SlideShare a Scribd company logo
1 of 31
Download to read offline
MATERIALS DESIGN LABORATORY
Deformation Mechanisms in
Intercritically Annealed
Medium Mn Steel
B.C. DE COOMAN, Sunmi SHIN, Seon Jong LEE, Dongyeol LEE (GIFT)
Hyoung Seop KIM, Marat LATYPOV (Materials Science and Engineering)
Pohang University of Science and Technology
Pohang, Republic of Korea
Oct 25-29, 2015, Jeju Island
MATERIALS DESIGN LABORATORY
Golf 2 (1983-1992) Golf 7 (2014)
Issue #2:
Greenhouse gas emissions
Issue #1:
Passenger safety
2015: 130 g CO2 /km → 2020: 95 g CO2 /km
2015: 17 km/l → 2020: 25 km/l
Issue #3:
Fuel efficiency
Introduction
MATERIALS DESIGN LABORATORY
Properties
Processing
Microstructure
Performance
Properties
Processing
Microstructure
Performance
COST
Regulations
Steel
Unibody
Aluminum
Space frame
CFRC
Skeleton
Introduction
Al-alloy body
Steel frame
MATERIALS DESIGN LABORATORY
Improvements
to the internal
combustion engine
Increased use of advanced high strength
and ultra-high strength steel grades
Introduction
MATERIALS DESIGN LABORATORY
6% HPF + 5% MA
23%
HSS
30%
DP / Multi Phase
34%
IF
+LC
+BH
Cadillac CTS
PHS VW:
6% (GOLF 6)
28% (GOLF 7)
Automotive Body Materials Evolution
MATERIALS DESIGN LABORATORY
0 5 10 15 20 25
0
500
1000
1500
2000
2500
EngineeringStress,MPa
Engineering Strain, %
Al
Al+HPF
Al+HPF+BH
0 5 10 15 20 25
0
500
1000
1500
2000
2500
EngineeringStress,MPa
Engineering Strain, %
Al
Al+HPF
Al+HPF+BH
Aluminized PHS, 2nd WeekAluminized PHS, 1st Week
2GPa Press Hardening Steel
F+P F+P
CA (F+P) CA+HPF CA+HPF+BH
MATERIALS DESIGN LABORATORY
40,000MPa%
20,000MPa%
30,000MPa%
TRIP-aided Bainitic Ferrite Steel
Press Hardening Steel
Q&P Processed Steel
Medium Mn Steel
Low Density Steel
Automotive Body Materials Evolution
MATERIALS DESIGN LABORATORY
Mecking-Kocks-Estrin model based on the dislocation density evolution, with dislocation accumulation at grain
boundaries, forest dislocations and dislocation annihilation by dynamic recovery.
ρ(ε)bGMασσ
ρkρ
b
k
Dbd
dρ





0
2
11)(


Constitutive Model for UFG Ferritic Steel
50µm
ρ(ε)
Dislocation storage
accumulation
Dislocation annihilation
Dynamic recovery
MATERIALS DESIGN LABORATORY
10+10
10+11
10+12
10+13
10+14
10+15
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Grain size 1mm
True strain
Dislocationdensity,m-2
0
200
400
600
800
1000
0.0 0.1 0.2 0.3 0.4 0.5 0.6
True strainTruestress,MPa
Strainhardening,MPa
Constitutive Model for UFG Ferritic Steel
MATERIALS DESIGN LABORATORY
20,000MPa%
30,000MPa%
TARGET 1
1200MPa - 30%
TARGET 2
1500MPa - 25%
500 nm
200 nm
40,000MPa%
Uniformelongation,%
Constitutive Model for UFG Ferritic Steel
DOE TARGET
35% lightweighting
Max $3.18 per lb lightweighting
MATERIALS DESIGN LABORATORY
)()(
)0




bG
(εbGαMσσ(ε)
o
D
k
df
X
T
y
precprecprec
is
p
o




),(
)(
),(





parameterPetchHall:
constantonAnnihilati:
constantonAccumulati:
parameterGrainsize:
sizetsize/PackeGrain:
ingstrengthensolutionSolid:
ingstrengthenionPrecipitat:
stressPeierls:
eTemperatur:
modulusShear:
vectorBurgers:
strainratestrain,:,
densityndislocatio:)(
2
1
y
s
prec
P
k
k
k
P
D
T
G
b






