SlideShare a Scribd company logo
1 of 7
Download to read offline
www.ajms.in
RESEARCH ARTICLE
Some Results Regarding To New Triple Laplace Transform
*Yousef Jafarzadeh
College of Skills and Entrepreneurship, Karaj Branch, Islamic Azad University,
Karaj, Iran
Corresponding Email: mat2j@yahoo.com
Received: 05-03-2023; Revised: 26-03-2023; Accepted: 22-04-2023
ABSTRACT
In this paper, the new triple Laplace transform is defined. The main results and theorems on the new
triple Laplace transform are investigated. The theory of fractional differential equations based on new
triple Laplace transform is developed in this work.
Keywords: Laplace transform; fractional calculus; fractional integral; fractional derivatives; partial
fractional derivatives.
AMS Subject Classification: 45-xx, 65-xx.
1. INTRODUCTION
Fractional calculus has attracted many researchers in the last decades. The impact of this fractional
calculus on both pure and applied branches of science and engineering has been increased. Many
researchers started to approach with the discrete versions of this fractional calculus benefiting to get
many aspects in the real life [1-3]. In [4], the authors introduced a new well-behaved simple approach of
fractional derivatives called conformable derivative, which occurs naturally and obeys the Leibniz rule
and chain rule.
In [5-6], the conformable calculus and their new properties have been analyzed for real valued
multivariable functions. In [7], conformable gradient vectors are defined, and a conformable sense
Clairautโ€™s Theorem have been proven. In [8-10], the researchers have worked on the linear ordinary and
partial differential equations based on the conformable derivatives. Namely, two new results on
homogeneous functions involving their conformable partial derivatives are introduced, specifically,
homogeneity of the conformable partial derivatives of a homogeneous function and the conformable
version of Eulerยดs Theorem [3].
The conformable Laplace transform was initiated in [11] and studied and modified in [12]. The
conformable Laplace transform is not only useful to solve local conformable fractional dynamical
systems but also it can be employed to solve systems within nonlocal conformable fractional derivatives
that were defined and used in [10]. Finally, it is also a remarkable fact a large number of studies in the
theory and application of fractional differential equations based on this new definition of derivative,
which have been developed in a short time. We come up with the idea to study the nonlinear partial
fractional differential equations by defining a function in 3 space. Therefore, a new triple Laplace
transform is defined.
Some Results Regarding To New Triple Laplace Transform
71
AJMS/Apr-Jun 2023/Volume 7/Issue 2
This paper is divided into the following sections: In section 2, some basic definitions are introduced. In
section 3, the main results and theorems on the new triple Laplace transform are investigated. In section
4, a conclusion of our research work is provided.
2. PRELIMINARIES
In this section, some basic definitions on conformable partial derivatives are introduced.
Definition 2.1. ([4])
For a function ,
)
,
0
(
: R
f ๏‚ฎ
๏‚ฅ the conformable derivative of order ]
1
,
0
(
๏ƒŽ
๏ก of ๐‘“ at ๐‘ฅ>0 is defined by,
h
x
f
hx
x
f
x
f
T
h
)
(
)
(
)
(
1
0
lim
๏€ญ
๏€ซ
๏€ฝ
๏€ญ
๏‚ฎ
๏ก
๏ก
. (2.1)
Definition 2.2. ([5])
Given a function ,
: R
R
R
R
f ๏‚ฎ
๏‚ด
๏‚ด ๏€ซ
๏€ซ
๏€ซ
the conformable partial fractional derivatives (CPFDs) of
order๐›ผ,and ๐›พ of the function (๐‘ฅ,,) is defined as follows:
h
t
y
x
f
t
y
hx
x
f
f
h
x
)
,
,
(
)
,
,
( 1
0
lim
๏€ญ
๏€ซ
๏€ฝ
๏‚ถ
๏€ญ
๏‚ฎ
๏ก
๏ก
,
k
t
y
x
f
t
ky
y
x
f
f
k
y
)
,
,
(
)
,
,
( 1
0
lim
๏€ญ
๏€ซ
๏€ฝ
๏‚ถ
๏€ญ
๏‚ฎ
๏ข
๏ข
,
๏ฌ
๏ฌ ๏ง
๏ฌ
๏ง )
,
,
(
)
,
,
( 1
0
lim
t
y
x
f
t
t
y
x
f
f
t
๏€ญ
๏€ซ
๏€ฝ
๏‚ถ
๏€ญ
๏‚ฎ . (2.2)
Where 0<๐›ผ,,โ‰ค1,๐‘ฅ,๐‘ฆ,๐‘ก>0.
Theorem 2.1. Let ๐›ผ,๐›ฝ,๐›พโˆˆ(0,1],๐‘Ž,๐‘โˆˆ๐‘…and๐‘™,๐‘š,๐‘›โˆˆ๐‘ ; Then, we have the following:
1)
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ
(๐‘Ž๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐‘Ž
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ ๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก),
2)
๐œ•๐›ผ+๐›ฝ+๐›พ
๐œ•๐‘ฅ๐›ผ๐œ•๐‘ฆ๐›ฝ๐œ•๐‘ก๐›พ
(๐‘ฅ๐‘™
๐‘ฆ๐‘š
๐‘ก๐‘›) = ๐‘™๐‘š๐‘› ๐‘ฅ๐‘™โˆ’๐›ผ
๐‘ฆ๐‘šโˆ’๐›ฝ
๐‘ก๐‘›โˆ’๐›พ
,
3)
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ ((
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ก๐›พ
๐›พ
)
๐‘›
) = ๐‘™ (
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™โˆ’1
(
๐‘ก๐›พ
๐›พ
)
๐‘›
,
๐œ•๐›พ
๐œ•๐‘ก๐›พ ((
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ฆ๐›ฝ
๐›ฝ
)
๐‘š
(
๐‘ก๐›พ
๐›พ
)
๐‘›
) = ๐‘› (
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ฆ๐›ฝ
๐›ฝ
)
๐‘š
(
๐‘ก๐›พ
๐›พ
)
๐‘›โˆ’1
,
4)
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ (sin (
๐‘ฅ๐›ผ
๐›ผ
)cos (
๐‘ก๐›พ
๐›พ
)) = cos (
๐‘ฅ๐›ผ
๐›ผ
) cos (
๐‘ก๐›พ
๐›พ
),
5)
๐œ•๐›ฝ
๐œ•๐‘ฆ๐›ฝ (sin (
๐‘ฅ๐›ผ
๐›ผ
)cos (
๐‘ฆ๐›ฝ
๐›ฝ
) cos (
๐‘ก๐›พ
๐›พ
)) = โˆ’ sin (
๐‘ฅ๐›ผ
๐›ผ
) sin (
๐‘ฆ๐›ฝ
๐›ฝ
) cos (
๐‘ก๐›พ
๐›พ
). (3.2)
Proof: By the definition of CFPD,
Some Results Regarding To New Triple Laplace Transform
72
AJMS/Apr-Jun 2023/Volume 7/Issue 2
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ
(๐‘Ž๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = h
t
y
x
bv
t
y
hx
x
bv
t
y
x
au
t
y
hx
x
au
h
)
,
,
(
)
,
,
(
)
,
,
(
)
,
,
( 1
1
0
lim
๏€ญ
๏€ซ
๏€ซ
๏€ญ
๏€ซ ๏€ญ
๏€ญ
๏‚ฎ
๏ก
๏ก
=
๐‘Ž
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ ๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก).
