SlideShare a Scribd company logo
UNIVERSITA’ DEGLI STUDI DI CATANIA
                 FACOLTA’ DI FARMACIA
                              PhD in Medicinal Chemistry

                                  GIUSEPPE PUZZO

           BACTERIAL FERMENTATION AND MICROWAVE-
           ASSISTED SYNTHESIS FOR THE PRODUCTION OF
              BIODEGRADABLE AND BIOCOMPATIBLE
           POLYMERS USABLE IN THE PHARMACEUTICAL
                            FIELD.


       Coordinator:                                            Tutor:
Prof. Giuseppe Ronsisvalle.                           Prof. Alberto Ballistreri.

                                      Ciclo XXIV
Introduction




Not biodegradable
     plastics




                    Biodegradable
                       plastics
Biodegradable polymers on the market.




Biomax®           Ecoflex®           Mater-Bi®




             ®                      PHA
      EcoPLA
Polyhydroxyalkanoates (PHA)




                           Poly(3-hydroxyalkanoates)
                           with R= alkyl or functional group

                    n

PHASCL: short-chain length PHA
   3-5 carbon atoms
PHAMCL: medium-chain length PHA
   6-14 carbon atoms
Physical and chemical properties.

 •Average   molecular weight ranging between 5·104 and1· 106 Da

•Enantiomerically   pure

 •Biodegradable   and biocompatible


                                                          Extension at
Polymer           Tg(°C)   Tm (°C)    Cristallinity (%)
                                                           break (%)

P(3HB)              15       175           50-80               5

P(3HB-co-3HV)       -1       145             56               50

P(3HB-co-4HB)       -7       150             43               444

PP                  -15      176             50               400
Applications of PHAs in medicine and pharmaceuticals.




      •Sutures.                   •Bone   graft substitutes.




•Temporary   heart valves.       •Carrier   for drug delivery.
Role of PHAs in tissue engineering.
The aim of the thesis

Explore new strategies for obtaining new polymers which, in the
pharmaceutical field, have feature of biodegradability and
biocompatibility with wider opportunity of utilization with respect
to poly(3-hydroxybutyrate) (PHB) by:

1. The study on the capabilty to P. aeruginosa to grow and
synthesize PHAs from Long Chain Fatty Acids (LCFA) or
vegetable oils, with better yields or with new structures and new
properties.

2. Chemical synthesis of new coplymers and terpolymers by
transesterification reaction microwave assisted.
PHA’s production by microorganisms.
Substrates for PHA’s production.


                                                    Corn, sugar cane,
  Glucose                 Carbohydrate                 potato etc




                     Agriculture, waste materials



Alkanoates
(propionic acid,                                    Vegetable oils
  butyric acid,             Fatty acid                and fats
valeric acid etc.)
Table 1. PHA production from P. aeruginosa cultured
using odd carbon atoms fatty acids as carbon source.

    Fatty acid      Dry cell weight      PHA content        PHA yield
                        (mg/L)        (% dry cell weight)    (mg/L)


  Eptadecanoic -N        1600                 9,8             157


 Nonadecanoic -N         2370                 5,3             127


  Eneicosanoic-N 2       737                  0,25              7
GC trace of the products prepared by methanolysis of
   PHA from nonadecanoic acid.




V= 3-hydoxyvalerate; H= 3-hydoxyheptanoate; O= 3-hydroxyoctanoate;
N= 3-hydroxynonanoate; D= 3-hydroxydecanoate; U= 3-hydroxyundecanoate;
Θ= 3-hydroxytridecanoate; P = 3-hydroxypentadecanoate
200 MHz 1H-NMR spectra of the PHAs obtained from P.
aeruginosa grown on (a) heptadecanoic; (b) nonadecanoic and (c)
eneicosanoic acid.
50 MHz 13C-NMR spectra of the PHAs obtained from P.
aeuruginosa grown on (a) nonanoic; (b) heptadecanoic and (c)
eneicosanoic acid.
Chemical structure of the PHAs.
  V               H              N             U                 Θ                P
                                               ∆
  3   2   1   3       2    1     3   2   1     3 2   1       3     2   1      3       2   1
O CH CH CO O CH CH CO          O CH CH CO    O CH CH CO   O CH CH CO O CH CH CO
       2 l        2   m               2 n           2 o          2 p        2   q
 4CH        4CH                 4 CH          4 CH        4 CH       4 CH
    2          2                    2             2            2          2
 5CH        5CH                 5 CH          5 CH         5 CH       5 CH
    3          2                    2             2
            6CH                 6 CH          6 CH         6 CH             6 CH
               2                    2             2
            7CH                 7 CH          7 CH         7 CH             7 CH
               3                    2             2            2                2
                                8 CH          8 CH         8 CH             8 CH
                                    2             2            2                2
                               9 CH           9 CH         9 CH             9 CH
                                    3             2            2                2
                                             10CH         10CH             10CH
                                                  2            2                2
                                             11CH         11CH             11CH
                                                  3            2                2
                                                          12 CH            12 CH
                                                               2                2
                                                          13 CH            13 CH
                                                               3                2
                                                                           14 CH
                                                                                2
                                                                           15CH
                                                                                3
Table 2. Physical characteristics of the PHAs isolated from P.
aeruginosa grown on C-odd fatty acids.

  Fatty acids    Tg (°C)   Tm (°C)   ∆Hm (J/g)   Mw x 10-3   Mw/Mn


  Eptadecanoic    -41        50         7,9         77        1,6



  Nonadecanoic    -43        58         12          97         2


  Eneicosanoic    -39        49         5,7        188        1,7
Thermal degradation of PHAs
Assuming a Bernoullian (random) distribution of repeating units
in these copolymers, the probability of finding a given Ax,
By…Nz can be calculated by the Leibnitz formula as follows:




A measure of the fit of the calculated oligomers intensities to
the experimental ones is given by the agreement factor (AF);
the lower AF, the closer fit.


                              ∑(I + I
                                  expi
                                     .       calci
                                                 . )2
                        AF=   i

                                 ∑I      2
                                         exp.i
                                   i
R             R
                                 R CH CH CO   [O            ]
                                                   CH CH2 CO n O CH CH2 COOH




Negative ion ESI mass spectrum of the partial pyrolisate of the PHA from
enicosanoic acid. R may be an un n-etyl, n-butyl, n-hexyl, n-octyl, n-
decyl and n-dodecyl group.
Table 3. Experimental and calculated relative amounts of
the partial pyrolisis products of P. aeruginosa from
eneicosanoic acid.

                             m/z       ESI     Calculated
           Dimers
             V-H             227       4          4
           V-N; H2           255       15         15
          V-U; H-N           383       18         18
        V-Θ; H-U; N2         311       26         26
        V-P; N-U; H-Θ        339       20         20
        H-P; U2; N-Θ         367       12         13
          U-Θ; N-P           395       5          5

          Trimers
            C23              411       8          9
            C25              439       14         16
            C27              467       23         22
            C29              495       21         24
            C31              523       15         18
            C33              551       10         10
            C35              579       3          0
Brassica carinata
                             production’s seeds


                                                          Remaining
            Oil                  De-oiling                  flour



 Modified          As such                   As such            Formulation

Lubricants        Lubrificants               Fertilizer         Soil products
                    Energy                   products
 Biofuels
Agricoltural
    oils
Table 4. PHA production from P. aeruginosa cultured on
differents substrates.

    Substrate        Dry cell weight      PHA content        PHA yield
                         (mg/L)        (% dry cell weight)    (mg/L)


   B. Carinata oil       1000                  5,0              50


    Oleico acid           380                 15,0              57


    Erucic acid      2    866                  9,3              81

   Nervonic acid         416
                         416                    10
                                               10.0             42
Table 5. Comonomer composition (mol%) of PHA obtained
from varius carbon sources, determined by GC.

