SlideShare a Scribd company logo
1 of 43
Slide 8-1
Chapter 8 Bipolar Junction Transistors
• Since 1970, the high density and low-power advantage of
the MOS technology steadily eroded the BJT’s early dominance.
• BJTs are still preferred in some high-frequency and analog
applications because of their high speed and high power output.
Question: What is the meaning of “bipolar” ?
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-2
8.1 Introduction to the BJT
IC is an exponential
function of forward
VBE and independent
of reverse VCB.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
-
-
Efn
Efp
VCB
VBE
(b)
(c)
VBEIC
0
VCB
Ec
Ev
NPN BJT:
N+ P N
E C
B
VBE VCB
Emitter Base Collector
Slide 8-3
Common-Emitter Configuration
Question: Why is IB often preferred as a parameter over VBE?
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-4Modern Semiconductor Devices for Integrated Circuits (C. Hu)
8.2 Collector Current
BBB
B
DL
L
n
dx
nd




22
2
B : base recombination lifetime
DB : base minority carrier (electron)
diffusion constant
Boundary conditions :
)1()0( /
0  kTqV
B
BE
enn
0)1()( 0
/
0  B
kTqV
BB nenWn BC
N+
P N
emitter base collector
x
0 W
depletion layers
B
Slide 8-5
 BB
B
B
kTqV
B
LW
L
xW
enxn BE
/sinh
sinh
)1()( /
0





 

)1( /
2


kTqV
B
iB
B
B
E
BEC
BE
e
N
n
W
D
qA
dx
dn
qDAI
)1( /
 kTqV
SC
BE
eII


B
BE
W
BiB
i
B
kTqV
B
i
EC
dx
D
p
n
n
G
e
G
qn
AI
0
2
2
/
2
)1(
It can be shown
GB (s·cm4) is the base Gummel number
8.2 Collector Current
ni
2
NB
-------e
qVBE kT
1–
n 
n  0
-------------
)0(/)( nxn 
0 1
1
)1()( /
2
 kTqV
B
iB BE
e
N
n
xn
x/x/WB
)/1)(1(
)/1)(0()(
/
2
B
kTqV
B
iB
B
Wxe
N
n
Wxnxn
BE


Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-6
•At low-level injection,
inverse slope is 60 mV/decade
•High-level injection effect :
8.2.1 High Level Injection Effect
0 0.2 0.4 0.6 0.8 1.0
10-12
10-10
10-8
10-6
10-4
10-2
VBE
IC(A)
IkF
60 mV/decadeAt large VBE, BNpn 
pnpn 
kTqV
i
BE
enpn 2/

kTqV
iB
BE
enpG 2/
 kTqV
i
BE
enI 2/
C 
When p > NB , inverse slope is 120mV/decade.
kTqV
i
kTEEq
i
BEFpFn
enennp /2/)(2


Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-7
8.3 Base Current
Some holes are injected from the P-type base into the N+ emitter.
The holes are provided by the base current, IB .
pE
' nB'
WE WB
(b)
emitter base collectorcontact
I
E IC
electron flow
–
+
hole flow
I
B
(a) contact
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-8


E
BE
W
EiE
i
E
kTqV
E
i
EB
dx
D
n
n
n
G
e
G
qn
AI
0
2
2
/
2
)1(
Is a large IB desirable? Why?
8.3 Base Current
emitter base collectorcontact
I
E IC
electron flow
–
+
hole flow
I
B
(a) contact
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
)1( /
2
 kTqV
EE
iEE
EB
BE
e
NW
nD
qAI
For a uniform emitter,
Slide 8-9
8.4 Current Gain
B
C
F
I
I

How can F be maximized?
Common-emitter current gain, F :
Common-base current gain:
F
F
BC
BC
CB
C
E
C
F
EFC
II
II
II
I
I
I
II











1/1
/
It can be shown that
F
F
F





1
2
2
iEBBE
iBEEB
B
E
F
nNWD
nNWD
G
G

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-10
EXAMPLE: Current Gain
A BJT has IC = 1 mA and IB = 10 mA. What are IE, F and F?
Solution:
9901.0mA01.1/mA1/
100μA10/mA1/
mA01.1μA10mA1



ECF
BCF
BCE
II
II
III


We can confirm
F
F
F





1 F
F
F





1
and
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-11
8.4.1 Emitter Bandgap Narrowing
Emitter bandgap narrowing makes it difficult to raise F by
doping the emitter very heavily.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
2
2
iE
iB
B
E
n
n
N
N

To raise F, NE is typically very large.
Unfortunately, large NE makes 22
iiE nn 
(heavy doping effect).
kTE
VCi
g
eNNn
/2 
 Since ni is related to Eg , this effect is
also known as band-gap
narrowing.
kTE
iiE
gE
enn
/22 
 EgE is negligible for NE < 1018 cm-3,
is 50 meV at 1019cm-3, 95 meV at 1020cm-3,
and 140 meV at 1021 cm-3.
Slide 8-12
2
2
iE
iB
B
E
n
n
N
N

To further elevate F , we can raise niB by
using an epitaxial Si1-hGeh base.
With h = 0.2, EgB is reduced by 0.1eV and niE
2 by 30x.
8.4.2 Narrow-Bandgap Base and Heterojuncion BJT
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-13
Assume DB = 3DE , WE = 3WB , NB = 1018 cm-3, and niB
2 = ni
2. What is
F for (a) NE = 1019 cm-3, (b) NE = 1020 cm-3, and (c) NE = 1020 cm-3
and a SiGe base with EgB = 60 meV ?
(a) At NE = 1019 cm-3, EgE  50 meV,
(b) At NE = 1020 cm-3, EgE  95 meV
(c)
292.12meV26/meV502/22
8.6 iii
kTE
iiE nenenenn gE