(4.2)
Similarity, we can prove the results 2-5.
Theorem 2.2. Let ๐›ผ,๐›ฝ,๐›พโˆˆ(0,1] and ๐‘“(๐‘ฅ,๐‘ฆ,๐‘ก) be a differentiable at a point for ๐‘ฅ,๐‘ฆ,๐‘ก>0. Then,
1)
f
x
x
t
y
x
f
x
t
y
x
f
x
f x
x ๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ
๏‚ถ ๏€ญ
๏€ญ ๏ก
๏ก
๏ก
๏ก
๏ก 1
1 )
,
,
(
)
,
,
(
,
2)
f
y
y
t
y
x
f
y
t
y
x
f
y
f y
y ๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ
๏‚ถ ๏€ญ
๏€ญ ๏ข
๏ข
๏ข
๏ข
๏ข 1
1 )
,
,
(
)
,
,
(
,
3)
f
t
t
t
y
x
f
t
t
y
x
f
t
f t
t ๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ
๏‚ถ ๏€ญ
๏€ญ ๏ง
๏ง
๏ง
๏ง
๏ง 1
1 )
,
,
(
)
,
,
(
. (5.2)
Proof: By the definition of CFPD,
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ
(๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = h
t
y
x
f
t
y
hx
x
f
h
)
,
,
(
)
,
,
( 1
0
lim
๏€ญ
๏€ซ ๏€ญ
๏‚ฎ
๏ก
, taking n
hx ๏€ฝ
๏€ญ๏ก
1
we have
.
)
,
,
(
)
,
,
(
)
,
,
(
)
,
,
(
)
,
,
( 1
0
1
1
0
lim
lim x
t
y
x
f
x
n
t
y
x
f
t
y
n
x
f
x
nx
t
y
x
f
t
y
n
x
f
f
n
n
x
๏‚ถ
๏‚ถ
๏€ฝ
๏€ญ
๏€ซ
๏€ฝ
๏€ญ
๏€ซ
๏€ฝ
๏‚ถ ๏€ญ
๏‚ฎ
๏€ญ
๏€ญ
๏‚ฎ
๏ก
๏ก
๏ก
๏ก
Similarity, we can prove the results 2-5.
Definition 2.3. Let (๐‘ฅ, ๐‘ก) be a real valued piecewise continuous function of ๐‘ฅ,๐‘ก defined on the domain D
of
๏€ซ
๏€ซ
๏€ซ
๏‚ด
๏‚ด R
R
R of exponential order ๐›ผ, ๐›ฝ and ๐›พ, respectively. Then, the new triple Laplace transform
(NTLT) of (๐‘ฅ,) is defined as follows:
๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) = โˆซ โˆซ โˆซ ๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
,
(6.2)
where๐‘,,โˆˆโˆ are Laplace variables and ๐›ผ,๐›ฝ,๐›พโˆˆ(0,1].
The new inverse triple Laplace transform, denoted by (๐‘ฅ,), is defined by
๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐ฟ๐‘
โˆ’1
๐ฟ๐‘ž
โˆ’1
๐ฟ๐‘ 
โˆ’1
(๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )) =
1
2๐œ‹๐‘–
โˆซ ๐‘’
๐‘(
๐‘ฅ๐›ผ
๐›ผ
)
[
1
2๐œ‹๐‘–
โˆซ ๐‘’
๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)
[
1
2๐œ‹๐‘–
โˆซ ๐‘’
๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )๐‘‘๐‘ 
๐›พ+๐‘–โˆž
๐›พโˆ’๐‘–โˆž
] ๐‘‘๐‘ž
๐›ฝ+๐‘–โˆž
๐›ฝโˆ’๐‘–โˆž
] ๐‘‘๐‘
๐›ผ+๐‘–โˆž
๐›ผโˆ’๐‘–โˆž
. (7.2)
Some Results Regarding To New Triple Laplace Transform
73
AJMS/Apr-Jun 2023/Volume 7/Issue 2
3. RESULTS AND THEOREMS
In this section, the main results and theorems on the new triple Laplace transform are investigated.
Theorem3.1.
If๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) = ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ), ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘ฃ (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) = ๐‘‰๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )and
A,B and C are constants then
1) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐ด๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) + ๐ต๐‘ฃ (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) = ๐ด๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) +
๐ต๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘ฃ (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) = ๐ด๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) + ๐ต๐‘‰๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ).
2) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘) =
๐‘
๐‘๐‘ž๐‘ 
,where c is constant.
3) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
((
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ฆ๐›ฝ
๐›ฝ
)
๐‘š
(
๐‘ก๐›พ
๐›พ
)
๐‘›
) =
ฮ“(๐‘™+1)ฮ“(๐‘š+1)ฮ“(๐‘›+1)
๐‘๐‘™+1๐‘ž๐‘š+1๐‘ ๐‘›+1
,Where (.) Is the gamma function. Note
thatฮ“(๐‘› + 1) = ๐‘›! , ๐‘› = 0,1,2,3, โ€ฆ .
4) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘’
๐‘Ž(
๐‘ฅ๐›ผ
๐›ผ
)+๐‘(
๐‘ฆ๐›ฝ
๐›ฝ
)+๐‘(
๐‘ก๐›พ
๐›พ
)
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) = ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘ โˆ’ ๐‘Ž, ๐‘ž โˆ’ ๐‘, ๐‘  โˆ’ ๐‘).
5) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(sin (๐ด
๐‘ฅ๐›ผ
๐›ผ
)sin (๐ต
๐‘ฆ๐›ฝ
๐›ฝ
) sin (๐ถ
๐‘ก๐›พ
๐›พ
)) =
๐ด๐ต๐ถ
(๐‘2+๐ด2)(๐‘ž2+๐ต2)(๐‘ 2+๐ถ2)
.
6) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘๐‘œ๐‘  (๐ด
๐‘ฅ๐›ผ
๐›ผ
)๐‘๐‘œ๐‘  (๐ต
๐‘ฆ๐›ฝ
๐›ฝ
)๐‘๐‘œ๐‘  (๐ถ
๐‘ก๐›พ
๐›พ
)) =
๐‘๐‘ž๐‘ 
(๐‘2+๐ด2)(๐‘ž2+๐ต2)(๐‘ 2+๐ถ2)
.
7) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
((
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ฆ๐›ฝ
๐›ฝ
)
๐‘š
(
๐‘ก๐›พ
๐›พ
)
๐‘›
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) = (โˆ’1)๐‘™+๐‘š+๐‘› ๐‘‘๐‘™+๐‘š+๐‘›
๐‘‘๐‘๐‘™๐‘‘๐‘ž๐‘š๐‘‘๐‘ ๐‘› (๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )).
Proof: The results 1-6 can be easily proved by using the definition of new triple Laplace transform
(NTLT). Here only we see the proof of result 7. So, by definition of NTLT (equation(6.2)),
๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) = ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)) =
โˆซ โˆซ โˆซ ๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
.
Some Results Regarding To New Triple Laplace Transform
74
AJMS/Apr-Jun 2023/Volume 7/Issue 2
Differentiating with respect to p; ๐‘™- times. We get
๐‘‘๐‘™
๐‘‘๐‘๐‘™ ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )
=
๐‘‘๐‘™
๐‘‘๐‘๐‘™ โˆซ โˆซ โˆซ ๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
=
โˆซ โˆซ โˆซ
๐‘‘๐‘™
๐‘‘๐‘๐‘™
๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
=
โˆซ โˆซ โˆซ (โˆ’ (
๐‘ฅ๐›ผ
๐›ผ
))๐‘™
๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
.
Now, we again differentiate with respect to ๐‘ž and ๐‘ ; ๐‘š and ๐‘›- times respectively, we obtain the
simplification as follows:
๐‘‘๐‘™+๐‘š+๐‘›
๐‘‘๐‘๐‘™๐‘‘๐‘ž๐‘š๐‘‘๐‘ ๐‘›
(๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ))
= โˆซ โˆซ โˆซ (โˆ’ (
๐‘ฅ๐›ผ
๐›ผ
))๐‘™
(โˆ’ (
๐‘ฆ๐›ฝ
๐›ฝ
))๐‘š
(โˆ’ (
๐‘ก๐›พ
๐›พ
))๐‘›
๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
=(โˆ’1)๐‘™+๐‘š+๐‘›
โˆซ โˆซ โˆซ ๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
(
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ฆ๐›ฝ
๐›ฝ
)
๐‘š
(
๐‘ก๐›พ
๐›พ
)
๐‘›
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
,
which implies,
๐‘‘๐‘™+๐‘š+๐‘›
๐‘‘๐‘๐‘™๐‘‘๐‘ž๐‘š๐‘‘๐‘ ๐‘›
(๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )) = (โˆ’1)๐‘™+๐‘š+๐‘›
๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
((
๐‘ฅ๐›ผ
๐›ผ
)
๐‘™
(
๐‘ฆ๐›ฝ
๐›ฝ
)
๐‘š
(
๐‘ก๐›พ
๐›พ
)
๐‘›
๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)).
Now, we multiply (โˆ’1)+๐‘š+๐‘›, on the both the sides, we get the required result. ๏‚ข
Theorem 3.2. For ๐›ผ, ๐›ฝ, ๐›พโˆˆ (0,1]. Let ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
) be the real valued piecewise continuous
function ๐‘ฅ, ๐‘Ž๐‘›๐‘‘๐‘ก of the domain D on (0,โˆž)ร—(0,โˆž)ร—(0,โˆž). The NTLT (new triple Laplace transform) of the
conformable partial fractional derivatives of order ๐›ผ, and ๐›พ, then
1) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(0, ๐‘ž, ๐‘ ),
2) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•๐›ฝ
๐œ•๐‘ฆ๐›ฝ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘ž๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(๐‘, 0, ๐‘ ),
Some Results Regarding To New Triple Laplace Transform
75
AJMS/Apr-Jun 2023/Volume 7/Issue 2
3) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•๐›พ
๐œ•๐‘ก๐›พ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘ ๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(๐‘, ๐‘ž, 0),
4) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•2๐›ผ
๐œ•๐‘ฅ2๐›ผ (๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘2
๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘๐‘ˆ(0, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ๐‘ฅ(0, ๐‘ž, ๐‘ ), (3.1)
5) ๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•3๐›ผ
๐œ•๐‘ฅ3๐›ผ (๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘3
๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘2
๐‘ˆ(0, ๐‘ž, ๐‘ ) โˆ’ ๐‘๐‘ˆ๐‘ฅ(0, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ๐‘ฅ๐‘ฅ(0, ๐‘ž, ๐‘ ).