Ferrite
Martensite
Austenite
Twins
0D  
111
 D
ρkρ
b
k
bd
dρ


 2
11)(


Model for a Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Phasefraction
True strain
f
0
500
1000
1500
2000
2500
3000
3500
4000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True strain
Truestress,MPa
Strainhardeningrate,MPa
UFG Ferrite
UFG Austenite
%C %Mn %Al %Si
Ferrite - 3.69 3.52 1.45
Austenite 0.56 8.07 2.54 1.55
Model for a Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Phasefraction
True strain
f fTwin
f’
0
500
1000
1500
2000
2500
3000
3500
4000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True strain
Truestress,MPa
Strainhardeningrate,MPa
Martensite
UFG Ferrite
UFG Austenite
%C %Mn %Al %Si
Ferrite - 3.69 3.52 1.45
Austenite 0.56 8.07 2.54 1.55
Deformation Twinning
+
Strain-induced transformation
Model for a Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Phasefraction
True strain
f fTwin
f’
0
500
1000
1500
2000
2500
3000
3500
4000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True strain
Truestress,MPa
Strainhardeningrate,MPa
Martensite
UFG Ferrite
UFG Austenite
)(


d
d )(
%C %Mn %Al %Si
Ferrite - 3.69 3.52 1.45
Austenite 0.56 8.07 2.54 1.55
Model for a Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Phasefraction
True strain
f fTwin
f’
0
500
1000
1500
2000
2500
3000
3500
4000
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True strain
Truestress,MPa
Strainhardeningrate,MPa
)(

d
d )(
%C %Mn %Al %Si
Ferrite - 3.69 3.52 1.45
Austenite 0.56 8.07 2.54 1.55
+0.1% V
Model for a Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
FEM Analysis: Strain Partitioning Inversion
At low strains, softer austenite accommodates the imposed deformation, causing strain
hardening, TWIP and TRIP effects in the austenite. At larger strains, ferrite, having a lower
rate of strain hardening, increasingly accommodates the imposed strain.
MATERIALS DESIGN LABORATORY
Revised UFG Medium Mn steel: d-ferrite by (a) addition of Al/Si
(b) reduction C content
Deformation
Dislocation plasticity
Twinning-induced plasticity
Transformation-induced plasticity
Ultra-fine grained
ferrite + austenite
coarse d-ferrite
“bi-modal” grain size
VC precipitates
d
d






d
d
 
’
’
’
Temperature
Ms
RT
’
CR: Fully
martensitic
+


dd


d
C/Mn partitioning
Time
Ms
VC
Model for a Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
TWIP Steel
Fully Austenitic Microstructure
Coarse grained
Mechanical twinning
From TWIP to TWIP+TRIP Steel
5μm
TWIP steel
γ
500nm
8Mn HR TWIP+TRIP steel
α
γ
α
γ
Medium Mn TWIP+TRIP Steel
Austeno-Ferritic Microstructure
Ultra-fine grained
Mechanical twinning + Strain-induced Transformation
MATERIALS DESIGN LABORATORY

q
q
800C
Fe-6%Mn-x%C Fe-6%Mn-3%Al-1.5%Si-x%C

q
q

 800C
Fe-Mn-Al-Si-C Medium Mn Steel Design
0.3C 6.0Mn 1.5Si 3.0Al
780C, 10min
d
UFG 
10μmMs
Mass-% C Mass-% C
Temperature,C
MATERIALS DESIGN LABORATORY
Fe-0.30%C-10%Mn-3%Al-2%Si
750°C650°C