13
8.610
109
218
219
2
2




i
i
iEB
iE
BE
EB
F
n
n
nN
nN
WD
WD

22
38 iiE nn  24F
2meV26/meV602/22
10 ii
kTE
iiB nenenn gB


237F
EXAMPLE: Emitter Bandgap Narrowing and SiGe Base
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-14
A high-performance BJT typically has a layer of As-doped N+
poly-silicon film in the emitter.
F is larger due to the large WE , mostly made of the N+ poly-
silicon. (A deep diffused emitter junction tends to cause emitter-
collector shorts.)
N-collector
P-base
SiO2
emitter
N+
-poly-Si
8.4.3 Poly-Silicon Emitter
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-15
Why does one want to operate BJTs at low IC and high IC?
Why is F a function of VBC in the right figure?
F
From top to bottom:
VBC = 2V, 1V, 0V
8.4.4 Gummel Plot and F Fall-off at High and Low Ic
Hint: See Sec. 8.5 and Sec. 8.9.
SCR BE current
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-16
8.5 Base-Width Modulation by Collector Voltage
Output resistance :
C
A
CE
C
I
V
V
I
r 








1
0
Large VA (large ro )
is desirable for a
large voltage gain
IB3IC
VCE0
VA
VA : Early Voltage
IB2
IB1
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-17
How can we reduce the base-width modulation effect?
8.5 Base-Width Modulation by Collector Voltage
N+
P N
emitter base collector
VCE
WB3
WB2
WB1
x
n'
}VCE1
< VCE2
<VCE3
VBE
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-18
The base-width modulation
effect is reduced if we
(A) Increase the base width,
(B) Increase the base doping
concentration, NB , or
(C) Decrease the collector doping
concentration, NC .
Which of the above is the most acceptable action?
8.5 Base-Width Modulation by Collector Voltage
N+
P N
emitter base collector
VCE
WB3
WB2
WB1
x
n'
}VCE1<VCE2<VCE3
VBE
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-19
8.6 Ebers-Moll Model
The Ebers-Moll model describes both the active
and the saturation regions of BJT operation.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
IBIC
0
VCE
saturation
region
active region
Slide 8-20
IC is driven by two two forces, VBE and VBC .
When only VBE is present :
)1(
)1(
/
/


kTqV
F
S
B
kTqV
SC
BE
BE
e
I
I
eII

Now reverse the roles of emitter and collector.
When only VBC is present :
)1)(
1
1(
)1(
)1(
/
/
/



kTqV
R
SBEC
kTqV
R
S
B
kTqV
SE
BC
BC
BC
eIIII
e
I
I
eII


R : reverse current gain
F : forward current gain
8.6 Ebers-Moll Model
IC
VBCVBE
IB
E B C
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-21
)1()1(
)1)(
1
1()1(
//
//


kTqV
F
SkTqV
F
S
B
kTqV
R
S
kTqV
SC
BCBE
BCBE
e
I
e
I
I
eIeII


In general, both VBE and VBC are present :
In saturation, the BC junction becomes forward-biased, too.
VBC causes a lot of holes to be injected
into the collector. This uses up much
of IB. As a result, IC drops.
VCE (V)
8.6 Ebers-Moll Model
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-22
8.7 Transit Time and Charge Storage
C
F
F
I
Q

When the BE junction is forward-biased, excess holes are stored
in the emitter, the base, and even in the depletion layers.
QF is all the stored excess hole charge
F determines the high-frequency limit of BJT operation.
F is difficult to be predicted accurately but can be measured.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-23
8.7.1 Base Charge Storage and Base Transit Time
Let’s analyze the excess hole charge and transit time in
the base only.
WB
0
n 0 
niB
2
NB
------- e
qVBE kT
1– =
x
p' = n'
)1()0( /
2
 kTqV
B
iB BE
e
N
n
n
pn  B
B
FB
C
FB
BEFB
D
W
I
Q
WnqAQ
2
2/)0(
2



Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-24
What is FB if WB = 70 nm and DB = 10 cm2/s?
Answer:
2.5 ps is a very short time. Since light speed is
3108 m/s, light travels only 1.5 mm in 5 ps.
EXAMPLE: Base Transit Time
ps5.2s105.2
/scm102
)cm107(
2
12
2
262



 

B
B
FB
D
W

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-25
The base transit time can be reduced by building into the base
a drift field that aids the flow of electrons. Two methods:
• Fixed EgB , NB decreases from emitter end to collector end.
• Fixed NB , EgB decreases from emitter end to collector end.
dx
dE
q
c1
E
8.7.2 Drift Transistor–Built-in Base Field
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
-E B C
Ec
Ev
Ef
-E B C
Ec
Ev
Ef
Slide 8-26
8.7.3 Emitter-to-Collector Transit Time and Kirk Effect
Top to bottom :
VCE = 0.5V, 0.8V,
1.5V, 3V.
• To reduce the total transit time, emitter and depletion layers must be thin, too.
• Kirk effect or base widening: At high IC the base widens into the collector. Wider
base means larger F .
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-27
Base Widening at Large Ic
satEC qnvAI 
satE
C
C
C
vA
I
qN
qnqN


s
dx
dE
e /
x
 E
base
N
collector
N+
collector
base
width
depletion
layer
x
 E
base
N N+
collector
“base
width”
depletion
layer
collector
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-28
8.8 Small-Signal Model
kTqV
SC
BE
eII /