Proof: Here we go for proof of result (1), and the remaining results can be proved. To obtain newtriple
Laplace transform of the fractional partial derivatives, we use integration by parts and theorem 2. By
applying the definition of NTLT, we have
๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
)))
= โˆซ โˆซ โˆซ ๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
)โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
) ๐œ•๐›ผ
๐‘ข
๐œ•๐‘ฅ๐›ผ ๐‘ฅ๐›ผโˆ’1
๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
= โˆซ โˆซ ๐‘’
โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
(โˆซ ๐‘’
โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
) ๐œ•๐›ผ๐‘ข
๐œ•๐‘ฅ๐›ผ
๐‘ฅ๐›ผโˆ’1
๐‘‘๐‘ฅ)๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
(3.2)
Since we have theorem 2.2, f
x
t
y
x
f
x
x
๏‚ถ
๏€ฝ
๏‚ถ
๏‚ถ ๏€ญ๏ก
๏ก
๏ก
1
)
,
,
( . We use this result in to equation (3.2). Therefore,
we have
โˆซ โˆซ ๐‘’
โˆ’๐‘ž(
๐‘ฆ๐›ฝ
๐›ฝ
)โˆ’๐‘ (
๐‘ก๐›พ
๐›พ
)
(โˆซ ๐‘’โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
) ๐œ•๐‘ข
๐œ•๐‘ฅ
๐‘‘๐‘ฅ)๐‘ฆ๐›ฝโˆ’1
๐‘ก๐›พโˆ’1
๐‘‘๐‘ฆ๐‘‘๐‘ก
โˆž
0
โˆž
0
โˆž
0
, (3.3)
The integral inside the bracket is given by,
โˆซ ๐‘’โˆ’๐‘(
๐‘ฅ๐›ผ
๐›ผ
) ๐œ•๐‘ข
๐œ•๐‘ฅ
๐‘‘๐‘ฅ = ๐‘๐‘ˆ(๐‘, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘ˆ(0, ๐‘ฆ, ๐‘ก)
โˆž
0
.
(3.4)
By substituting equation (3.4) in equation (3.3), and simplifying, we
have
๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•๐›ผ
๐œ•๐‘ฅ๐›ผ
(๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(0, ๐‘ž, ๐‘ ).
In general, the above results in theorem 4 can be extended as follows:
๐ฟ๐‘ฅ
๐›ผ
๐ฟ๐‘ฆ
๐›ฝ
๐ฟ๐‘ก
๐›พ
(
๐œ•๐‘š
๐œ•๐‘ฅ๐‘š (๐‘ข (
๐‘ฅ๐›ผ
๐›ผ
,
๐‘ฆ๐›ฝ
๐›ฝ
,
๐‘ก๐›พ
๐›พ
))) = ๐‘๐‘š
๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ โˆ‘ ๐‘๐‘šโˆ’1โˆ’๐‘˜
๐‘ˆ๐‘ก
(๐‘˜)
(0, ๐‘ž, ๐‘ )
๐‘šโˆ’1
๐‘˜=0 .
Some Results Regarding To New Triple Laplace Transform
76
AJMS/Apr-Jun 2023/Volume 7/Issue 2
4.CONCLUSION
In this work, the definition of new triple Laplace transform is
defined and investigated results and theorems. This new triple Laplace
transform can be applied to find the solution of linear and nonlinear
homogeneous and nonhomogeneous partial fractional differential
equations.
REFERENCES
1. G.Samko, A.A.Kilbas, Marichev,Fractional integrals and Derivatives: Theory and Applications,
Gordon and Breach, Yverdon,(1993).
2. Al-Horani, M., & Khalil, R. Total fractional differential with applications to exact fractional
differential equation. International Journal of Computer Mathematics, (2018) 95(6-7), 1444-1452.
3. Martรญnez, F., Martรญnez, I., & Paredes, S. Conformable Eulerยดs theorem on homogeneous
functions. Comp. and Math. Methods, (2019)1, e1048.
4. Khalil, R., Al-Horani, M., Yousef, A., &Sababheh, M. A new definition of fractional derivative.
J.Comp. Appl. Math., 264 (2014) 65-70.
5. Abdeljawad, T. On conformable fractional calculus. J. Comp. Appl. Math., (2015) 57-66.
6. Atangana, A., Baleanu, D., &Alsaedi, A. New properties of conformable derivative. Open Math.
13(2018), 57-63.
7. Gรถzรผtok, N. Y, &Gรถzรผtok, U. Multivariable conformable fractional calculus. Filomat,
(2018)32(1), 45โ€“53.
8. H. E. Gardian. Solving coupled pseudo-Parabolic equation using a modified double Laplace
decomposition method, ActaMathematicaScientia, Vol.38, (2018) No-1, PP-333-346.
9. Mousa, Adil, and Tarig M. Elzaki. "Solution of nonlinear partial differential equations by triple
Laplace decomposition method". 4(6), 37-40 (2019) IJEAST.
10. Anderson, D. R., &Ulness, D. J. Newly defined conformable derivatives. Advances in Dynamical
Systems and Applications, (2015) 10(2), 109-137
11. Silva, F. S., Moreira, D. M., &Moret, M. A. Conformable Laplace transform of fractional
differential equations. Axioms, (2018)7(3),55.
12. Jarad, F., Abdeljawad, T. A modified Laplace transform for certain generalized fractional
operators. Results Nonlinear Anal. (2018)1, 88โ€“98.

More Related Content

Similar to New Triple Laplace Transform for Fractional Differential Equations

Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...IJMER
ย 
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGNA GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGNcscpconf
ย 
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...csandit
ย 
publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
ย 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Alona Hall
ย 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsQUESTJOURNAL
ย 
Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theoremijtsrd
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...IJERA Editor
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethmJasonleav
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
ย 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
ย 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
ย 
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltAnalysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltVarun Jadhav
ย 

Similar to New Triple Laplace Transform for Fractional Differential Equations (20)

NJD_87.pdf
NJD_87.pdfNJD_87.pdf
NJD_87.pdf
ย 
Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchyโ€™s Proper Bound for the Zeros of Entire...