      Substrate       C   O    O:1   D    D:1   Δ    Δ:1   T:1   T:2   T:3


    B.Carinata oil    3   34   3     32   3     10   1     9     2     3


     Oleico acid      4   55    -    27    -    8     -    6      -     -


     Erucico acid     3   43    -    36    -    10    -    8      -     -


    Nervonico acid    4   28    -    43    -    14    -    11     -     -


C= 3-hydroxyhexanoate; O= 3-hydroxyoctanoate; O:1= 3-hydroxy-5-
octenoate; D= 3-hydroxydecanoate; D:1= 3-hydroxy-7-decenoate; Δ= 3-
hydroxydodecanoate; Δ:1= 3-hydroxy-6-dodecenoate; T:1 = 3- hydroxy-
5-tetradecenoate; T:2= 3-hydroxy-5,8-tetradecadienoate; T:3= 3-hydroxy-
5,8,11-tetradecatrienoate.
C5, O5-7, D5-9,          C6, O8, D10,
                                               ∆5-11, T:1 8-13          ∆12, T:1 14




                                                        C/O/D/∆
       C/O/D/∆/T:1                       C/O/D/∆/T:1
                                                             4
               3                              2

                                                   T:1 T:1
     T:1 T:1
                                                   4    7
     6 5
     5.5       5.0   4.5   4.0   3.5   3.0   2.5       2.0       1.5   1.0
                                   (ppm)



200 MHz 1H-NMR spectra of the PHA obtained from erucic acid.
D8      D6-7 D9

                                    O/D/∆              ∆10 O6 ∆6-9 ∆11            D10
                                                           T:1
                                      3                T:1     T:1  T:1           ∆12
                                                           4
                                                       12      8-11 13            T:1
                                          C/O/D/∆                            O7         O8
C/O/D/∆                                                              O5           14
                                             2
   1                                                                D5
                                                       O/D/∆
                                                                    D5
                                                         4

                                                       T:1
       T:1                             C3 T:1           2           T:1
          1   T:1         T:1
                                              3                     7         C5         C6
              6           5                             C4


170                 130       120     70          40    35     30       25   20     15
                                    (ppm)

50 MHz 13C-NMR spectra of the PHA obtained from erucic acid.
Chemical structure of the PHAs from oleic, erucic and
nervonic acids.
   C            O            D            ∆                T:1
                                          ∆
   3   2   1    3   2   1    3   2   1    3 2   1      3     2   1
 O CH CH CO   O CH CH CO   O CH CH CO   O CH CH CO   O CH CH CO
        2   m        2   n        2   o        2   p        2   q
  4CH          4CH          4 CH         4 CH         4 CH
      2            2            2            2            2
  5 CH         5CH          5 CH         5 CH         5 CH
      2            2            2            2
  6CH          6CH          6 CH         6 CH         6 CH
      3            2            2            2
               7CH          7 CH         7 CH         7 CH
                   2            2            2            2
               8 CH         8 CH         8 CH         8 CH
                   3            2            2            2
                            9 CH         9 CH         9 CH
                                2            2            2
                           10 CH        10 CH        10 CH
                                3            2            2
                                        11CH         11CH
                                             2            2
                                        12 CH        12 CH
                                             3            2
                                                     13 CH
                                                          2
                                                     14 CH
                                                          3
O:1 8, D:1 10, ∆:112, T:2/T:3 14
       O:1 5
                                             D:1 5, ∆:1 9-11, T:2 11-13
      D:1 7-8
      ∆:1 6-7                                                          O:1 7   D:1
     T:2 5, 8-9                                                       D:1 6, 9 ∆:1
   T:3 5, 8-9, 11-                                                    ∆:1 5, 8 4
          12                                                          T:2 10
              O:1/D:1/∆:1/T:2/T:       O:1/D:1/∆:1/T:2/T:3
                 3
                                                                      T:3 13
                                                2
   O:1 6                   3                                  O:1/T:2/T:3

 T:2/T:3 6                                                        4
                                                      T:2 7
                                                    T:3 7, 10

           5.5       5.0       4.5   4.0    3.5   3.0           2.5     2.0    1.5   1.0
                                              (ppm)


200 MHz 1H-NMR spectra of the PHA obtained from B. carinata oil.
O:1 7, D:1 6/9, ∆:1 5, 8 T:2 10, T:3 13}
                                                                                             ∆:1
                                                               O:1          T:2 7
                                        D:1          D:1                                      12
                                                               T:2          T:3 7, 10
                                        ∆:1          ∆:1                                     T:2
                                                               T:3
   D:1                                   3           2                               O:1 14
                                                         O:1 4        ∆:1
   ∆:1                                        O:1                                        8
                                                         T:2          9
    1 O:1                                     T:2                                    D:1
                                                         T:3
      T:2                                     T:3                                        10
                                                           2
         T:3                                  3                                      T:3
                                                           D:1                           14
         1
                                                           ∆:1
                                                           4


  170            130          120       70          40     35        30     25      20        15
                                      (ppm)


50 MHz 13C-NMR spectra of the PHA obtained from B. carinata oil.
T:3                       T:3
                           12                       8, 11
                                  T:3
                     T:1   D:1        T:2      ∆:1                           T:1
                                  6                        T:2
                     6      8 T:2      9       6                             5
              O:1                 ∆:1      D:1             8
                               6
              6                    7         7                                 O:1
                                         T:3                           T:2         5
                                            9                    T:3
                                                                       5
                                                                 5




     138   136      134     132         130   128      126           124         122   120
                                          (ppm)

13C-NMR   spectra of the PHA obtained from B. carinata oil in the region
of the olefinc signals.
Chemical structure of the PHA from B. carinata oil. This PHA
is made up of all the repeating units constituting the PHA
from erucic acid, plus the unsatureted ones shown here.
    O:1           D:1           ∆:1           T:2           T:3

    3     2   1   3     2   1   3     2   1   3     2   1   3     2   1
  O CH CH CO   O CH CH CO   O CH CH CO   O CH CH CO   O CH CH CO
          2  n         2  o         2  p         2  r          2 s
   4CH          4CH          4 CH         4 CH          4 CH
        2            2            2            2             2
   5 CH         5CH          5 CH         5 CH          5 CH
                     2            2
   6CH          6CH          6 CH         6 CH         6 CH
                     2
   7CH          7CH          7 CH         7 CH         7 CH
        2                                      2             2
   8CH          8 CH         8 CH         8 CH         8 CH
        3                         2
                9CH          9 CH         9 CH         9 CH
                     2            2
               10 CH        10 CH        10CH         10CH
                     3            2            2            2
                            11CH         11 CH        11CH
                                  2            2
                            12CH         12CH         12CH
                                  3            2
                                         13CH         13CH
                                               2            2
                                         14CH         14CH
                                               3            3
Table 6. Physical characteristics of the PHAs isolated from
P. aeruginosa grown on B. carinata oil and on oleic, erucic
and nervonics acids.

     Sustrate       Tg (°C)   Tm (°C)   ΔHm (J/g)   Mw x 10-3   Mw/Mn


   B.carinata oil     -47        -          -          56        1,8


    Oleico acid       -52        -          -          57        2,2


    Erucic acid       -46       50        16,1        122        1,9


  Nervonic acid       -43       50        15,5        114         2
Dimeri
                                                                                          R                 R
                                 311                             R CH CH CO        [O               ]
                                                                                          CH CH2 CO n O CH CH2 COOH
       100                 283

     % Intensità
                                        339
                                                                     Trimeri
                                                                                                   Tetrameri
                60                                                453 481
                     255                      367          425                   509             595 623
                                                    393                                535 567           651 679
                20

                                 300                     400                500                   600                700
                      x3                                          (m/z)
        100
                                   Pentameri
  % Intensità




                                                                Esameri
                                 765                                                           Eptameri
            60             737         793                     907
                                                         879         935                   1049
                     709                     821                                               1077
                                                   851                     963         1021        1105
                                                                                 991                      1133
                                                                                                              1161
           20

                   700                  800                    900                1000            1100
                                                                  (m/z)

Negative ion ESI mass spectrum of the partial pyrolisate of the PHA
from erucic acid. R may be a n-propyl, n-pentyl, n-heptyl, n-nonyl or n-
undecenyl group.
Table 7. Experimental and calculated relative amounts of
the partial pyrolisis products of the PHA produced by P.
aeruginosa from erucic acid.