Transconductance:
)//(
)(
/
/
qkTIeI
kT
q
eI
dV
d
dV
dI
g
C
kTqV
S
kTqV
S
BEBE
C
m
BE
BE


At 300 K, for example, gm=IC /26mV.)//( qkTIg Cm 
vbe r gmvbe
C
E
B
E
C
+

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-29
F
m
BE
C
FBE
B g
dV
dI
dV
dI
r 

11
mFCF
BEBE
F
gI
dV
d
dV
dQ
C  
This is the charge-storage capacitance, better known as the
diffusion capacitance.
Add the depletion-layer capacitance, CdBE :
dBEmF CgC 
8.8 Small-Signal Model
mF gr / 
vbe r gmvbe
C
E
B
E
C
+

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-30
EXAMPLE: Small-Signal Model Parameters
A BJT is biased at IC = 1 mA and VCE = 3 V. F=90, F=5 ps,
and T = 300 K. Find (a) gm , (b) r , (c) C .
Solution:
(a)
(b)
(c)
siemens)(milliqkTIg Cm mS39
V
mA
39
mV26
mA1
)//( 
kΩ3.2
mS39
90
/  mF gr 
ad)(femto fargC mF fF19F109.1039.0105 1412
 

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-31
Once the model parameters are determined, one can analyze
circuits with arbitrary source and load impedances.
The parameters are routinely
determined through comprehensive
measurement of the BJT AC
and DC characteristics.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-32
8.9 Cutoff Frequency
The load is a short circuit. The signal source is a current source,
ib , at frequency, f. At what frequency does the current gain
fall to unity?)/( bc ii
CdBEFF
m
b
c
bemc
bb
be
qIkTCjjCjr
g
i
i
vgi
Cjr
ii
v
//1
1
/1
)(
,
/1admittanceinput












)/(2
1
at1
CdBEF
T
qIkTC
f




vbe r gmvbe
C
E
B
E
C
+
-
Signal
source
Load
dBEmF CgC 
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-33
fT is commonly used to compare the speed of transistors.
• Why does fT increase with increasing IC?
• Why does fT fall at high IC?
fT = 1/2(F + CdBEkT/qIC)
8.9 Cutoff Frequency
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-34
• Poly-Si emitter
• Thin base
• Self-aligned poly-Si base contact
• Narrow emitter opening
• Lightly-doped collector
• Heavily-doped epitaxial subcollector
• Shallow trench and deep trench for electrical isolation
BJT Structure for Minimum Parasitics and High Speed
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-35
•In order to sustain an excess hole charge in the transistor,
holes must be supplied through IB to susbtain recombination at
the above rate.
•What if IB is larger than ?FFFQ /
FF
F
B
F Q
tI
dt
dQ

 )(
Step 1: Solve it for any given IB(t) to find QF(t).
8.10 Charge Control Model
•For the DC condition,
FF
F
FCB
Q
II

  /
Step 2: Can then find IC(t) through IC(t) = QF(t)/F .
IC(t) = QF(t)/F
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-36
Visualization of QF(t)
FF
F
B
F Q
tI
dt
dQ

 )(
QF(t)
QF/FF
IB(t) )(tIB
FF
FQ

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-37
EXAMPLE : Find IC(t) for a Step IB(t)
The solution of is
FF
F
B
F Q
tI
dt
dQ

 )(
)1(/)()(
)1(
/
0
/
0
FF
FF
t
BFFFC
t
BFFF
eItQtI
eIQ








What is ?)()?0(?)(  FFB QQI
IB(t)
IC(t)
IC(t)
t
t
IB
IB0
E B C
n
t
QF
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-38
8.11 Model for Large-Signal Circuit Simulation
• Compact (SPICE) model contains dozens of parameters,
mostly determined from measured BJT data.
• Circuits containing tens of thousands of transistors can
be simulated.
• Compact model is a “contract” between
device/manufacturing engineers and
circuit designers.
)1(1)( ///








 kTqV
F
S
A
CBkTqVkTqV
SC
BCBCBE
e
I
V
V
eeII

C
B
E
QF
CCS
rB
rC
rE
CBE
QR
CBC
IC
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-39
A commonly used BJT compact model is the Gummel-Poon
model, consisting of
•Ebers-Moll model
•Current-dependent beta
•Early effect
•Transit times
•Kirk effect
• Voltage-dependent capacitances
• Parasitic resistances
•Other effects
8.11 Model for Large-Signal Circuit Simulation
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-40
8.12 Chapter Summary
• The base-emitter junction is usually forward-biased while
the base-collector is reverse-biased. VBE determines the
collector current, IC .