ย 
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGNA GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
ย 
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
ย 
publisher in research
publisher in researchpublisher in research
publisher in research
ย 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
ย 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
ย 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
ย 
Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theorem
ย 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
ย 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
ย 
C0560913
C0560913C0560913
C0560913
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethm
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
ย 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
ย 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
ย 
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltAnalysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
ย 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...BRNSS Publication Hub
ย 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHSBRNSS Publication Hub
ย 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONSBRNSS Publication Hub
ย 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRABRNSS Publication Hub
ย 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERSBRNSS Publication Hub
ย 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationBRNSS Publication Hub
ย 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...BRNSS Publication Hub
ย 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseBRNSS Publication Hub
ย 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...BRNSS Publication Hub
ย 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...BRNSS Publication Hub
ย 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfBRNSS Publication Hub
ย 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ย 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
ย 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
ย 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
ย 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
ย 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
ย 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
ย 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
ย 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
ย 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
ย 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
ย 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
ย 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
ย 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
ย 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
ย 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
ย 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
ย 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
ย 
05_IJPBA_2069_23.pdf
05_IJPBA_2069_23.pdf05_IJPBA_2069_23.pdf
05_IJPBA_2069_23.pdf
ย 
04_IJPBA_2068_23.pdf
04_IJPBA_2068_23.pdf04_IJPBA_2068_23.pdf
04_IJPBA_2068_23.pdf
ย 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
ย 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
ย 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
ย 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
ย 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...Dr. Mazin Mohamed alkathiri
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
ย 

Recently uploaded (20)

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
ย 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
ย 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
ย 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
ย 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
ย 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
ย 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
ย 

New Triple Laplace Transform for Fractional Differential Equations

  • 1. www.ajms.in RESEARCH ARTICLE Some Results Regarding To New Triple Laplace Transform *Yousef Jafarzadeh College of Skills and Entrepreneurship, Karaj Branch, Islamic Azad University, Karaj, Iran Corresponding Email: mat2j@yahoo.com Received: 05-03-2023; Revised: 26-03-2023; Accepted: 22-04-2023 ABSTRACT In this paper, the new triple Laplace transform is defined. The main results and theorems on the new triple Laplace transform are investigated. The theory of fractional differential equations based on new triple Laplace transform is developed in this work. Keywords: Laplace transform; fractional calculus; fractional integral; fractional derivatives; partial fractional derivatives. AMS Subject Classification: 45-xx, 65-xx. 1. INTRODUCTION Fractional calculus has attracted many researchers in the last decades. The impact of this fractional calculus on both pure and applied branches of science and engineering has been increased. Many researchers started to approach with the discrete versions of this fractional calculus benefiting to get many aspects in the real life [1-3]. In [4], the authors introduced a new well-behaved simple approach of fractional derivatives called