                             m/z       ESI     Calculated
          Dimers
           C-O               255       10         9
         C-D; O2             283       24         24
         C-Δ; O-D            311       26         26
         O-Δ; D2             339       18         19
           O-T:1             365       6          7
           D-Δ               367       8          7
           D-T:1             393       6          4
           Δ-T:1             421       2          2
         Trimers
            C22              397       4          4
            C24              425       12         12
            C26              453       20         19
            C28              481       18         20
           C30 :1            507       5          7
            C30              509       13         13
           C32:1             535       10         9
            C32              537       6          5
           C34:1             563       8          6
R               R
                                 Dimeri
                                                            R CH CH CO       [O              ]
                                                                                   CH CH2 CO n O CH CH2 COOH
                              311
      100
                        283
                                    339
  % Intensità
                                                                    Trimeri
               60 255                                                                            Tetrameri
                                                                  453 481
                                           367          425                  509                 623 651
                                                 393                               535   567 595         679
               20
                          300                     400         (m/z)      500                 600               700


      100 x 4
                                Pentameri
 % Intensità




                        737 765 793                           Esameri
          60 709                          821               907                             Eptameri
                                                      879          935 963
                                                849
                                                                              991 1021 1049 107711051133
          20

                700                 800                     900      (m/z)     1000              1100

Negative ion ESI mass spetrum of the partial pyrolisate of the PHA
from B. carinata. R may be a n-pentaenyl, n-heptaenyl, n-nonaenye, n-
undecadieyil or n-undecatrienyl group.
Design For Efficient Energy: Energy requirements should be recognized for their
environmental and economic impacts and should be minimized. Synthetic methods should be
conducted at ambient temperature and pressure.


   Heating mechanisms heat exchange                    Heating with Microwave




                                      Benefits:
                                          Energy saving
                                          Process Efficiency
                                          Restrictions on the use of halogenated
                                          solvents
What are the microwave




The microwaves are not ionizing electromagnetic waves having a
wavelength between 1 mm (ν = 300 GHz) and 1 m (ν = 300 MHz),
they are located in the area of the spectrum between the
frequencies   of    the    infrared  and    the   radio   waves.
The frequency of 2.45 (± 0.05) GHz, corresponding in vacuum at a
wavelength (λ) of 12.2 cm, is that used for applications in the
domestic field, scientific, medical, and for many industrial
processes.
Chemical synthesis of copolyesters.

        CH 3               O                                                             O
O       CH        CH 2     C        +       O      CH 2   CH 2     CH2    CH2    CH 2    C
        PHB                     n                                PCL                         m




                                            1. PTSA·H2O, Chloroform, Toluene (reflux)

                                            2. Azeotropic (dehydration)




              CH 3              O                                                    O
    O        CH          CH 2   C       O       CH 2   CH 2   CH 2     CH 2   CH 2   C
                                    n                                                    m
                                P(HB-co-CL)
Table 8. Transesterification Conditions, Yields, Molecular
Weights, and Degree of Transesterification of P(HB-co-CL)
Copolymers.
      Sample       HB/CLa     Yield (%)    Mw·103 b    Mw/Mn c     DT d    DR e     RT(h) f

   Conventional
     heating
         A          54/46         15          7.8        1,41      0,16     0,3       1/2


         B          45/55         23          n.d.       n.d.      0,21    0,52       2/2


         C          75/25         19          n.d.       n.d.      0,42    0,92       3/2


         D          55/45         10          7.9         1,3      0,37     0,74      5/2

    Microwave
     heating

         E          55/45         52          5.2         1,3      0,1     0,21      1/2


         F          48/52         49          6.4        1,27     0,12     0,25      2/2


         G          55/45         30           9          1,2     0,17     0,36      3/2

         H          46/54        26           12         1,24     0,31     0,63       5/2


aMolar composition of the resulting copolymers. b Weight-average molecular weight.
c Molecular weight distribution. d Degree of transesterification at the end of the second

stage of the reaction. e Degree of randomness at the end of the second stage of the
reaction. f Duration in hours of the two transesterification stages. n.d.: not detemined.
a
                                                          O                    CH3                   O

         O     CH2   CH 2     CH 2          CH 2   CH2     C         O         CH      CH2           C
                e     f       g              h      i      l m                  b       c            d n
                                                                                               a


                                                   e                       g
                                                                                     f+h




                                                                                           i

                                                                     c
                                  b


   7.5   7.0   6.5   6.0    5.5       5.0    4.5   4.0   3.5   3.0   2.5       2.0    1.5          1.0   0.5   0.0
                                                     (ppm)

200 MHz 1H-NMR spectra of the copolymer P(HB–co-45%mol CL)
(sample D) obtained with conventional heating.
m’     n’                                                                              a
       H      HO                                                        O                     CH                   O
                                                                                                   3
 H3C            S       O     CH     CH2        CH 2      CH 2   CH2    C              O     CH            CH2     C
             n                e 2     f          g         h      i     l m                  b              c      d   n
       H      HO
       m      n
                                                           e
                                                                                   g
                                                                                             f+h


                                                                                                       a


                                                                                                   i


                                                                             c
  m+m’        n+n’                        b


            7.5   7.0   6.5   6.0   5.5       5.0   4.5    4.0  3.5    3.0   2.5       2.0     1.5         1.0   0.5   0.0
                                                            (ppm)


200 MHz 1H-NMR spectra of the copolymer P(HB–co-54%mol CL)
(sample H) obtained with microwave heating.
a
                                                 O                  CH3                     O

       O     CH2   CH2   CH 2   CH 2     CH2     C         O        CH        CH2           C
              e     f    g       h        i      l m                 b         c            d n




                                                                                    f g

                                                           e                            h
                                                                               i
                                                                          c
                                                                                                a
                                                       b


    l d


 180 170   160 150 140 130 120 110 100    90     80   70       60   50    40       30       20      10   0
                                         (ppm)

50 MHz 13C-NMR spectra of the copolymer P(HB–co-45%mol CL)
(sample D) obtained with conventional heating.
m’    n’                                                                              a
           H     HO                                                                O             CH                        O
                                                                                                      3
 H3C               S         O         CH      CH2     CH 2      CH 2   CH2        C        O    CH            CH2         C
                                       e 2      f       g         h      i         l m           b              c          d    n
           H     HO
           m     n                                                                                         h
                                                                                                                   g
                                                                                   e                  i        f




                                                                                                 c
                                                                                                                       a
       l                                                                       b

            d                     m+m’        n+n’


 180       170   160   150       140    130    120   110   100    90   80     70       60   50   40       30       20      10       0
                                                                   (ppm)


50 MHz 13C-NMR spectra of the copolymer P(HB–co-54%mol CL)
(sample H) obtained with microwave heating.
CCC
    BCC




                                                                    BBC

                                                                                                    BBB
                                            BCB                                     CBB
                                            CCB
                                                               CBC




   174.5   174.0   173.5   173.0   172.5   172.0    171.5   171.0   170.5   170.0   169.5   169.0   168.5
                                                   (ppm)

13C-NMR spectral expansion of the carbonyl region of the copolymer
(sample H).
2X B                             2XC
               LB =                            LC =
                      ( I BC + I CB )
                                                       ( I BC + I CB )

where XB and XC are the dyad mole fractions of HB and CL calculable by the
equations:

           X B = I BB + 1 2 ( I BC + I CB )   X C = I CC + 1 2 ( I BC + I CB )


                DT = I BC + I CB                  DR = 1 LB + 1 LC



 For a random copolymer of 1:1 composition, these parameters are expected
 to assume the values LB = LC = 2, DT = 0.5 and DR = 1.
: Spettro MALDI-TOF della frazione eluita dopo il massimo del tracciato GPC del copolimero P(HB-co- 45 mol%CL) (campione D).




                                                                                                              5894
                                                                                          5810
                                                                                                      5838
                                                                                          5754




                                                                                                      5866
                                                                                          5782




                                                                                                                      5922
                                                                                                                     5950
                  1000


                   800

                                                                                          5750         5850            5950
                   600                                                                                (m/z)



                   400



                   200



                                4500        5000         5500       6000         6500        7000         7500
                                                                (m/z)




       MALDI-TOF mass spectrum of the fraction eluting after the maximum
       of the GPC trace of the copolimer P(HB-co- 45 mol%CL) (sample D).
: Spettro MALDI-TOF della frazione eluita dopo il massimo del tracciato GPC del copolimero P(HB-co- 45 mol%CL) (campione D).

                                Chemical synthesis of terpolyesters.