B
BE
W
BiB
i
B
kTqV
B
i
EC
dx
D
p
n
n
G
e
G
qn
AI
0
2
2
/
2
)1(
• GB is the base Gummel number, which represents all the
subtleties of BJT design that affect IC.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-41
8.12 Chapter Summary
• The base (input) current, IB , is related to IC by the
common-emitter current gain, F . This can be related to
the common-base current gain, F .
B
E
B
C
F
G
G
I
I

• The Gummel plot shows that F falls off in the high IC
region due to high-level injection in the base. It also falls
off in the low IC region due to excess base current.
F
F
E
C
F
I
I





1
• Base-width modulation by VCB results in a significant slope
of the IC vs. VCE curve in the active region (known as the
Early effect).
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-42
8.12 Chapter Summary
• Due to the forward bias VBE , a BJT stores a certain amount
of excess carrier charge QF which is proportional to IC.
FCF IQ 
F is the forward transit time. If no excess carriers are stored
outside the base, then
• The charge-control model first calculates QF(t) from IB(t)
and then calculates IC(t).
B
B
FBF
D
W
2
2

FF
F
B
F Q
tI
dt
dQ

 )(
FFC tQtI /)()( 
, the base transit time.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 8-43
8.12 Chapter Summary
The small-signal models employ parameters such as
transconductance,
q
kT
I
dV
dI
g C
BE
C
m /
input capacitance,
and input resistance.
mF
BE
F
g
dV
dQ
C  
mF
B
BE
g
dI
dV
r / 
Modern Semiconductor Devices for Integrated Circuits (C. Hu)

More Related Content

What's hot

半導體第六章
半導體第六章半導體第六章
半導體第六章5045033
 
Cmos fabrication by suvayan samanta
Cmos fabrication by suvayan samantaCmos fabrication by suvayan samanta
Cmos fabrication by suvayan samantaSuvayan Samanta
 
Rec101 unit 1 (part ii) pn junction diode
Rec101 unit 1 (part ii)  pn junction diodeRec101 unit 1 (part ii)  pn junction diode
Rec101 unit 1 (part ii) pn junction diodeDr Naim R Kidwai
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierSteven Ernst, PE
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
High Power TVS Overvoltage Protection Diodes
High Power TVS Overvoltage Protection DiodesHigh Power TVS Overvoltage Protection Diodes
High Power TVS Overvoltage Protection DiodesPremier Farnell
 
CMOS fabrication n well process
CMOS fabrication n well processCMOS fabrication n well process
CMOS fabrication n well processSouvikDatta22
 
Mos transistor
Mos transistorMos transistor
Mos transistorMurali Rai
 
Field-Effect Transistors
Field-Effect TransistorsField-Effect Transistors
Field-Effect Transistorsguest3b5d8a
 
Fet biasing boylestad pages
Fet biasing boylestad pagesFet biasing boylestad pages
Fet biasing boylestad pagesLingalaSowjanya
 

What's hot (20)

Short channel modified
Short channel modifiedShort channel modified
Short channel modified
 
半導體第六章
半導體第六章半導體第六章
半導體第六章
 
Cmos fabrication by suvayan samanta
Cmos fabrication by suvayan samantaCmos fabrication by suvayan samanta
Cmos fabrication by suvayan samanta
 
Rec101 unit 1 (part ii) pn junction diode
Rec101 unit 1 (part ii)  pn junction diodeRec101 unit 1 (part ii)  pn junction diode
Rec101 unit 1 (part ii) pn junction diode
 
Mosfet detail
Mosfet detailMosfet detail
Mosfet detail
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
High Power TVS Overvoltage Protection Diodes
High Power TVS Overvoltage Protection DiodesHigh Power TVS Overvoltage Protection Diodes
High Power TVS Overvoltage Protection Diodes
 
Chapter 6a
Chapter 6aChapter 6a
Chapter 6a
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Twin well process
Twin well processTwin well process
Twin well process
 
Coleccion problemas
Coleccion problemasColeccion problemas
Coleccion problemas
 
MOS Capacitor
MOS CapacitorMOS Capacitor
MOS Capacitor
 
Lightly Doped Drain
Lightly Doped DrainLightly Doped Drain
Lightly Doped Drain
 
CMOS fabrication n well process
CMOS fabrication n well processCMOS fabrication n well process
CMOS fabrication n well process
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Field-Effect Transistors
Field-Effect TransistorsField-Effect Transistors
Field-Effect Transistors
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Fet biasing boylestad pages
Fet biasing boylestad pagesFet biasing boylestad pages
Fet biasing boylestad pages
 

Similar to Ch8 lecture slides Chenming Hu Device for IC

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfGunaG14
 
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfLecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfBalraj Singh
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Dr. Abeer Kamal
 
Trnasistor chapter 5th 2013_09_13_15_57_13
Trnasistor chapter 5th  2013_09_13_15_57_13Trnasistor chapter 5th  2013_09_13_15_57_13
Trnasistor chapter 5th 2013_09_13_15_57_13Hardik Faldu
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfElorme
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...mohamed albanna
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...mohamed albanna
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsDr Naim R Kidwai
 
Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)JeremyLauKarHei
 
Lect 06 BJT1.pptx
Lect 06 BJT1.pptxLect 06 BJT1.pptx
Lect 06 BJT1.pptxkiran93845
 
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...IJECEIAES
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in indiaEdhole.com
 

Similar to Ch8 lecture slides Chenming Hu Device for IC (20)

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfLecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
 
Lec-6.pdf
Lec-6.pdfLec-6.pdf
Lec-6.pdf
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
 
13 bjt
13 bjt13 bjt
13 bjt
 
module2.pdf
module2.pdfmodule2.pdf
module2.pdf
 
Trnasistor chapter 5th 2013_09_13_15_57_13
Trnasistor chapter 5th  2013_09_13_15_57_13Trnasistor chapter 5th  2013_09_13_15_57_13
Trnasistor chapter 5th 2013_09_13_15_57_13
 
Ec204 qp
Ec204 qpEc204 qp
Ec204 qp
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdf
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...
 
Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...Design procedures of bipolar low noise amplifier at radio frequency using s p...
Design procedures of bipolar low noise amplifier at radio frequency using s p...
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)
 
Lect 06 BJT1.pptx
Lect 06 BJT1.pptxLect 06 BJT1.pptx
Lect 06 BJT1.pptx
 
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...Design and simulation of high frequency colpitts oscillator based on BJT ampl...
Design and simulation of high frequency colpitts oscillator based on BJT ampl...
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Bjts
BjtsBjts
Bjts
 
Bjts
Bjts Bjts
Bjts
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
 
Bipolar Junction Transistors BJT
Bipolar Junction Transistors BJTBipolar Junction Transistors BJT
Bipolar Junction Transistors BJT
 

Recently uploaded

Presentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfPresentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfchapmanellie27
 
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一diploma 1
 
Hifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun TonightHifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun TonightKomal Khan
 
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degreeyuu sss
 
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degreeyuu sss
 
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝soniya singh
 
Alambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service LucknowAlambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service Lucknowmakika9823
 
Call Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall AvailableCall Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall AvailableCall Girls in Delhi
 
毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree z zzz
 
(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一
(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一
(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一Fi sss
 
Vip Noida Escorts 9873940964 Greater Noida Escorts Service
Vip Noida Escorts 9873940964 Greater Noida Escorts ServiceVip Noida Escorts 9873940964 Greater Noida Escorts Service
Vip Noida Escorts 9873940964 Greater Noida Escorts Serviceankitnayak356677
 
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一ga6c6bdl
 
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...Amil baba
 
定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一ss ss
 
Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...
Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...
Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...nagunakhan
 
Call Girls In Paharganj 24/7✡️9711147426✡️ Escorts Service
Call Girls In Paharganj 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Paharganj 24/7✡️9711147426✡️ Escorts Service
Call Girls In Paharganj 24/7✡️9711147426✡️ Escorts Servicejennyeacort
 
Call Girls Service Kolkata Aishwarya 🤌 8250192130 🚀 Vip Call Girls Kolkata
Call Girls Service Kolkata Aishwarya 🤌  8250192130 🚀 Vip Call Girls KolkataCall Girls Service Kolkata Aishwarya 🤌  8250192130 🚀 Vip Call Girls Kolkata
Call Girls Service Kolkata Aishwarya 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 

Recently uploaded (20)

Presentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfPresentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
 
CIVIL ENGINEERING
CIVIL ENGINEERINGCIVIL ENGINEERING
CIVIL ENGINEERING
 
young call girls in Khanpur,🔝 9953056974 🔝 escort Service
young call girls in  Khanpur,🔝 9953056974 🔝 escort Serviceyoung call girls in  Khanpur,🔝 9953056974 🔝 escort Service
young call girls in Khanpur,🔝 9953056974 🔝 escort Service
 
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
 
Hifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun TonightHifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun Tonight
 
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
 
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国旧金山艺术学院毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
 
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
Call Girls in Dwarka Sub City 💯Call Us 🔝8264348440🔝
 
Alambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service LucknowAlambagh Call Girl 9548273370 , Call Girls Service Lucknow
Alambagh Call Girl 9548273370 , Call Girls Service Lucknow
 
Low rate Call girls in Delhi Justdial | 9953330565
Low rate Call girls in Delhi Justdial | 9953330565Low rate Call girls in Delhi Justdial | 9953330565
Low rate Call girls in Delhi Justdial | 9953330565
 
Call Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall AvailableCall Girls In Munirka>༒9599632723 Incall_OutCall Available
Call Girls In Munirka>༒9599632723 Incall_OutCall Available
 
毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree加拿大瑞尔森大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一
(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一
(办理学位证)加州州立大学北岭分校毕业证成绩单原版一比一
 
Vip Noida Escorts 9873940964 Greater Noida Escorts Service
Vip Noida Escorts 9873940964 Greater Noida Escorts ServiceVip Noida Escorts 9873940964 Greater Noida Escorts Service
Vip Noida Escorts 9873940964 Greater Noida Escorts Service
 
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
 
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
NO1 Qualified Best Black Magic Specialist Near Me Spiritual Healer Powerful L...
 
定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一定制(USF学位证)旧金山大学毕业证成绩单原版一比一
定制(USF学位证)旧金山大学毕业证成绩单原版一比一
 
Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...
Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...
Slim Call Girls Service Badshah Nagar * 9548273370 Naughty Call Girls Service...
 