conformable derivative, which occurs naturally and obeys the Leibniz rule and chain rule. In [5-6], the conformable calculus and their new properties have been analyzed for real valued multivariable functions. In [7], conformable gradient vectors are defined, and a conformable sense Clairautโ€™s Theorem have been proven. In [8-10], the researchers have worked on the linear ordinary and partial differential equations based on the conformable derivatives. Namely, two new results on homogeneous functions involving their conformable partial derivatives are introduced, specifically, homogeneity of the conformable partial derivatives of a homogeneous function and the conformable version of Eulerยดs Theorem [3]. The conformable Laplace transform was initiated in [11] and studied and modified in [12]. The conformable Laplace transform is not only useful to solve local conformable fractional dynamical systems but also it can be employed to solve systems within nonlocal conformable fractional derivatives that were defined and used in [10]. Finally, it is also a remarkable fact a large number of studies in the theory and application of fractional differential equations based on this new definition of derivative, which have been developed in a short time. We come up with the idea to study the nonlinear partial fractional differential equations by defining a function in 3 space. Therefore, a new triple Laplace transform is defined.
  • 2. Some Results Regarding To New Triple Laplace Transform 71 AJMS/Apr-Jun 2023/Volume 7/Issue 2 This paper is divided into the following sections: In section 2, some basic definitions are introduced. In section 3, the main results and theorems on the new triple Laplace transform are investigated. In section 4, a conclusion of our research work is provided. 2. PRELIMINARIES In this section, some basic definitions on conformable partial derivatives are introduced. Definition 2.1. ([4]) For a function , ) , 0 ( : R f ๏‚ฎ ๏‚ฅ the conformable derivative of order ] 1 , 0 ( ๏ƒŽ ๏ก of ๐‘“ at ๐‘ฅ>0 is defined by, h x f hx x f x f T h ) ( ) ( ) ( 1 0 lim ๏€ญ ๏€ซ ๏€ฝ ๏€ญ ๏‚ฎ ๏ก ๏ก . (2.1) Definition 2.2. ([5]) Given a function , : R R R R f ๏‚ฎ ๏‚ด ๏‚ด ๏€ซ ๏€ซ ๏€ซ the conformable partial fractional derivatives (CPFDs) of order๐›ผ,and ๐›พ of the function (๐‘ฅ,,) is defined as follows: h t y x f t y hx x f f h x ) , , ( ) , , ( 1 0 lim ๏€ญ ๏€ซ ๏€ฝ ๏‚ถ ๏€ญ ๏‚ฎ ๏ก ๏ก , k t y x f t ky y x f f k y ) , , ( ) , , ( 1 0 lim ๏€ญ ๏€ซ ๏€ฝ ๏‚ถ ๏€ญ ๏‚ฎ ๏ข ๏ข , ๏ฌ ๏ฌ ๏ง ๏ฌ ๏ง ) , , ( ) , , ( 1 0 lim t y x f t t y x f f t ๏€ญ ๏€ซ ๏€ฝ ๏‚ถ ๏€ญ ๏‚ฎ . (2.2) Where 0<๐›ผ,,โ‰ค1,๐‘ฅ,๐‘ฆ,๐‘ก>0. Theorem 2.1. Let ๐›ผ,๐›ฝ,๐›พโˆˆ(0,1],๐‘Ž,๐‘โˆˆ๐‘…and๐‘™,๐‘š,๐‘›โˆˆ๐‘ ; Then, we have the following: 1) ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (๐‘Ž๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐‘Ž ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ ๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก), 2) ๐œ•๐›ผ+๐›ฝ+๐›พ ๐œ•๐‘ฅ๐›ผ๐œ•๐‘ฆ๐›ฝ๐œ•๐‘ก๐›พ (๐‘ฅ๐‘™ ๐‘ฆ๐‘š ๐‘ก๐‘›) = ๐‘™๐‘š๐‘› ๐‘ฅ๐‘™โˆ’๐›ผ ๐‘ฆ๐‘šโˆ’๐›ฝ ๐‘ก๐‘›โˆ’๐›พ , 3) ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ก๐›พ ๐›พ ) ๐‘› ) = ๐‘™ ( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™โˆ’1 ( ๐‘ก๐›พ ๐›พ ) ๐‘› , ๐œ•๐›พ ๐œ•๐‘ก๐›พ (( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ฆ๐›ฝ ๐›ฝ ) ๐‘š ( ๐‘ก๐›พ ๐›พ ) ๐‘› ) = ๐‘› ( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ฆ๐›ฝ ๐›ฝ ) ๐‘š ( ๐‘ก๐›พ ๐›พ ) ๐‘›โˆ’1 , 4) ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (sin ( ๐‘ฅ๐›ผ ๐›ผ )cos ( ๐‘ก๐›พ ๐›พ )) = cos ( ๐‘ฅ๐›ผ ๐›ผ ) cos ( ๐‘ก๐›พ ๐›พ ), 5) ๐œ•๐›ฝ ๐œ•๐‘ฆ๐›ฝ (sin ( ๐‘ฅ๐›ผ ๐›ผ )cos ( ๐‘ฆ๐›ฝ ๐›ฝ ) cos ( ๐‘ก๐›พ ๐›พ )) = โˆ’ sin ( ๐‘ฅ๐›ผ ๐›ผ ) sin ( ๐‘ฆ๐›ฝ ๐›ฝ ) cos ( ๐‘ก๐›พ ๐›พ ). (3.2) Proof: By the definition of CFPD,
  • 3. Some Results Regarding To New Triple Laplace Transform 72 AJMS/Apr-Jun 2023/Volume 7/Issue 2 ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (๐‘Ž๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = h t y x bv t y hx x bv t y x au t y hx x au h ) , , ( ) , , ( ) , , ( ) , , ( 1 1 0 lim ๏€ญ ๏€ซ ๏€ซ ๏€ญ ๏€ซ ๏€ญ ๏€ญ ๏‚ฎ ๏ก ๏ก = ๐‘Ž ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ ๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก). (4.2) Similarity, we can prove the results 2-5. Theorem 2.2. Let ๐›ผ,๐›ฝ,๐›พโˆˆ(0,1] and ๐‘“(๐‘ฅ,๐‘ฆ,๐‘ก) be a differentiable at a point for ๐‘ฅ,๐‘ฆ,๐‘ก>0. Then, 1) f x x t y x f x t y x f x f x x ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ ๏‚ถ ๏€ญ ๏€ญ ๏ก ๏ก ๏ก ๏ก ๏ก 1 1 ) , , ( ) , , ( , 2) f y y t y x f y t y x f y f y y ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ ๏‚ถ ๏€ญ ๏€ญ ๏ข ๏ข ๏ข ๏ข ๏ข 1 1 ) , , ( ) , , ( , 3) f t t t y x f t t y x f t f t t ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ ๏‚ถ ๏€ญ ๏€ญ ๏ง ๏ง ๏ง ๏ง ๏ง 1 1 ) , , ( ) , , ( . (5.2) Proof: By the definition of CFPD, ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = h t y x f t y hx x f h ) , , ( ) , , ( 1 0 lim ๏€ญ ๏€ซ ๏€ญ ๏‚ฎ ๏ก , taking n hx ๏€ฝ ๏€ญ๏ก 1 we have . ) , , ( ) , , ( ) , , ( ) , , ( ) , , ( 1 0 1 1 0 lim lim x t y x f x n t y x f t y n x f x nx t y x