                                                                                                       CH3
                                                            O                CH     O                  CH2             O
                                                                               3
                   O       CH2 CH2 CH2 CH2 CH2 C                     +     O CH CH2 C              O CH CH2 C
                                                                 m                           n                             o
                                    PCL                                                  P(HB-co-HV)



                                                                1. PTSA·H2O, Chloroform, Toluene (reflux)

                                                                2. Azeotropic (dehydration)

                                                                                                  CH
                                                                                                    3
                                                                O          CH     O               CH2          O
                                                                             3
                       O    CH2 CH2 CH2 CH2 CH2 C                        O CH CH2 C           O CH CH2 C
                                                                    m                     n                        o
                                                   P(HB-co-HV-co-CL)
Table 9:Transesterification Conditions, Yields, Molecular
Weights, and Degree of Transesterification of P(HB-co-HV-
co-CL) Terpolymers.
     Sample       HB/HV/CLa   Resa (%)     Mw·103 b    Mw/Mn c    DT d    DR e      RT(h) f

   Conventional
     heating

         L         51/15/34      30          6.7         1,36      0,61    1,05       1/2

         M         47/12/41      19          11.3        1,16      0,71    1,41       2/2

         N        48/13/39       13          8.1         1,12      0,81    1,54       3/2

    Microwave
     heating

         P        62/14/24       51           8.1        1,3      0,64     1,64      1/2


         Q        58/15/27      37.5          9.1        1.9       0,7     1,27      2/2


         R        68/13/19       35           6.7        1,2      0,75     1,47      3/2


aMolar composition of the resulting terpolymers. b Weight-average molecular weight.
c Molecular weight distribution. d Degree of transesterification at the end of the second

stage of the reaction. e Degree of randomness at the end of the second stage of the
reaction. f Duration in hours of the two transesterification stages.
Spettro 1H-NMR a 200 MHz del terpolimero P(3HB-co-12%mol 3HV-co-41%mol CL) (campione M).

                                                                                                m
                                                                      g                         CH
                                                                                                      3
                                                            O         CH             O         n CH             O
                                                                           3                          2
                   O         CH CH CH CH CH C     O CH CH C     O                                CH       CH C
                                2  2   2  2  2            2                                               p 2 q o
                              a   b  c   d  e f m   h   i   l n                                  o

                                                                                                               g+n




                                                                  a                                  b+d
                                                                                     i+p e
                                                                                                                m
                                                  h+o                                                      c



             8.0       7.5    7.0   6.5   6.0   5.5   5.0   4.5   4.0 3.5      3.0       2.5   2.0    1.5      1.0   0.5   0.0
                                                                  (ppm)


         200 MHz 1H-NMR spectra of the terpolymer P(HB-co-12%mol HV-co-
         41%mol CL) (sample M).
m
       x’         y’                                                            CH
                                                                 g                 3
       H          HO                                       O     CH      O    n CH      O
                                                                   3              2
 H3C               S    O     CH2 CH2 CH2 CH2 CH           C   O CH CH C     O CH CH C
                              a   b   c   d    e2          f m   h   i 2 l
                                                                           n    o    p2 q o
        H         HO
        x         y
                                                                                              g+n




                                                                       i+p             b+d
                                                       a
                                                                             e                 m
  y+y’        x+x’                     h+o
                                                                                         c


  8.0       7.5   7.0   6.5    6.0   5.5   5.0   4.5   4.0 3.5   3.0   2.5       2.0    1.5   1.0   0.5   0.0
                                                        (ppm)




200 MHz 1H-NMR spectra of the terpolymer P(HB-co-15%mol HV-co-
27%mol CL) (sample Q).
m
                                                                       CH3
                                        g
                                  O     CH3     O    nCH     O
                                                        2
          O     CH CH2 CH2 CH CH2 C   O CH CH C     O CH CH C
                   2          2               2       o   p2 q o
                 a   b  c   d   e f m   h   i   l n
                                                                                             g

                                                                        i
                                                     h


                                                                                     ed
                                                         a
                                                                                b        c
          l+q

                                                                                     n            m
      f                                          o                          p


   180 170 160 150 140 130 120 110 100   90 80   70          60   50   40           30       20   10   0
                                         (ppm)


50 MHz 13C-NMR of the terpolymer P(HB-co-12%mol HV-co-41%mol CL)
(sample M).
m
        x’        y’                                                                                            CH 3
                                                                                g
        H         HO                                             O              CH3           O
                                                                                             nCH     O
                                                                                                2
  H3C              S    O     CH2 CH CH2 CH CH                   C   O          CH CH2 C   O CH CH 2 C
                              a   b2 c    d2 e 2                 f m            h   i  l n    o p    q o
        H         H O
        x         y                                                                                               g

                                                                                                  i
                                                                            h




                                                                                                            e
            l+q                                                                 a
                                                                                                          b cd
                                                                                                                       m
                                                                        o                                   n
                                y+y’      x+x’                                                        p
        f


  180       170   160   150   140   130   120    110   100     90  80   70          60   50       40       30     20   10   0
                                                             (ppm)


50 MHz 13C-NMR spectra of the terpolymer P(HB-co-15%mol HV-co-
27%mol CL) (sample Q).
Espansione dello spettro 13C NMR della regione dei carbonili del terpolimero M.

                                                                                                    BB




                                                                                            BV,VB
                   CC


                                                       BC
                                                                                       BC
                                   CV
                                                                                  VC        VV




                   173.6 173.2 172.8 172.4 172.0 171.6 171.2 170.8 170.4 170.0 169.6 169.2 168.8
                                                      (ppm)

         13C-NMR spectral expansion of the carbonyl region of the terpolymer
         (sample M).
2 XB                                                             2 XV
 LB =                                                       LV =
        ( I CB + I BC + I CV + I BV + IVB )                        ( I CB + I BC      + I CV + I BV + I VB )
                                                2 XC
                       LC =
                               ( I CB + I BC + I CV + I BV + I VB )

where XB, XV, and XC are the dyad mole fractions of HB, HV and CL calculable by
the equations:


X B = I BB + 1 2 ( I CB + I BC + I CV + I BV + I VB )       X V = I VV + 1 2 ( I CB + I BC + I CV + I BV + I VB )

                              X C = I CC + 1 2 ( I CB + I BC + I CV + I BV + I VB )

      DR = 1 LB + 1 LC + 1 LV                   DT= ICB+IBC+ICV+IVC+IBV+IVB/2XB XC+2XCXV+2XBXV
Conclusion 1
Through bacterial fermentation were obtained for the first
time PHA using very long chain fatty acids (VLCFA), more
than 20 C atoms and B. carinataI oil. The PHA produced by
fatty acid with odd number of carbon atoms are flexible
materials whose physical characteristics do not vary
significantly as a function of the side chain, although longer
pendant groups confer a greater speed of recrystallization.
The PHA produced by using erucic and nervonic acids, are
transparent as well, partially crystalline and therefore they
show rubber-like characteristics. Their proposed use is as
scaffold in tissue engineering and in the pharmaceutical
delivery system.
The PHA from B. carinata oil is a transparent material, totally
amorphous. The presence of double bonds allows the
derivatization and functionalization.
Conclusion 2

By chemical synthesis were obtained biodegradable and
biocompatible copolymers and terpoIymers. The structure of
these polymers is random or microblock depending on the
duration of the reaction or the amount of catalyst used and
the type of heating used. At equal number of hours of
reaction, and degree of transesterification catalyst used, the
use of microwaves has allowed to obtain higher yields for
both copolymers that for the terpolymers.
Copolymers and terpolymers obtained by this method are
capable of producing micro-and nanoparticles used in the
drug delivery system.