’ matrix
Martensite aging:
carbide precipitation
Reverse Transformation and Partitioning
Austenite nucleation:
carbide dissolution
MATERIALS DESIGN LABORATORY
Effect of Al on austenite fraction after IA
600 700 800 900
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Grain size: 1um
0.3C 1Al 1.5Si 6Mn
0.3C 2Al 1.5Si 6Mn
0.3C 3Al 1.5Si 6Mn
FractionofausteniteatRT
Intercritical Annealing T, degree C
600 700 800 900
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.3C 1Al 1.5Si 6Mn
0.3C 2Al 1.5Si 6Mn
0.3C 3Al 1.5Si 6Mn
FractionofausteniteatRT
Intercritical Annealing T, degree C
Grain size: 1mm
600 700 800 900
0
10
20
30
40
0.3C 1Al 1.5Si 6Mn
0.3C 2Al 1.5Si 6Mn
0.3C 3Al 1.5Si 6Mn
SFE(mJ/m2)
Intercritical Annealing T, degree C
MATERIALS DESIGN LABORATORY
0.000 0.004 0.008
500
600
700
800
900
1000
Temperature(
o
C)
C mass fraction
-400 -200 0 200
500
600
700
800
900
1000
Ms (
o
C)
RT
0.0 0.2 0.4 0.6 0.8 1.0
500
600
700
800
900
1000
Austenite fraction
0 10 20 30 40
500
600
700
800
900
1000
SFE (mmJ/m
2
)
0.05 0.10 0.15 0.20
Mn mass fraction
Characteristics of austenite after IAPhase diagram
Grain size effect
Red: 1mm g.s.
Blue: 0.5mm g.s.
C, Mn partitioning
during IA

+q
 + 
Temperature,ºC
C mass-%
1.000.750.500.250.00
500
600
700
800
900
1000
Wide    stability
range
Large volume fraction of retained austenite
Optimum SFE
for TWIP+TRIP
Fe-6%Mn-3%Al-1.5%Si-x%C Design Concept
MATERIALS DESIGN LABORATORY
Fe-6%Mn-0.15%C-3%Al-1.5%Si steel intercritically annealed @ 840 °C
Medium Mn TWIP+TRIP Steel Concept
d - ferrite
  
0% strain
36% retained austenite
3% strain
d - ferrite
    ’
5.9% martensite
6% strain
d - ferrite
    ’
13.7% martensite
9% strain
d - ferrite
    ’
2 μm
17.3% martensite
MATERIALS DESIGN LABORATORY
10mm
d

d

d

200nm
200nm
50nm
50nm
Ferrite
Austenite
VC
SF
V-added UFG Medium Mn Steel
800ppmC 6%Mn 1.5%Si 2%Al
MATERIALS DESIGN LABORATORY
Fe-8%Mn-3%Al-2%Si-0.4%C-0.2%V
Intercritically Annealed @ 750C, 600 s
VC-precipitate
Ferrite
Austenite
Ferrite
VC-precipitate
Ferrite
Austenite
Ferrite
Precipitate
formation
Partitioning
MATERIALS DESIGN LABORATORY
0.2 μm
21/nm21/nm


0.2 μm


Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
Medium Mn TWIP+TRIP Steel Concept
Fe-5%Mn-0.3%C-3%Al-1.5%Si steel intercritically annealed @ 800 °C
6