Call Girls In Paharganj 24/7✡️9711147426✡️ Escorts Service
Call Girls In Paharganj 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Paharganj 24/7✡️9711147426✡️ Escorts Service
Call Girls In Paharganj 24/7✡️9711147426✡️ Escorts Service
 
Call Girls Service Kolkata Aishwarya 🤌 8250192130 🚀 Vip Call Girls Kolkata
Call Girls Service Kolkata Aishwarya 🤌  8250192130 🚀 Vip Call Girls KolkataCall Girls Service Kolkata Aishwarya 🤌  8250192130 🚀 Vip Call Girls Kolkata
Call Girls Service Kolkata Aishwarya 🤌 8250192130 🚀 Vip Call Girls Kolkata
 

Ch8 lecture slides Chenming Hu Device for IC

  • 1. Slide 8-1 Chapter 8 Bipolar Junction Transistors • Since 1970, the high density and low-power advantage of the MOS technology steadily eroded the BJT’s early dominance. • BJTs are still preferred in some high-frequency and analog applications because of their high speed and high power output. Question: What is the meaning of “bipolar” ? Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 2. Slide 8-2 8.1 Introduction to the BJT IC is an exponential function of forward VBE and independent of reverse VCB. Modern Semiconductor Devices for Integrated Circuits (C. Hu) - - Efn Efp VCB VBE (b) (c) VBEIC 0 VCB Ec Ev NPN BJT: N+ P N E C B VBE VCB Emitter Base Collector
  • 3. Slide 8-3 Common-Emitter Configuration Question: Why is IB often preferred as a parameter over VBE? Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 4. Slide 8-4Modern Semiconductor Devices for Integrated Circuits (C. Hu) 8.2 Collector Current BBB B DL L n dx nd     22 2 B : base recombination lifetime DB : base minority carrier (electron) diffusion constant Boundary conditions : )1()0( / 0  kTqV B BE enn 0)1()( 0 / 0  B kTqV BB nenWn BC N+ P N emitter base collector x 0 W depletion layers B
  • 5. Slide 8-5  BB B B kTqV B LW L xW enxn BE /sinh sinh )1()( / 0         )1( / 2   kTqV B iB B B E BEC BE e N n W D qA dx dn qDAI )1( /  kTqV SC BE eII   B BE W BiB i B kTqV B i EC dx D p n n G e G qn AI 0 2 2 / 2 )1( It can be shown GB (s·cm4) is the base Gummel number 8.2 Collector Current ni 2 NB -------e qVBE kT 1– n  n  0 ------------- )0(/)( nxn  0 1 1 )1()( / 2  kTqV B iB BE e N n xn x/x/WB )/1)(1( )/1)(0()( / 2 B kTqV B iB B Wxe N n Wxnxn BE   Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 6. Slide 8-6 •At low-level injection, inverse slope is 60 mV/decade •High-level injection effect : 8.2.1 High Level Injection Effect 0 0.2 0.4 0.6 0.8 1.0 10-12 10-10 10-8 10-6 10-4 10-2 VBE IC(A) IkF 60 mV/decadeAt large VBE, BNpn  pnpn  kTqV i BE enpn 2/  kTqV iB BE enpG 2/  kTqV i BE enI 2/ C  When p > NB , inverse slope is 120mV/decade. kTqV i kTEEq i BEFpFn enennp /2/)(2   Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 7. Slide 8-7 8.3 Base Current Some holes are injected from the P-type base into the N+ emitter. The holes are provided by the base current, IB . pE ' nB' WE WB (b) emitter base collectorcontact I E IC electron flow – + hole flow I B (a) contact Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 8. Slide 8-8   E BE W EiE i E kTqV E i EB dx D n n n G e G qn AI 0 2 2 / 2 )1( Is a large IB desirable? Why? 8.3 Base Current emitter base collectorcontact I E IC electron flow – + hole flow I B (a) contact Modern Semiconductor Devices for Integrated Circuits (C. Hu) )1( / 2  kTqV EE iEE EB BE e NW nD qAI For a uniform emitter,
  • 9. Slide 8-9 8.4 Current Gain B C F I I  How can F be maximized? Common-emitter current gain, F : Common-base current gain: F F BC BC CB C E C F EFC II II II I I I II            1/1 / It can be shown that F F F      1 2 2 iEBBE iBEEB B E F nNWD nNWD G G  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 10. Slide 8-10 EXAMPLE: Current Gain A BJT has IC = 1 mA and IB = 10 mA. What are IE, F and F? Solution: 9901.0mA01.1/mA1/ 100μA10/mA1/ mA01.1μA10mA1    ECF BCF BCE II II III   We can confirm F F F      1 F F F      1 and Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 11. Slide 8-11 8.4.1 Emitter Bandgap Narrowing Emitter bandgap narrowing makes it difficult to raise F by doping the emitter very heavily. Modern Semiconductor Devices for Integrated Circuits (C. Hu) 2 2 iE iB B E n n N N  To raise F, NE is typically very large. Unfortunately, large NE makes 22 iiE nn  (heavy doping effect). kTE VCi g eNNn /2   Since ni is related to Eg , this effect is also known as band-gap narrowing. kTE iiE gE enn /22   EgE is negligible for NE < 1018 cm-3, is 50 meV at 1019cm-3, 95 meV at 1020cm-3, and 140 meV at 1021 cm-3.
