d: m=0 or 2; n=2; R1=H or Me; R2=CO2H; R3=H 4c-d: m=2; n=3; R1=H or Me; R2=CO2H; R3=H 5a-d: m=0 or 2; n=1; R1=H or Me; R2=R3=H 6a-d: m=0 or 2; n=2; R1=H or Me; R2=R3=H Figure 1. Series of tunable pH-sensitive phosphoramidate-based linkers 0.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Norm. Int. Area Time (h) Linker 2a Hydrolytic Product H N P O N H OH O HO2C O 7a HO P O N H OH O HO2C O hydrolytic product A B 2a
  • 2. Ley 2 Synthesis and evaluation of constrained phosphoramidate inhibitors of prostate-specific membrane antigen A series of phosphoramidate-based inhibitors for prostate cancer were prepared based on 4-trans- hydroxyproline to minimize interaction between the α-carboxylate of the P1 residue and the phosphorus center. These scaffolds were designed to withstand harsher conditions required for installing 68 Ga and 177 Lu in radiotheranostic applications and proved to exhibit enhanced stability without loss of potency. Table 3. Inhibition potency of phosphoramidate inhibitorsa Entry IC50 (nM) 3 27 (3) 4 19 (1) 5 1.3 (0.08) 6 0.4 (0.05) 7a 60 (11) 7b 357 (29) 8a 79 (6) 8b 112 (8) 9a 2.6 (0.2) 9b 3.0 (0.3) 10a 1.3 (0.2) 10b 11 (0.8) a Standard deviation in parentheses Table 2. Comparative stability of representative phosphoramidates at pH 4.5 Entry Temp (o C) t1/2 (min) 6 50 75 6 70 12 10a 50 105 10a 70 32 Figure 4. PET/CT image (20 min static scan) of male nude mouse bearing a CWR22Rv1 tumor xenograft at 2 h post-injection of [18 F]10a. Arrow indicates tumor placement. CO2H N O ∗∗ P O OH H N CO2H CO2H H N ∗∗ O CO2H n O O N H F 9a: *2S, *4R, n=0 9b: *2R, *4S, n=0 10a: *2S, *4R, n=1 10b: *2R, *4S, n=1 CO2H N O ∗∗ P O OH H N CO2H CO2H H N ∗∗ O CO2H O N H 7a: *2S, *4R, n=0 7b: *2R, *4S, n=0 8a: *2S, *4R, n=1 8b: *2R, *4S, n=1 P O OH H N CO2H CO2H O CO2H N H O H N CO2H N H O H n 3: n=0 4: n=1 P O OH H N CO2H CO2H O CO2H N H O H N CO2H N H O n 5: n=0 6: n=1 O F n H P O OH H N CO2H CO2H O 1 CO2H N H O H2N CO2H P O OH H N CO2H CO2H O 2 H N CO2H O H2N CO2H A B Figure 3. (A) Current phosphoramidate inhibitors of PSMA 1-6. (B) Phosphoramidate inhibitors of PSMA with enhanced stability 7a-10b. HN ∗∗ ∗∗ CO2H OH HN ∗∗ ∗∗ CO2Bn OH CO2Bn N O ∗∗H N ∗∗ OH CO2Bn R CO2Bn N O ∗∗ P O BnO H N ∗∗ O CO2Bn R H CO2Bn N O ∗∗ P O BnO H N ∗∗ O CO2Bn R H N CO2Bn CO2Bn a b c,d e f, R = Boc g, R = Cbz 7a: *2S, *4R 7b: *2R, *4S CO2Bn N O ∗∗ P O BnO H2N ∗∗ O CO2Bn H N CO2Bn CO2Bn h n O OH O N H F O OH N H Cbz h CO2Bn N O ∗∗ P O BnO H N CO2Bn CO2Bn H N ∗∗ O CO2Bn O N H Cbz CO2Bn N O ∗∗ P O BnO H N CO2Bn CO2Bn H N ∗∗ O CO2Bn n O O N H F i i 8a: *2S, *4R 8b: *2R, *4S 9a: *2S, *4R, n=0 9b: *2R, *4S, n=0 10a: *2S, *4R, n=1 10b: *2R, *4S, n=1 21a: *2S, *4R, n=0 21b: *2R, *4S, n=0 22a: *2S, *4R, n=1 22b: *2R, *4S, n=1 11a: *2S, *4R 11b: *2R, *4S 12a: *2S, *4R 12b: *2R, *4S 13a: *2S, *4R, R=Boc 13b: *2R, *4S, R=Boc 14a: *2S, *4R, R=Cbz 14b: *2R, *4S, R=Cbz 15a: *2S, *4R, R=Boc 15b: *2R, *4S, R=Boc 16a: *2S, *4R, R=Cbz 16b: *2R, *4S, R=Cbz 17a: *2S, *4R, R=Boc 17b: *2R, *4S, R=Boc 18a: *2S, *4R, R=Cbz 18b: *2R, *4S, R=Cbz 19a: *2S, *4R 19b: *2R, *4S 20a: *2S, *4R 20b: *2R, *4S Scheme 2. (a) BnOH, p-toluene-SO3H, Benzene, 125 o C, 20 h reflux; (b) R-Glu-OBzl (R=Cbz or Boc), HBTU, Et3N, DMF; (c) (PhO)2P(O)H, pyridine, -5 o C to rt, 2 h; (d) BnOH, rt, 3 h; (e) H-Glu(OBzl)-OBzl HCl, CCl4, Et3N, CH3CN; (f) 30% TFA/CH2Cl2, rt, 1.5 h; (g) H2, 10% Pd/C, K2CO3, ddH2O, 1,4-dioxanes; (h) HBTU, Et3N, DMF; (i) H2, 10% Pd/C, K2CO3, ddH2O, 1,4-dioxanes