MATERIALS DESIGN LABORATORY
As-annealed
57% Austenite-43% Ferrite
As-deformed
Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
Medium Mn TWIP+TRIP Steel Concept
1 μm
γ
α
γα
MATERIALS DESIGN LABORATORY
0.0 0.1 0.2 0.3 0.4
0
1000
2000
3000
4000
5000
780
800
840
Truestress,strainhardeningrate,MPa
True Strain
840℃
820℃
800℃
780℃
820
TWIP
TRIP
Fe-0.3%C-6%Mn-1.5%Si-3%Al
Medium Mn TWIP+TRIP Steel Concept
MATERIALS DESIGN LABORATORY
0 10 20 30 40 50 60
0
200
400
600
800
1000
1200
1400
0 10 20 30 40 50 60
0
200
400
600
800
1000
1200
1400
0 10 20 30 40 50 60
0
200
400
600
800
1000
1200
1400
8Mn0.4C3Al2Si
12Mn0.3C3Al18Mn0.6C1.5Al
Eng.stress(MPa)
Eng. strain (%)
DP980 DP980
10Mn0.3C3Al2Si
Eng.stress(MPa)
Eng. strain (%)
Eng.stress(MPa)
Eng. strain (%)
DP980
6Mn0.3C3Al1.5Si
Single phase
TWIP steel
 →T
TWIP-effect

 →T
TWIP-effect

 →’
TRIP-effect
’
+
Multi-phase
TWIP+TRIP steel
5Mn0.3C3Al1.5Si
MATERIALS DESIGN LABORATORY
Conclusions
An UFG intercritically-annealed UHSS (UTS>1GPa) medium Mn steel grades for
automotive applications are being developed.
The material does not deform by localized Lüders band propagation, a common
problem for UFG materials.
The steel is designed to have two plasticity-enhancing mechanisms, the TWIP and
TRIP effects, being activate in succession in the austenite.
The alloy is designed to be compatible with current processing of CR strip for
automotive applications in CA and HDG lines. Concept is also compatible
with current requirements in terms of cost, processing, and application
performance.
Current research is focusing on:
- Zn and Zn-alloy coating
- Development of a hot rolled variant
- Further reduction of the alloy content
- Further increase in strength and ductility
MATERIALS DESIGN LABORATORY
Thank you
The support of the POSCO Technical Research Laboratories is gratefully acknowledged.

More Related Content

What's hot

Additive Manufacturing REU Report
Additive Manufacturing REU ReportAdditive Manufacturing REU Report
Additive Manufacturing REU Report
Dustin Crouse
 
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
mexat
 
Erosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsibErosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsib
Ebe Nezer G
 

What's hot (18)

EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATEEXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
 
Ballistic
BallisticBallistic
Ballistic
 
Additive Manufacturing REU Report
Additive Manufacturing REU ReportAdditive Manufacturing REU Report
Additive Manufacturing REU Report
 
Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...
 
Fatigue and fracture behavior of additively manufactured metals after heat tr...
Fatigue and fracture behavior of additively manufactured metals after heat tr...Fatigue and fracture behavior of additively manufactured metals after heat tr...
Fatigue and fracture behavior of additively manufactured metals after heat tr...
 
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
 
MICROSTRUCTURAL CHARACTERIZATION AND HOT EROSION BEHAVIOR OF CRC-NICR COATED ...
MICROSTRUCTURAL CHARACTERIZATION AND HOT EROSION BEHAVIOR OF CRC-NICR COATED ...MICROSTRUCTURAL CHARACTERIZATION AND HOT EROSION BEHAVIOR OF CRC-NICR COATED ...
MICROSTRUCTURAL CHARACTERIZATION AND HOT EROSION BEHAVIOR OF CRC-NICR COATED ...
 
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
 
Application of ANN in FSP
Application of ANN in FSPApplication of ANN in FSP
Application of ANN in FSP
 
Analysis and quantification of grain size in various dhp copper tubes manufac...
Analysis and quantification of grain size in various dhp copper tubes manufac...Analysis and quantification of grain size in various dhp copper tubes manufac...
Analysis and quantification of grain size in various dhp copper tubes manufac...
 
Erosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsibErosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsib
 
Ch05
Ch05Ch05
Ch05
 
Ijsea04031008
Ijsea04031008Ijsea04031008
Ijsea04031008
 
Astm d429-03
Astm d429-03Astm d429-03
Astm d429-03
 
IRJET- A Review on Characteristics of Titanium based Thin Films
IRJET- A Review on Characteristics of Titanium based Thin FilmsIRJET- A Review on Characteristics of Titanium based Thin Films
IRJET- A Review on Characteristics of Titanium based Thin Films
 
IRJET- Impact of Accelerated Corrosion Test in Flexural Behaviour of RC B...
IRJET-  	  Impact of Accelerated Corrosion Test in Flexural Behaviour of RC B...IRJET-  	  Impact of Accelerated Corrosion Test in Flexural Behaviour of RC B...
IRJET- Impact of Accelerated Corrosion Test in Flexural Behaviour of RC B...
 
30120140501014
3012014050101430120140501014
30120140501014
 
Bhale2016
Bhale2016Bhale2016
Bhale2016
 

Similar to IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015

ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steels
Dierk Raabe
 
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
IJERA Editor
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
aimsnist
 
In situ TiC formation Using Laser cladding
In situ TiC formation Using Laser claddingIn situ TiC formation Using Laser cladding
In situ TiC formation Using Laser cladding
a_emamian
 

Similar to IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015 (20)

ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steels
 
C72200 Copper Nickel Chromium
C72200 Copper Nickel ChromiumC72200 Copper Nickel Chromium
C72200 Copper Nickel Chromium
 
MSEC 2015_Review on powder bed laser additive manufacturing of inconel 718 parts
MSEC 2015_Review on powder bed laser additive manufacturing of inconel 718 partsMSEC 2015_Review on powder bed laser additive manufacturing of inconel 718 parts
MSEC 2015_Review on powder bed laser additive manufacturing of inconel 718 parts
 
Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
Multiphase Bainitic Steels at the Max Planck Institut in DüsseldorfMultiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf
 
CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14
 
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
 
KC-AtmoPlasmaProcR&D(csnb)140607
KC-AtmoPlasmaProcR&D(csnb)140607KC-AtmoPlasmaProcR&D(csnb)140607
KC-AtmoPlasmaProcR&D(csnb)140607
 
Mechanism of Fracture in Friction Stir Processed Aluminium Alloy
Mechanism of Fracture in Friction Stir Processed Aluminium AlloyMechanism of Fracture in Friction Stir Processed Aluminium Alloy
Mechanism of Fracture in Friction Stir Processed Aluminium Alloy
 
Hardeninig of steel (Jominy test)-CoET- udsm
Hardeninig of steel (Jominy test)-CoET- udsmHardeninig of steel (Jominy test)-CoET- udsm
Hardeninig of steel (Jominy test)-CoET- udsm
 
Approach to simultaneous improvement of strength, ductility
Approach to simultaneous improvement of strength, ductilityApproach to simultaneous improvement of strength, ductility
Approach to simultaneous improvement of strength, ductility
 
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Materials Selection and Design Considerations
Materials Selection and Design ConsiderationsMaterials Selection and Design Considerations
Materials Selection and Design Considerations
 
Materials Selection and Design Considerations
Materials Selection and Design ConsiderationsMaterials Selection and Design Considerations
Materials Selection and Design Considerations
 
In situ TiC formation Using Laser cladding
In situ TiC formation Using Laser claddingIn situ TiC formation Using Laser cladding
In situ TiC formation Using Laser cladding
 
Session_B2_Fillion.ppt
Session_B2_Fillion.pptSession_B2_Fillion.ppt
Session_B2_Fillion.ppt
 
Sarava PhD Viva Presentation
Sarava PhD Viva PresentationSarava PhD Viva Presentation
Sarava PhD Viva Presentation
 
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
 
Wear performance of ceramic cutting tool materials when cutting steel
Wear performance of ceramic cutting tool materials when cutting steelWear performance of ceramic cutting tool materials when cutting steel
Wear performance of ceramic cutting tool materials when cutting steel
 
Presentation for Jindal steels
Presentation for Jindal steelsPresentation for Jindal steels
Presentation for Jindal steels
 

IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015