  • 12. Slide 8-12 2 2 iE iB B E n n N N  To further elevate F , we can raise niB by using an epitaxial Si1-hGeh base. With h = 0.2, EgB is reduced by 0.1eV and niE 2 by 30x. 8.4.2 Narrow-Bandgap Base and Heterojuncion BJT Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 13. Slide 8-13 Assume DB = 3DE , WE = 3WB , NB = 1018 cm-3, and niB 2 = ni 2. What is F for (a) NE = 1019 cm-3, (b) NE = 1020 cm-3, and (c) NE = 1020 cm-3 and a SiGe base with EgB = 60 meV ? (a) At NE = 1019 cm-3, EgE  50 meV, (b) At NE = 1020 cm-3, EgE  95 meV (c) 292.12meV26/meV502/22 8.6 iii kTE iiE nenenenn gE   13 8.610 109 218 219 2 2     i i iEB iE BE EB F n n nN nN WD WD  22 38 iiE nn  24F 2meV26/meV602/22 10 ii kTE iiB nenenn gB   237F EXAMPLE: Emitter Bandgap Narrowing and SiGe Base Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 14. Slide 8-14 A high-performance BJT typically has a layer of As-doped N+ poly-silicon film in the emitter. F is larger due to the large WE , mostly made of the N+ poly- silicon. (A deep diffused emitter junction tends to cause emitter- collector shorts.) N-collector P-base SiO2 emitter N+ -poly-Si 8.4.3 Poly-Silicon Emitter Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 15. Slide 8-15 Why does one want to operate BJTs at low IC and high IC? Why is F a function of VBC in the right figure? F From top to bottom: VBC = 2V, 1V, 0V 8.4.4 Gummel Plot and F Fall-off at High and Low Ic Hint: See Sec. 8.5 and Sec. 8.9. SCR BE current Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 16. Slide 8-16 8.5 Base-Width Modulation by Collector Voltage Output resistance : C A CE C I V V I r          1 0 Large VA (large ro ) is desirable for a large voltage gain IB3IC VCE0 VA VA : Early Voltage IB2 IB1 Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 17. Slide 8-17 How can we reduce the base-width modulation effect? 8.5 Base-Width Modulation by Collector Voltage N+ P N emitter base collector VCE WB3 WB2 WB1 x n' }VCE1 < VCE2 <VCE3 VBE Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 18. Slide 8-18 The base-width modulation effect is reduced if we (A) Increase the base width, (B) Increase the base doping concentration, NB , or (C) Decrease the collector doping concentration, NC . Which of the above is the most acceptable action? 8.5 Base-Width Modulation by Collector Voltage N+ P N emitter base collector VCE WB3 WB2 WB1 x n' }VCE1<VCE2<VCE3 VBE Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 19. Slide 8-19 8.6 Ebers-Moll Model The Ebers-Moll model describes both the active and the saturation regions of BJT operation. Modern Semiconductor Devices for Integrated Circuits (C. Hu) IBIC 0 VCE saturation region active region
  • 20. Slide 8-20 IC is driven by two two forces, VBE and VBC . When only VBE is present : )1( )1( / /   kTqV F S B kTqV SC BE BE e I I eII  Now reverse the roles of emitter and collector. When only VBC is present : )1)( 1 1( )1( )1( / / /    kTqV R SBEC kTqV R S B kTqV SE BC BC BC eIIII e I I eII   R : reverse current gain F : forward current gain 8.6 Ebers-Moll Model IC VBCVBE IB E B C Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 21. Slide 8-21 )1()1( )1)( 1 1()1( // //   kTqV F SkTqV F S B kTqV R S kTqV SC BCBE BCBE e I e I I eIeII   In general, both VBE and VBC are present : In saturation, the BC junction becomes forward-biased, too. VBC causes a lot of holes to be injected into the collector. This uses up much of IB. As a result, IC drops. VCE (V) 8.6 Ebers-Moll Model Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 22. Slide 8-22 8.7 Transit Time and Charge Storage C F F I Q  When the BE junction is forward-biased, excess holes are stored in the emitter, the base, and even in the depletion layers. QF is all the stored excess hole charge F determines the high-frequency limit of BJT operation. F is difficult to be predicted accurately but can be measured. Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 23. Slide 8-23 8.7.1 Base Charge Storage and Base Transit Time Let’s analyze the excess hole charge and transit time in the base only. WB 0 n 0  niB 2 NB ------- e qVBE kT 1– = x p' = n' )1()0( / 2  kTqV B iB BE e N n n pn  B B FB C FB BEFB D W I Q WnqAQ 2 2/)0( 2    Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 24. Slide 8-24 What is FB if WB = 70 nm and DB = 10 cm2/s? Answer: 2.5 ps is a very short time. Since light speed is 3108 m/s, light travels only 1.5 mm in 5 ps. EXAMPLE: Base Transit Time ps5.2s105.2 /scm102 )cm107( 2 12 2 262       B B FB D W  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 25. Slide 8-25 The base transit time can be reduced by building into the base a drift field that aids the flow of electrons. Two methods: • Fixed EgB , NB decreases from emitter end to collector end. • Fixed NB , EgB decreases from emitter end to collector end. dx dE q c1 E 8.7.2 Drift Transistor–Built-in Base Field Modern Semiconductor Devices for Integrated Circuits (C. Hu) -E B C Ec Ev Ef -E B C Ec Ev Ef
  • 26. Slide 8-26 8.7.3 Emitter-to-Collector Transit Time and Kirk Effect Top to bottom : VCE = 0.5V, 0.8V, 1.5V, 3V. • To reduce the total transit time, emitter and depletion layers must be thin, too. • Kirk effect or base widening: At high IC the base widens into the collector. Wider base means larger F . Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 27. Slide 8-27 Base Widening at Large Ic satEC qnvAI  satE C C C vA I qN qnqN   s dx dE e / x  E base N collector N+ collector base width depletion layer x  E base N N+ collector “base width” depletion layer collector Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 28. Slide 8-28 8.8 Small-Signal Model kTqV SC BE eII /  Transconductance: )//( )( / / qkTIeI kT q eI dV d dV dI g C kTqV S kTqV S BEBE C m BE BE   At 300 K, for example, gm=IC /26mV.)