More Related Content

Viewers also liked

2013 2014 fellows-directory
2013 2014 fellows-directory2013 2014 fellows-directory
2013 2014 fellows-directoryAshley Hull
 
Smart Packaging Technologies Final Verision
Smart Packaging Technologies Final VerisionSmart Packaging Technologies Final Verision
Smart Packaging Technologies Final VerisionTim Merchant
 
PHB Development Slides
PHB Development SlidesPHB Development Slides
PHB Development Slides
universitymeetsmicrofinance
 
Smart packaging - From the shelf and dairy case to the internet of things
Smart packaging - From the shelf and dairy case to the internet of thingsSmart packaging - From the shelf and dairy case to the internet of things
Smart packaging - From the shelf and dairy case to the internet of things
Gail Barnes
 
Food Packaging, Smart Fast food packaging, IDM8
Food Packaging, Smart Fast food packaging, IDM8Food Packaging, Smart Fast food packaging, IDM8
Food Packaging, Smart Fast food packaging, IDM8
Qatar University- Young Scientists Center (Al-Bairaq)
 
Smart packaging for connected food (l)inks [compatibility mode]
Smart packaging for connected food (l)inks [compatibility mode]Smart packaging for connected food (l)inks [compatibility mode]
Smart packaging for connected food (l)inks [compatibility mode]
Jan Willem Slijkoord
 
Food packaging, Smart Plastic cans for leftovers, IDM8
Food packaging, Smart Plastic cans for leftovers, IDM8Food packaging, Smart Plastic cans for leftovers, IDM8
Food packaging, Smart Plastic cans for leftovers, IDM8
Qatar University- Young Scientists Center (Al-Bairaq)
 
Food Packaging, Smart Food Packaging, IDM8
Food Packaging, Smart Food Packaging, IDM8Food Packaging, Smart Food Packaging, IDM8
Food Packaging, Smart Food Packaging, IDM8
Qatar University- Young Scientists Center (Al-Bairaq)
 
PHA presentation
PHA presentationPHA presentation
PHA presentation
housingkp
 
INNOVATIVE PACKAGING FOR FRUITS AND VEGETABLES
INNOVATIVE PACKAGING FOR FRUITS AND VEGETABLESINNOVATIVE PACKAGING FOR FRUITS AND VEGETABLES
INNOVATIVE PACKAGING FOR FRUITS AND VEGETABLES
Anjali Mehta
 

Viewers also liked (12)

2013 2014 fellows-directory
2013 2014 fellows-directory2013 2014 fellows-directory
2013 2014 fellows-directory
 
Smart Packaging Technologies Final Verision
Smart Packaging Technologies Final VerisionSmart Packaging Technologies Final Verision
Smart Packaging Technologies Final Verision
 
PHB Development Slides
PHB Development SlidesPHB Development Slides
PHB Development Slides
 
Smart packaging - From the shelf and dairy case to the internet of things
Smart packaging - From the shelf and dairy case to the internet of thingsSmart packaging - From the shelf and dairy case to the internet of things
Smart packaging - From the shelf and dairy case to the internet of things
 
Food Packaging, Smart Fast food packaging, IDM8
Food Packaging, Smart Fast food packaging, IDM8Food Packaging, Smart Fast food packaging, IDM8
Food Packaging, Smart Fast food packaging, IDM8
 
Gespot - Smart Packaging
Gespot - Smart PackagingGespot - Smart Packaging
Gespot - Smart Packaging
 
Smart packaging for connected food (l)inks [compatibility mode]
Smart packaging for connected food (l)inks [compatibility mode]Smart packaging for connected food (l)inks [compatibility mode]
Smart packaging for connected food (l)inks [compatibility mode]
 
Food packaging, Smart Plastic cans for leftovers, IDM8
Food packaging, Smart Plastic cans for leftovers, IDM8Food packaging, Smart Plastic cans for leftovers, IDM8
Food packaging, Smart Plastic cans for leftovers, IDM8
 
Food Packaging, Smart Food Packaging, IDM8
Food Packaging, Smart Food Packaging, IDM8Food Packaging, Smart Food Packaging, IDM8
Food Packaging, Smart Food Packaging, IDM8
 
PHA presentation
PHA presentationPHA presentation
PHA presentation
 
INNOVATIVE PACKAGING FOR FRUITS AND VEGETABLES
INNOVATIVE PACKAGING FOR FRUITS AND VEGETABLESINNOVATIVE PACKAGING FOR FRUITS AND VEGETABLES
INNOVATIVE PACKAGING FOR FRUITS AND VEGETABLES
 
biodegradable polymers
biodegradable polymersbiodegradable polymers
biodegradable polymers
 

Similar to PHA(Eng)

Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Giuseppe Puzzo
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATIONPaulami Bose
 
Research Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam AlameddineResearch Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam Alameddinebalameddine
 
Corinne Ley Research Summary
Corinne Ley Research SummaryCorinne Ley Research Summary
Corinne Ley Research SummaryCorinne Ley
 
Htos Presentation
Htos PresentationHtos Presentation
Htos Presentationbenmz101
 
Tetracycline
TetracyclineTetracycline
Tetracycline
vineelaammu
 
Detection Fatty Acid In Khng Khao( Peneus Merguiiensis
Detection  Fatty Acid In Khng Khao(  Peneus MerguiiensisDetection  Fatty Acid In Khng Khao(  Peneus Merguiiensis
Detection Fatty Acid In Khng Khao( Peneus Merguiiensis
Phisitasak Wisatsukun
 
LCMS PHYTOCHEMICAL ANALYSIS
LCMS PHYTOCHEMICAL ANALYSISLCMS PHYTOCHEMICAL ANALYSIS
LCMS PHYTOCHEMICAL ANALYSIS
BushraYasin4
 
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Laura Berry
 
Folder test bank is orgo chapter 4
Folder test bank is orgo chapter 4Folder test bank is orgo chapter 4
Folder test bank is orgo chapter 4
Dr Robert Craig PhD
 
ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์Maruko Supertinger
 
Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ)
Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ) Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ)
Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ) Pharmcluster
 
Work report 陈冰11.11.23 修订版
Work report 陈冰11.11.23 修订版Work report 陈冰11.11.23 修订版
Work report 陈冰11.11.23 修订版arielchen
 
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
 RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC... RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC...
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
Ajay mandagiri
 
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Keiji Takamoto
 
Cristallo, Tara Murdock Conference Poster
Cristallo, Tara Murdock Conference PosterCristallo, Tara Murdock Conference Poster
Cristallo, Tara Murdock Conference PosterTara Cristallo
 
Undergrad Research
Undergrad ResearchUndergrad Research
Undergrad Research
Apryl Boyle
 

Similar to PHA(Eng) (20)

Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
 
625
625625
625
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATION
 
Research Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam AlameddineResearch Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam Alameddine
 
Corinne Ley Research Summary
Corinne Ley Research SummaryCorinne Ley Research Summary
Corinne Ley Research Summary
 
Htos Presentation
Htos PresentationHtos Presentation
Htos Presentation
 
Tetracycline
TetracyclineTetracycline
Tetracycline
 
Detection Fatty Acid In Khng Khao( Peneus Merguiiensis
Detection  Fatty Acid In Khng Khao(  Peneus MerguiiensisDetection  Fatty Acid In Khng Khao(  Peneus Merguiiensis
Detection Fatty Acid In Khng Khao( Peneus Merguiiensis
 
LCMS PHYTOCHEMICAL ANALYSIS
LCMS PHYTOCHEMICAL ANALYSISLCMS PHYTOCHEMICAL ANALYSIS
LCMS PHYTOCHEMICAL ANALYSIS
 
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
 
Folder test bank is orgo chapter 4
Folder test bank is orgo chapter 4Folder test bank is orgo chapter 4
Folder test bank is orgo chapter 4
 
ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์ประเภทของสารประกอบอินทรีย์
ประเภทของสารประกอบอินทรีย์
 
кузнецов
кузнецовкузнецов
кузнецов
 
Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ)
Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ) Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ)
Д.А.Кузнецев. Университет им.Н.И.Пирогова(РГМУ)
 
Work report 陈冰11.11.23 修订版
Work report 陈冰11.11.23 修订版Work report 陈冰11.11.23 修订版
Work report 陈冰11.11.23 修订版
 
articl 1
articl 1articl 1
articl 1
 
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
 RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC... RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC...
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
 
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
 
Cristallo, Tara Murdock Conference Poster
Cristallo, Tara Murdock Conference PosterCristallo, Tara Murdock Conference Poster
Cristallo, Tara Murdock Conference Poster
 
Undergrad Research
Undergrad ResearchUndergrad Research
Undergrad Research
 

PHA(Eng)