f t y n x f f n n x ๏‚ถ ๏‚ถ ๏€ฝ ๏€ญ ๏€ซ ๏€ฝ ๏€ญ ๏€ซ ๏€ฝ ๏‚ถ ๏€ญ ๏‚ฎ ๏€ญ ๏€ญ ๏‚ฎ ๏ก ๏ก ๏ก ๏ก Similarity, we can prove the results 2-5. Definition 2.3. Let (๐‘ฅ, ๐‘ก) be a real valued piecewise continuous function of ๐‘ฅ,๐‘ก defined on the domain D of ๏€ซ ๏€ซ ๏€ซ ๏‚ด ๏‚ด R R R of exponential order ๐›ผ, ๐›ฝ and ๐›พ, respectively. Then, the new triple Laplace transform (NTLT) of (๐‘ฅ,) is defined as follows: ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) = โˆซ โˆซ โˆซ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 , (6.2) where๐‘,,โˆˆโˆ are Laplace variables and ๐›ผ,๐›ฝ,๐›พโˆˆ(0,1]. The new inverse triple Laplace transform, denoted by (๐‘ฅ,), is defined by ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐ฟ๐‘ โˆ’1 ๐ฟ๐‘ž โˆ’1 ๐ฟ๐‘  โˆ’1 (๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )) = 1 2๐œ‹๐‘– โˆซ ๐‘’ ๐‘( ๐‘ฅ๐›ผ ๐›ผ ) [ 1 2๐œ‹๐‘– โˆซ ๐‘’ ๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ ) [ 1 2๐œ‹๐‘– โˆซ ๐‘’ ๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )๐‘‘๐‘  ๐›พ+๐‘–โˆž ๐›พโˆ’๐‘–โˆž ] ๐‘‘๐‘ž ๐›ฝ+๐‘–โˆž ๐›ฝโˆ’๐‘–โˆž ] ๐‘‘๐‘ ๐›ผ+๐‘–โˆž ๐›ผโˆ’๐‘–โˆž . (7.2)
  • 4. Some Results Regarding To New Triple Laplace Transform 73 AJMS/Apr-Jun 2023/Volume 7/Issue 2 3. RESULTS AND THEOREMS In this section, the main results and theorems on the new triple Laplace transform are investigated. Theorem3.1. If๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ), ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘ฃ ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = ๐‘‰๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )and A,B and C are constants then 1) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐ด๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) + ๐ต๐‘ฃ ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = ๐ด๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) + ๐ต๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘ฃ ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = ๐ด๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) + ๐ต๐‘‰๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ). 2) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘) = ๐‘ ๐‘๐‘ž๐‘  ,where c is constant. 3) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ฆ๐›ฝ ๐›ฝ ) ๐‘š ( ๐‘ก๐›พ ๐›พ ) ๐‘› ) = ฮ“(๐‘™+1)ฮ“(๐‘š+1)ฮ“(๐‘›+1) ๐‘๐‘™+1๐‘ž๐‘š+1๐‘ ๐‘›+1 ,Where (.) Is the gamma function. Note thatฮ“(๐‘› + 1) = ๐‘›! , ๐‘› = 0,1,2,3, โ€ฆ . 4) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘’ ๐‘Ž( ๐‘ฅ๐›ผ ๐›ผ )+๐‘( ๐‘ฆ๐›ฝ ๐›ฝ )+๐‘( ๐‘ก๐›พ ๐›พ ) ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘ โˆ’ ๐‘Ž, ๐‘ž โˆ’ ๐‘, ๐‘  โˆ’ ๐‘). 5) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (sin (๐ด ๐‘ฅ๐›ผ ๐›ผ )sin (๐ต ๐‘ฆ๐›ฝ ๐›ฝ ) sin (๐ถ ๐‘ก๐›พ ๐›พ )) = ๐ด๐ต๐ถ (๐‘2+๐ด2)(๐‘ž2+๐ต2)(๐‘ 2+๐ถ2) . 6) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘๐‘œ๐‘  (๐ด ๐‘ฅ๐›ผ ๐›ผ )๐‘๐‘œ๐‘  (๐ต ๐‘ฆ๐›ฝ ๐›ฝ )๐‘๐‘œ๐‘  (๐ถ ๐‘ก๐›พ ๐›พ )) = ๐‘๐‘ž๐‘  (๐‘2+๐ด2)(๐‘ž2+๐ต2)(๐‘ 2+๐ถ2) . 7) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ฆ๐›ฝ ๐›ฝ ) ๐‘š ( ๐‘ก๐›พ ๐›พ ) ๐‘› ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = (โˆ’1)๐‘™+๐‘š+๐‘› ๐‘‘๐‘™+๐‘š+๐‘› ๐‘‘๐‘๐‘™๐‘‘๐‘ž๐‘š๐‘‘๐‘ ๐‘› (๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )). Proof: The results 1-6 can be easily proved by using the definition of new triple Laplace transform (NTLT). Here only we see the proof of result 7. So, by definition of NTLT (equation(6.2)), ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) = ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )) = โˆซ โˆซ โˆซ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 .
  • 5. Some Results Regarding To New Triple Laplace Transform 74 AJMS/Apr-Jun 2023/Volume 7/Issue 2 Differentiating with respect to p; ๐‘™- times. We get ๐‘‘๐‘™ ๐‘‘๐‘๐‘™ ๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ ) = ๐‘‘๐‘™ ๐‘‘๐‘๐‘™ โˆซ โˆซ โˆซ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 = โˆซ โˆซ โˆซ ๐‘‘๐‘™ ๐‘‘๐‘๐‘™ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 = โˆซ โˆซ โˆซ (โˆ’ ( ๐‘ฅ๐›ผ ๐›ผ ))๐‘™ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 . Now, we again differentiate with respect to ๐‘ž and ๐‘ ; ๐‘š and ๐‘›- times respectively, we obtain the simplification as follows: ๐‘‘๐‘™+๐‘š+๐‘› ๐‘‘๐‘๐‘™๐‘‘๐‘ž๐‘š๐‘‘๐‘ ๐‘› (๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )) = โˆซ โˆซ โˆซ (โˆ’ ( ๐‘ฅ๐›ผ ๐›ผ ))๐‘™ (โˆ’ ( ๐‘ฆ๐›ฝ ๐›ฝ ))๐‘š (โˆ’ ( ๐‘ก๐›พ ๐›พ ))๐‘› ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 =(โˆ’1)๐‘™+๐‘š+๐‘› โˆซ โˆซ โˆซ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ฆ๐›ฝ ๐›ฝ ) ๐‘š ( ๐‘ก๐›พ ๐›พ ) ๐‘› ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 , which implies, ๐‘‘๐‘™+๐‘š+๐‘› ๐‘‘๐‘๐‘™๐‘‘๐‘ž๐‘š๐‘‘๐‘ ๐‘› (๐‘ˆ๐›ผ,๐›ฝ,๐›พ(๐‘, ๐‘ž, ๐‘ )) = (โˆ’1)๐‘™+๐‘š+๐‘› ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ (( ๐‘ฅ๐›ผ ๐›ผ ) ๐‘™ ( ๐‘ฆ๐›ฝ ๐›ฝ ) ๐‘š ( ๐‘ก๐›พ ๐›พ ) ๐‘› ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ )). Now, we multiply (โˆ’1)+๐‘š+๐‘›, on the both the sides, we get the required result. ๏‚ข Theorem 3.2. For ๐›ผ, ๐›ฝ, ๐›พโˆˆ (0,1]. Let ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ) be the real valued piecewise continuous function ๐‘ฅ, ๐‘Ž๐‘›๐‘‘๐‘ก of the domain D on (0,โˆž)ร—(0,โˆž)ร—(0,โˆž). The NTLT (new triple Laplace transform) of the conformable partial fractional derivatives of order ๐›ผ, and ๐›พ, then 1) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(0, ๐‘ž, ๐‘ ), 2) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•๐›ฝ ๐œ•๐‘ฆ๐›ฝ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘ž๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(๐‘, 0, ๐‘ ),