//( qkTIg Cm  vbe r gmvbe C E B E C +  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 29. Slide 8-29 F m BE C FBE B g dV dI dV dI r   11 mFCF BEBE F gI dV d dV dQ C   This is the charge-storage capacitance, better known as the diffusion capacitance. Add the depletion-layer capacitance, CdBE : dBEmF CgC  8.8 Small-Signal Model mF gr /  vbe r gmvbe C E B E C +  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 30. Slide 8-30 EXAMPLE: Small-Signal Model Parameters A BJT is biased at IC = 1 mA and VCE = 3 V. F=90, F=5 ps, and T = 300 K. Find (a) gm , (b) r , (c) C . Solution: (a) (b) (c) siemens)(milliqkTIg Cm mS39 V mA 39 mV26 mA1 )//(  kΩ3.2 mS39 90 /  mF gr  ad)(femto fargC mF fF19F109.1039.0105 1412    Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 31. Slide 8-31 Once the model parameters are determined, one can analyze circuits with arbitrary source and load impedances. The parameters are routinely determined through comprehensive measurement of the BJT AC and DC characteristics. Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 32. Slide 8-32 8.9 Cutoff Frequency The load is a short circuit. The signal source is a current source, ib , at frequency, f. At what frequency does the current gain fall to unity?)/( bc ii CdBEFF m b c bemc bb be qIkTCjjCjr g i i vgi Cjr ii v //1 1 /1 )( , /1admittanceinput             )/(2 1 at1 CdBEF T qIkTC f     vbe r gmvbe C E B E C + - Signal source Load dBEmF CgC  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 33. Slide 8-33 fT is commonly used to compare the speed of transistors. • Why does fT increase with increasing IC? • Why does fT fall at high IC? fT = 1/2(F + CdBEkT/qIC) 8.9 Cutoff Frequency Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 34. Slide 8-34 • Poly-Si emitter • Thin base • Self-aligned poly-Si base contact • Narrow emitter opening • Lightly-doped collector • Heavily-doped epitaxial subcollector • Shallow trench and deep trench for electrical isolation BJT Structure for Minimum Parasitics and High Speed Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 35. Slide 8-35 •In order to sustain an excess hole charge in the transistor, holes must be supplied through IB to susbtain recombination at the above rate. •What if IB is larger than ?FFFQ / FF F B F Q tI dt dQ   )( Step 1: Solve it for any given IB(t) to find QF(t). 8.10 Charge Control Model •For the DC condition, FF F FCB Q II    / Step 2: Can then find IC(t) through IC(t) = QF(t)/F . IC(t) = QF(t)/F Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 36. Slide 8-36 Visualization of QF(t) FF F B F Q tI dt dQ   )( QF(t) QF/FF IB(t) )(tIB FF FQ  Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 37. Slide 8-37 EXAMPLE : Find IC(t) for a Step IB(t) The solution of is FF F B F Q tI dt dQ   )( )1(/)()( )1( / 0 / 0 FF FF t BFFFC t BFFF eItQtI eIQ         What is ?)()?0(?)(  FFB QQI IB(t) IC(t) IC(t) t t IB IB0 E B C n t QF Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 38. Slide 8-38 8.11 Model for Large-Signal Circuit Simulation • Compact (SPICE) model contains dozens of parameters, mostly determined from measured BJT data. • Circuits containing tens of thousands of transistors can be simulated. • Compact model is a “contract” between device/manufacturing engineers and circuit designers. )1(1)( ///          kTqV F S A CBkTqVkTqV SC BCBCBE e I V V eeII  C B E QF CCS rB rC rE CBE QR CBC IC Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 39. Slide 8-39 A commonly used BJT compact model is the Gummel-Poon model, consisting of •Ebers-Moll model •Current-dependent beta •Early effect •Transit times •Kirk effect • Voltage-dependent capacitances • Parasitic resistances •Other effects 8.11 Model for Large-Signal Circuit Simulation Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 40. Slide 8-40 8.12 Chapter Summary • The base-emitter junction is usually forward-biased while the base-collector is reverse-biased. VBE determines the collector current, IC .   B BE W BiB i B kTqV B i EC dx D p n n G e G qn AI 0 2 2 / 2 )1( • GB is the base Gummel number, which represents all the subtleties of BJT design that affect IC. Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 41. Slide 8-41 8.12 Chapter Summary • The base (input) current, IB , is related to IC by the common-emitter current gain, F . This can be related to the common-base current gain, F . B E B C F G G I I  • The Gummel plot shows that F falls off in the high IC region due to high-level injection in the base. It also falls off in the low IC region due to excess base current. F F E C F I I      1 • Base-width modulation by VCB results in a significant slope of the IC vs. VCE curve in the active region (known as the Early effect). Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 42. Slide 8-42 8.12 Chapter Summary • Due to the forward bias VBE , a BJT stores a certain amount of excess carrier charge QF which is proportional to IC. FCF IQ  F is the forward transit time. If no excess carriers are stored outside the base, then • The charge-control model first calculates QF(t) from IB(t) and then calculates IC(t). B B FBF D W 2 2  FF F B F Q tI dt dQ   )( FFC tQtI /)()(  , the base transit time. Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 43. Slide 8-43 8.12 Chapter Summary The small-signal models employ parameters such as transconductance, q kT I dV dI g C BE C m / input capacitance, and input resistance. mF BE F g dV dQ C   mF B BE g dI dV r /  Modern Semiconductor Devices for Integrated Circuits (C. Hu)