  • 1. UNIVERSITA’ DEGLI STUDI DI CATANIA FACOLTA’ DI FARMACIA PhD in Medicinal Chemistry GIUSEPPE PUZZO BACTERIAL FERMENTATION AND MICROWAVE- ASSISTED SYNTHESIS FOR THE PRODUCTION OF BIODEGRADABLE AND BIOCOMPATIBLE POLYMERS USABLE IN THE PHARMACEUTICAL FIELD. Coordinator: Tutor: Prof. Giuseppe Ronsisvalle. Prof. Alberto Ballistreri. Ciclo XXIV
  • 2. Introduction Not biodegradable plastics Biodegradable plastics
  • 3. Biodegradable polymers on the market. Biomax® Ecoflex® Mater-Bi® ® PHA EcoPLA
  • 4. Polyhydroxyalkanoates (PHA) Poly(3-hydroxyalkanoates) with R= alkyl or functional group n PHASCL: short-chain length PHA 3-5 carbon atoms PHAMCL: medium-chain length PHA 6-14 carbon atoms
  • 5. Physical and chemical properties. •Average molecular weight ranging between 5·104 and1· 106 Da •Enantiomerically pure •Biodegradable and biocompatible Extension at Polymer Tg(°C) Tm (°C) Cristallinity (%) break (%) P(3HB) 15 175 50-80 5 P(3HB-co-3HV) -1 145 56 50 P(3HB-co-4HB) -7 150 43 444 PP -15 176 50 400
  • 6. Applications of PHAs in medicine and pharmaceuticals. •Sutures. •Bone graft substitutes. •Temporary heart valves. •Carrier for drug delivery.
  • 7. Role of PHAs in tissue engineering.
  • 8. The aim of the thesis Explore new strategies for obtaining new polymers which, in the pharmaceutical field, have feature of biodegradability and biocompatibility with wider opportunity of utilization with respect to poly(3-hydroxybutyrate) (PHB) by: 1. The study on the capabilty to P. aeruginosa to grow and synthesize PHAs from Long Chain Fatty Acids (LCFA) or vegetable oils, with better yields or with new structures and new properties. 2. Chemical synthesis of new coplymers and terpolymers by transesterification reaction microwave assisted.
  • 9. PHA’s production by microorganisms.
  • 10. Substrates for PHA’s production. Corn, sugar cane, Glucose Carbohydrate potato etc Agriculture, waste materials Alkanoates (propionic acid, Vegetable oils butyric acid, Fatty acid and fats valeric acid etc.)
  • 11. Table 1. PHA production from P. aeruginosa cultured using odd carbon atoms fatty acids as carbon source. Fatty acid Dry cell weight PHA content PHA yield (mg/L) (% dry cell weight) (mg/L) Eptadecanoic -N 1600 9,8 157 Nonadecanoic -N 2370 5,3 127 Eneicosanoic-N 2 737 0,25 7
  • 12. GC trace of the products prepared by methanolysis of PHA from nonadecanoic acid. V= 3-hydoxyvalerate; H= 3-hydoxyheptanoate; O= 3-hydroxyoctanoate; N= 3-hydroxynonanoate; D= 3-hydroxydecanoate; U= 3-hydroxyundecanoate; Θ= 3-hydroxytridecanoate; P = 3-hydroxypentadecanoate
  • 13. 200 MHz 1H-NMR spectra of the PHAs obtained from P. aeruginosa grown on (a) heptadecanoic; (b) nonadecanoic and (c) eneicosanoic acid.
  • 14. 50 MHz 13C-NMR spectra of the PHAs obtained from P. aeuruginosa grown on (a) nonanoic; (b) heptadecanoic and (c) eneicosanoic acid.
  • 15. Chemical structure of the PHAs. V H N U Θ P ∆ 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 O CH CH CO O CH CH CO O CH CH CO O CH CH CO O CH CH CO O CH CH CO 2 l 2 m 2 n 2 o 2 p 2 q 4CH 4CH 4 CH 4 CH 4 CH 4 CH 2 2 2 2 2 2 5CH 5CH 5 CH 5 CH 5 CH 5 CH 3 2 2 2 6CH 6 CH 6 CH 6 CH 6 CH 2 2 2 7CH 7 CH 7 CH 7 CH 7 CH 3 2 2 2 2 8 CH 8 CH 8 CH 8 CH 2 2 2 2 9 CH 9 CH 9 CH 9 CH 3 2 2 2 10CH 10CH 10CH 2 2 2 11CH 11CH 11CH 3 2 2 12 CH 12 CH 2 2 13 CH 13 CH 3 2 14 CH 2 15CH 3
  • 16. Table 2. Physical characteristics of the PHAs isolated from P. aeruginosa grown on C-odd fatty acids. Fatty acids Tg (°C) Tm (°C) ∆Hm (J/g) Mw x 10-3 Mw/Mn Eptadecanoic -41 50 7,9 77 1,6 Nonadecanoic -43 58 12 97 2 Eneicosanoic -39 49 5,7 188 1,7
  • 18. Assuming a Bernoullian (random) distribution of repeating units in these copolymers, the probability of finding a given Ax, By…Nz can be calculated by the Leibnitz formula as follows: A measure of the fit of the calculated oligomers intensities to the experimental ones is given by the agreement factor (AF); the lower AF, the closer fit. ∑(I + I expi . calci . )2 AF= i ∑I 2 exp.i i
  • 19. R R R CH CH CO [O ] CH CH2 CO n O CH CH2 COOH Negative ion ESI mass spectrum of the partial pyrolisate of the PHA from enicosanoic acid. R may be an un n-etyl, n-butyl, n-hexyl, n-octyl, n- decyl and n-dodecyl group.
  • 20. Table 3. Experimental and calculated relative amounts of the partial pyrolisis products of P. aeruginosa from eneicosanoic acid. m/z ESI Calculated Dimers V-H 227 4 4 V-N; H2 255 15 15 V-U; H-N 383 18 18 V-Θ; H-U; N2 311 26 26 V-P; N-U; H-Θ 339 20 20 H-P; U2; N-Θ 367 12 13 U-Θ; N-P 395 5 5 Trimers C23 411 8 9 C25 439 14 16 C27 467 23 22 C29 495 21 24 C31 523 15 18 C33 551 10 10 C35 579 3 0
  • 21. Brassica carinata production’s seeds Remaining Oil De-oiling flour Modified As such As such Formulation Lubricants Lubrificants Fertilizer Soil products Energy products Biofuels Agricoltural oils
  • 22. Table 4. PHA production from P. aeruginosa cultured on differents substrates. Substrate Dry cell weight PHA content PHA yield (mg/L) (% dry cell weight) (mg/L) B. Carinata oil 1000 5,0 50 Oleico acid 380 15,0 57 Erucic acid 2 866 9,3 81 Nervonic acid 416 416 10 10.0 42
  • 23. Table 5. Comonomer composition (mol%) of PHA obtained from varius carbon sources, determined by GC. Substrate C O O:1 D D:1 Δ Δ:1 T:1 T:2 T:3 B.Carinata oil 3 34 3 32 3 10 1 9 2 3 Oleico acid 4 55 - 27 - 8 - 6 - - Erucico acid 3 43 - 36 - 10 - 8 - - Nervonico acid 4 28 - 43 - 14 - 11 - - C= 3-hydroxyhexanoate; O= 3-hydroxyoctanoate; O:1= 3-hydroxy-5- octenoate; D= 3-hydroxydecanoate; D:1= 3-hydroxy-7-decenoate; Δ= 3- hydroxydodecanoate; Δ:1= 3-hydroxy-6-dodecenoate; T:1 = 3- hydroxy- 5-tetradecenoate; T:2= 3-hydroxy-5,8-tetradecadienoate; T:3= 3-hydroxy- 5,8,11-tetradecatrienoate.
  • 24. C5, O5-7, D5-9, C6, O8, D10, ∆5-11, T:1 8-13 ∆12, T:1 14 C/O/D/∆ C/O/D/∆/T:1 C/O/D/∆/T:1 4 3 2 T:1 T:1 T:1 T:1 4 7 6 5 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 (ppm) 200 MHz 1H-NMR spectra of the PHA obtained from erucic acid.
  • 25. D8 D6-7 D9 O/D/∆ ∆10 O6 ∆6-9 ∆11 D10 T:1 3 T:1 T:1 T:1 ∆12 4 12 8-11 13 T:1 C/O/D/∆ O7 O8 C/O/D/∆ O5 14 2 1 D5 O/D/∆ D5 4 T:1 T:1 C3 T:1 2 T:1 1 T:1 T:1 3 7 C5 C6 6 5 C4 170 130 120 70 40 35 30 25 20 15 (ppm) 50 MHz 13C-NMR spectra of the PHA obtained from erucic acid.