  • 6. Some Results Regarding To New Triple Laplace Transform 75 AJMS/Apr-Jun 2023/Volume 7/Issue 2 3) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•๐›พ ๐œ•๐‘ก๐›พ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘ ๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(๐‘, ๐‘ž, 0), 4) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•2๐›ผ ๐œ•๐‘ฅ2๐›ผ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘2 ๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘๐‘ˆ(0, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ๐‘ฅ(0, ๐‘ž, ๐‘ ), (3.1) 5) ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•3๐›ผ ๐œ•๐‘ฅ3๐›ผ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘3 ๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘2 ๐‘ˆ(0, ๐‘ž, ๐‘ ) โˆ’ ๐‘๐‘ˆ๐‘ฅ(0, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ๐‘ฅ๐‘ฅ(0, ๐‘ž, ๐‘ ). Proof: Here we go for proof of result (1), and the remaining results can be proved. To obtain newtriple Laplace transform of the fractional partial derivatives, we use integration by parts and theorem 2. By applying the definition of NTLT, we have ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = โˆซ โˆซ โˆซ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ )โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) ๐œ•๐›ผ ๐‘ข ๐œ•๐‘ฅ๐›ผ ๐‘ฅ๐›ผโˆ’1 ๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 = โˆซ โˆซ ๐‘’ โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) (โˆซ ๐‘’ โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ ) ๐œ•๐›ผ๐‘ข ๐œ•๐‘ฅ๐›ผ ๐‘ฅ๐›ผโˆ’1 ๐‘‘๐‘ฅ)๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 (3.2) Since we have theorem 2.2, f x t y x f x x ๏‚ถ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ญ๏ก ๏ก ๏ก 1 ) , , ( . We use this result in to equation (3.2). Therefore, we have โˆซ โˆซ ๐‘’ โˆ’๐‘ž( ๐‘ฆ๐›ฝ ๐›ฝ )โˆ’๐‘ ( ๐‘ก๐›พ ๐›พ ) (โˆซ ๐‘’โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ ) ๐œ•๐‘ข ๐œ•๐‘ฅ ๐‘‘๐‘ฅ)๐‘ฆ๐›ฝโˆ’1 ๐‘ก๐›พโˆ’1 ๐‘‘๐‘ฆ๐‘‘๐‘ก โˆž 0 โˆž 0 โˆž 0 , (3.3) The integral inside the bracket is given by, โˆซ ๐‘’โˆ’๐‘( ๐‘ฅ๐›ผ ๐›ผ ) ๐œ•๐‘ข ๐œ•๐‘ฅ ๐‘‘๐‘ฅ = ๐‘๐‘ˆ(๐‘, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘ˆ(0, ๐‘ฆ, ๐‘ก) โˆž 0 . (3.4) By substituting equation (3.4) in equation (3.3), and simplifying, we have ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•๐›ผ ๐œ•๐‘ฅ๐›ผ (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ ๐‘ˆ(0, ๐‘ž, ๐‘ ). In general, the above results in theorem 4 can be extended as follows: ๐ฟ๐‘ฅ ๐›ผ ๐ฟ๐‘ฆ ๐›ฝ ๐ฟ๐‘ก ๐›พ ( ๐œ•๐‘š ๐œ•๐‘ฅ๐‘š (๐‘ข ( ๐‘ฅ๐›ผ ๐›ผ , ๐‘ฆ๐›ฝ ๐›ฝ , ๐‘ก๐›พ ๐›พ ))) = ๐‘๐‘š ๐‘ˆ(๐‘, ๐‘ž, ๐‘ ) โˆ’ โˆ‘ ๐‘๐‘šโˆ’1โˆ’๐‘˜ ๐‘ˆ๐‘ก (๐‘˜) (0, ๐‘ž, ๐‘ ) ๐‘šโˆ’1 ๐‘˜=0 .
  • 7. Some Results Regarding To New Triple Laplace Transform 76 AJMS/Apr-Jun 2023/Volume 7/Issue 2 4.CONCLUSION In this work, the definition of new triple Laplace transform is defined and investigated results and theorems. This new triple Laplace transform can be applied to find the solution of linear and nonlinear homogeneous and nonhomogeneous partial fractional differential equations. REFERENCES 1. G.Samko, A.A.Kilbas, Marichev,Fractional integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon,(1993). 2. Al-Horani, M., & Khalil, R. Total fractional differential with applications to exact fractional differential equation. International Journal of Computer Mathematics, (2018) 95(6-7), 1444-1452. 3. Martรญnez, F., Martรญnez, I., & Paredes, S. Conformable Eulerยดs theorem on homogeneous functions. Comp. and Math. Methods, (2019)1, e1048. 4. Khalil, R., Al-Horani, M., Yousef, A., &Sababheh, M. A new definition of fractional derivative. J.Comp. Appl. Math., 264 (2014) 65-70. 5. Abdeljawad, T. On conformable fractional calculus. J. Comp. Appl. Math., (2015) 57-66. 6. Atangana, A., Baleanu, D., &Alsaedi, A. New properties of conformable derivative. Open Math. 13(2018), 57-63. 7. Gรถzรผtok, N. Y, &Gรถzรผtok, U. Multivariable conformable fractional calculus. Filomat, (2018)32(1), 45โ€“53. 8. H. E. Gardian. Solving coupled pseudo-Parabolic equation using a modified double Laplace decomposition method, ActaMathematicaScientia, Vol.38, (2018) No-1, PP-333-346. 9. Mousa, Adil, and Tarig M. Elzaki. "Solution of nonlinear partial differential equations by triple Laplace decomposition method". 4(6), 37-40 (2019) IJEAST. 10. Anderson, D. R., &Ulness, D. J. Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, (2015) 10(2), 109-137 11. Silva, F. S., Moreira, D. M., &Moret, M. A. Conformable Laplace transform of fractional differential equations. Axioms, (2018)7(3),55. 12. Jarad, F., Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. (2018)1, 88โ€“98.