  • 26. Chemical structure of the PHAs from oleic, erucic and nervonic acids. C O D ∆ T:1 ∆ 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 O CH CH CO O CH CH CO O CH CH CO O CH CH CO O CH CH CO 2 m 2 n 2 o 2 p 2 q 4CH 4CH 4 CH 4 CH 4 CH 2 2 2 2 2 5 CH 5CH 5 CH 5 CH 5 CH 2 2 2 2 6CH 6CH 6 CH 6 CH 6 CH 3 2 2 2 7CH 7 CH 7 CH 7 CH 2 2 2 2 8 CH 8 CH 8 CH 8 CH 3 2 2 2 9 CH 9 CH 9 CH 2 2 2 10 CH 10 CH 10 CH 3 2 2 11CH 11CH 2 2 12 CH 12 CH 3 2 13 CH 2 14 CH 3
  • 27. O:1 8, D:1 10, ∆:112, T:2/T:3 14 O:1 5 D:1 5, ∆:1 9-11, T:2 11-13 D:1 7-8 ∆:1 6-7 O:1 7 D:1 T:2 5, 8-9 D:1 6, 9 ∆:1 T:3 5, 8-9, 11- ∆:1 5, 8 4 12 T:2 10 O:1/D:1/∆:1/T:2/T: O:1/D:1/∆:1/T:2/T:3 3 T:3 13 2 O:1 6 3 O:1/T:2/T:3 T:2/T:3 6 4 T:2 7 T:3 7, 10 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 (ppm) 200 MHz 1H-NMR spectra of the PHA obtained from B. carinata oil.
  • 28. O:1 7, D:1 6/9, ∆:1 5, 8 T:2 10, T:3 13} ∆:1 O:1 T:2 7 D:1 D:1 12 T:2 T:3 7, 10 ∆:1 ∆:1 T:2 T:3 D:1 3 2 O:1 14 O:1 4 ∆:1 ∆:1 O:1 8 T:2 9 1 O:1 T:2 D:1 T:3 T:2 T:3 10 2 T:3 3 T:3 D:1 14 1 ∆:1 4 170 130 120 70 40 35 30 25 20 15 (ppm) 50 MHz 13C-NMR spectra of the PHA obtained from B. carinata oil.
  • 29. T:3 T:3 12 8, 11 T:3 T:1 D:1 T:2 ∆:1 T:1 6 T:2 6 8 T:2 9 6 5 O:1 ∆:1 D:1 8 6 6 7 7 O:1 T:3 T:2 5 9 T:3 5 5 138 136 134 132 130 128 126 124 122 120 (ppm) 13C-NMR spectra of the PHA obtained from B. carinata oil in the region of the olefinc signals.
  • 30. Chemical structure of the PHA from B. carinata oil. This PHA is made up of all the repeating units constituting the PHA from erucic acid, plus the unsatureted ones shown here. O:1 D:1 ∆:1 T:2 T:3 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 O CH CH CO O CH CH CO O CH CH CO O CH CH CO O CH CH CO 2 n 2 o 2 p 2 r 2 s 4CH 4CH 4 CH 4 CH 4 CH 2 2 2 2 2 5 CH 5CH 5 CH 5 CH 5 CH 2 2 6CH 6CH 6 CH 6 CH 6 CH 2 7CH 7CH 7 CH 7 CH 7 CH 2 2 2 8CH 8 CH 8 CH 8 CH 8 CH 3 2 9CH 9 CH 9 CH 9 CH 2 2 10 CH 10 CH 10CH 10CH 3 2 2 2 11CH 11 CH 11CH 2 2 12CH 12CH 12CH 3 2 13CH 13CH 2 2 14CH 14CH 3 3
  • 31. Table 6. Physical characteristics of the PHAs isolated from P. aeruginosa grown on B. carinata oil and on oleic, erucic and nervonics acids. Sustrate Tg (°C) Tm (°C) ΔHm (J/g) Mw x 10-3 Mw/Mn B.carinata oil -47 - - 56 1,8 Oleico acid -52 - - 57 2,2 Erucic acid -46 50 16,1 122 1,9 Nervonic acid -43 50 15,5 114 2
  • 32. Dimeri R R 311 R CH CH CO [O ] CH CH2 CO n O CH CH2 COOH 100 283 % Intensità 339 Trimeri Tetrameri 60 453 481 255 367 425 509 595 623 393 535 567 651 679 20 300 400 500 600 700 x3 (m/z) 100 Pentameri % Intensità Esameri 765 Eptameri 60 737 793 907 879 935 1049 709 821 1077 851 963 1021 1105 991 1133 1161 20 700 800 900 1000 1100 (m/z) Negative ion ESI mass spectrum of the partial pyrolisate of the PHA from erucic acid. R may be a n-propyl, n-pentyl, n-heptyl, n-nonyl or n- undecenyl group.
  • 33. Table 7. Experimental and calculated relative amounts of the partial pyrolisis products of the PHA produced by P. aeruginosa from erucic acid. m/z ESI Calculated Dimers C-O 255 10 9 C-D; O2 283 24 24 C-Δ; O-D 311 26 26 O-Δ; D2 339 18 19 O-T:1 365 6 7 D-Δ 367 8 7 D-T:1 393 6 4 Δ-T:1 421 2 2 Trimers C22 397 4 4 C24 425 12 12 C26 453 20 19 C28 481 18 20 C30 :1 507 5 7 C30 509 13 13 C32:1 535 10 9 C32 537 6 5 C34:1 563 8 6
  • 34. R R Dimeri R CH CH CO [O ] CH CH2 CO n O CH CH2 COOH 311 100 283 339 % Intensità Trimeri 60 255 Tetrameri 453 481 367 425 509 623 651 393 535 567 595 679 20 300 400 (m/z) 500 600 700 100 x 4 Pentameri % Intensità 737 765 793 Esameri 60 709 821 907 Eptameri 879 935 963 849 991 1021 1049 107711051133 20 700 800 900 (m/z) 1000 1100 Negative ion ESI mass spetrum of the partial pyrolisate of the PHA from B. carinata. R may be a n-pentaenyl, n-heptaenyl, n-nonaenye, n- undecadieyil or n-undecatrienyl group.
  • 35. Design For Efficient Energy: Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure. Heating mechanisms heat exchange Heating with Microwave Benefits: Energy saving Process Efficiency Restrictions on the use of halogenated solvents
  • 36. What are the microwave The microwaves are not ionizing electromagnetic waves having a wavelength between 1 mm (ν = 300 GHz) and 1 m (ν = 300 MHz), they are located in the area of the spectrum between the frequencies of the infrared and the radio waves. The frequency of 2.45 (± 0.05) GHz, corresponding in vacuum at a wavelength (λ) of 12.2 cm, is that used for applications in the domestic field, scientific, medical, and for many industrial processes.
  • 37. Chemical synthesis of copolyesters. CH 3 O O O CH CH 2 C + O CH 2 CH 2 CH2 CH2 CH 2 C PHB n PCL m 1. PTSA·H2O, Chloroform, Toluene (reflux) 2. Azeotropic (dehydration) CH 3 O O O CH CH 2 C O CH 2 CH 2 CH 2 CH 2 CH 2 C n m P(HB-co-CL)
  • 38. Table 8. Transesterification Conditions, Yields, Molecular Weights, and Degree of Transesterification of P(HB-co-CL) Copolymers. Sample HB/CLa Yield (%) Mw·103 b Mw/Mn c DT d DR e RT(h) f Conventional heating A 54/46 15 7.8 1,41 0,16 0,3 1/2 B 45/55 23 n.d. n.d. 0,21 0,52 2/2 C 75/25 19 n.d. n.d. 0,42 0,92 3/2 D 55/45 10 7.9 1,3 0,37 0,74 5/2 Microwave heating E 55/45 52 5.2 1,3 0,1 0,21 1/2 F 48/52 49 6.4 1,27 0,12 0,25 2/2 G 55/45 30 9 1,2 0,17 0,36 3/2 H 46/54 26 12 1,24 0,31 0,63 5/2 aMolar composition of the resulting copolymers. b Weight-average molecular weight. c Molecular weight distribution. d Degree of transesterification at the end of the second stage of the reaction. e Degree of randomness at the end of the second stage of the reaction. f Duration in hours of the two transesterification stages. n.d.: not detemined.
  • 39. a O CH3 O O CH2 CH 2 CH 2 CH 2 CH2 C O CH CH2 C e f g h i l m b c d n a e g f+h i c b 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 (ppm) 200 MHz 1H-NMR spectra of the copolymer P(HB–co-45%mol CL) (sample D) obtained with conventional heating.
  • 40. m’ n’ a H HO O CH O 3 H3C S O CH CH2 CH 2 CH 2 CH2 C O CH CH2 C n e 2 f g h i l m b c d n H HO m n e g f+h a i c m+m’ n+n’ b 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 (ppm) 200 MHz 1H-NMR spectra of the copolymer P(HB–co-54%mol CL) (sample H) obtained with microwave heating.
  • 41. a O CH3 O O CH2 CH2 CH 2 CH 2 CH2 C O CH CH2 C e f g h i l m b c d n f g e h i c a b l d 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm) 50 MHz 13C-NMR spectra of the copolymer P(HB–co-45%mol CL) (sample D) obtained with conventional heating.
  • 42. m’ n’ a H HO O CH O 3 H3C S O CH CH2 CH 2 CH 2 CH2 C O CH CH2 C e 2 f g h i l m b c d n H HO m n h g e i f c a l b d m+m’ n+n’ 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm) 50 MHz 13C-NMR spectra of the copolymer P(HB–co-54%mol CL) (sample H) obtained with microwave heating.
  • 43. CCC BCC BBC BBB BCB CBB CCB CBC 174.5 174.0 173.5 173.0 172.5 172.0 171.5 171.0 170.5 170.0 169.5 169.0 168.5 (ppm) 13C-NMR spectral expansion of the carbonyl region of the copolymer (sample H).
  • 44. 2X B 2XC LB = LC = ( I BC + I CB ) ( I BC + I CB ) where XB and XC are the dyad mole fractions of HB and CL calculable by the equations: X B = I BB + 1 2 ( I BC + I CB ) X C = I CC + 1 2 ( I BC + I CB ) DT = I BC + I CB DR = 1 LB + 1 LC For a random copolymer of 1:1 composition, these parameters are expected to assume the values LB = LC = 2, DT = 0.5 and DR = 1.
  • 45. : Spettro MALDI-TOF della frazione eluita dopo il massimo del tracciato GPC del copolimero P(HB-co- 45 mol%CL) (campione D). 5894 5810 5838 5754 5866 5782 5922 5950 1000 800 5750 5850 5950 600 (m/z) 400 200 4500 5000 5500 6000 6500 7000 7500 (m/z) MALDI-TOF mass spectrum of the fraction eluting after the maximum of the GPC trace of the copolimer P(HB-co- 45 mol%CL) (sample D).
  • 46. : Spettro MALDI-TOF della frazione eluita dopo il massimo del tracciato GPC del copolimero P(HB-co- 45 mol%CL) (campione D). Chemical synthesis of terpolyesters. CH3 O CH O CH2 O 3 O CH2 CH2 CH2 CH2 CH2 C + O CH CH2 C O CH CH2 C m n o PCL P(HB-co-HV) 1. PTSA·H2O, Chloroform, Toluene (reflux) 2. Azeotropic (dehydration) CH 3 O CH O CH2 O 3 O CH2 CH2 CH2 CH2 CH2 C O CH CH2 C O CH CH2 C m n o P(HB-co-HV-co-CL)
  • 47. Table 9:Transesterification Conditions, Yields, Molecular Weights, and Degree of Transesterification of P(HB-co-HV- co-CL) Terpolymers. Sample HB/HV/CLa Resa (%) Mw·103 b Mw/Mn c DT d DR e RT(h) f Conventional heating L 51/15/34 30 6.7 1,36 0,61 1,05 1/2 M 47/12/41 19 11.3 1,16 0,71 1,41 2/2 N 48/13/39 13 8.1 1,12 0,81 1,54 3/2 Microwave heating P 62/14/24 51 8.1 1,3 0,64 1,64 1/2 Q 58/15/27 37.5 9.1 1.9 0,7 1,27 2/2 R 68/13/19 35 6.7 1,2 0,75 1,47 3/2 aMolar composition of the resulting terpolymers. b Weight-average molecular weight. c Molecular weight distribution. d Degree of transesterification at the end of the second stage of the reaction. e Degree of randomness at the end of the second stage of the reaction. f Duration in hours of the two transesterification stages.
  • 48. Spettro 1H-NMR a 200 MHz del terpolimero P(3HB-co-12%mol 3HV-co-41%mol CL) (campione M). m g CH 3 O CH O n CH O 3 2 O CH CH CH CH CH C O CH CH C O CH CH C 2 2 2 2 2 2 p 2 q o a b c d e f m h i l n o g+n a b+d i+p e m h+o c 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 (ppm) 200 MHz 1H-NMR spectra of the terpolymer P(HB-co-12%mol HV-co- 41%mol CL) (sample M).
  • 49. m x’ y’ CH g 3 H HO O CH O n CH O 3 2 H3C S O CH2 CH2 CH2 CH2 CH C O CH CH C O CH CH C a b c d e2 f m h i 2 l n o p2 q o H HO x y g+n i+p b+d a e m y+y’ x+x’ h+o c 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 (ppm) 200 MHz 1H-NMR spectra of the terpolymer P(HB-co-15%mol HV-co- 27%mol CL) (sample Q).
  • 50. m CH3 g O CH3 O nCH O 2 O CH CH2 CH2 CH CH2 C O CH CH C O CH CH C 2 2 2 o p2 q o a b c d e f m h i l n g i h ed a b c l+q n m f o p 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm) 50 MHz 13C-NMR of the terpolymer P(HB-co-12%mol HV-co-41%mol CL) (sample M).
  • 51. m x’ y’ CH 3 g H HO O CH3 O nCH O 2 H3C S O CH2 CH CH2 CH CH C O CH CH2 C O CH CH 2 C a b2 c d2 e 2 f m h i l n o p q o H H O x y g i h e l+q a b cd m o n y+y’ x+x’ p f 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 (ppm) 50 MHz 13C-NMR spectra of the terpolymer P(HB-co-15%mol HV-co- 27%mol CL) (sample Q).
  • 52. Espansione dello spettro 13C NMR della regione dei carbonili del terpolimero M. BB BV,VB CC BC BC CV VC VV 173.6 173.2 172.8 172.4 172.0 171.6 171.2 170.8 170.4 170.0 169.6 169.2 168.8 (ppm) 13C-NMR spectral expansion of the carbonyl region of the terpolymer (sample M).
  • 53. 2 XB 2 XV LB = LV = ( I CB + I BC + I CV + I BV + IVB ) ( I CB + I BC + I CV + I BV + I VB ) 2 XC LC = ( I CB + I BC + I CV + I BV + I VB ) where XB, XV, and XC are the dyad mole fractions of HB, HV and CL calculable by the equations: X B = I BB + 1 2 ( I CB + I BC + I CV + I BV + I VB ) X V = I VV + 1 2 ( I CB + I BC + I CV + I BV + I VB ) X C = I CC + 1 2 ( I CB + I BC + I CV + I BV + I VB ) DR = 1 LB + 1 LC + 1 LV DT= ICB+IBC+ICV+IVC+IBV+IVB/2XB XC+2XCXV+2XBXV
  • 54. Conclusion 1 Through bacterial fermentation were obtained for the first time PHA using very long chain fatty acids (VLCFA), more than 20 C atoms and B. carinataI oil. The PHA produced by fatty acid with odd number of carbon atoms are flexible materials whose physical characteristics do not vary significantly as a function of the side chain, although longer pendant groups confer a greater speed of recrystallization. The PHA produced by using erucic and nervonic acids, are transparent as well, partially crystalline and therefore they show rubber-like characteristics. Their proposed use is as scaffold in tissue engineering and in the pharmaceutical delivery system. The PHA from B. carinata oil is a transparent material, totally amorphous. The presence of double bonds allows the derivatization and functionalization.
  • 55. Conclusion 2 By chemical synthesis were obtained biodegradable and biocompatible copolymers and terpoIymers. The structure of these polymers is random or microblock depending on the duration of the reaction or the amount of catalyst used and the type of heating used. At equal number of hours of reaction, and degree of transesterification catalyst used, the use of microwaves has allowed to obtain higher yields for both copolymers that for the terpolymers. Copolymers and terpolymers obtained by this method are capable of producing micro-and nanoparticles used in the drug delivery system.