SlideShare a Scribd company logo
1 of 18
Download to read offline
Amir Shokri
‫الگوریتم‬ ‫در‬ ‫آن‬ ‫کاربرد‬ ‫و‬ ‫نقلیه‬ ‫وسایل‬ ‫مسیریابی‬ ‫مسئله‬ ‫در‬ ‫یادگیری‬ ‫جامع‬ ‫سازی‬ ‫بهینه‬Bacterial Foraging Optimization
Amirsh.nll@gmail.com
Dr. Kourosh Kiani
‫مقدمه‬
2
‫الگوریتم‬ ‫از‬ ‫نوعی‬ ‫مقاله‬ ‫این‬ ‫در‬BFO‫با‬‫یادگیر‬ ‫سازی‬ ‫بهینه‬ ‫را‬ ‫آن‬ ‫ما‬ ‫که‬ ‫جامع‬ ‫یادگیری‬ ‫استراتژی‬ ‫و‬ ‫کموتاکسیس‬ ‫مختلف‬ ‫مرحله‬ ‫طول‬‫ی‬
‫باکتریایی‬ ‫جامع‬‫باکتریایی‬ALCBFO‫می‬‫دهد‬ ‫می‬ ‫ارائه‬ ، ‫نامیم‬.
‫یک‬‫استف‬ ‫پیشنهادی‬ ‫الگوریتم‬ ‫از‬ ‫برداری‬ ‫بهره‬ ‫و‬ ‫اکتشاف‬ ‫بین‬ ‫خوبی‬ ‫تعادل‬ ‫حفظ‬ ‫برای‬ ‫تطبیقی‬ ‫کاهش‬ ‫خطی‬ ‫غیر‬ ‫تعدیل‬ ‫مدل‬‫شود‬ ‫می‬ ‫اده‬.
‫مکانیسم‬‫دهد‬ ‫می‬ ‫کاهش‬ ‫را‬ ‫زودرس‬ ‫همگرایی‬ ‫بنابراین‬ ‫و‬ ‫کند‬ ‫می‬ ‫حفظ‬ ‫را‬ ‫ها‬ ‫باکتری‬ ‫جمعیت‬ ‫تنوع‬ ، ‫جامع‬ ‫یادگیری‬.
‫مقدمه‬
3
‫در‬‫کالسیک‬ ‫الگوریتم‬ ‫با‬ ‫مقایسه‬GA،PSO،BFO‫اصلی‬‫یافته‬ ‫بهبود‬ ‫دو‬ ‫و‬BFO (BFO-LDC‫و‬BFO-NDC)،ACLBFO‫شده‬ ‫ارائه‬
‫دهد‬ ‫می‬ ‫نشان‬ ‫حالته‬ ‫چند‬ ‫مشکالت‬ ‫حل‬ ‫در‬ ‫بهتر‬ ‫توجهی‬ ‫قابل‬ ‫عملکرد‬.
‫ما‬‫روش‬ ‫عملکرد‬ ‫همچنین‬ACLBFO‫را‬‫ویندوز‬ ‫زمان‬ ‫با‬ ‫نقلیه‬ ‫وسایل‬ ‫مسیریابی‬ ‫مسئله‬ ‫در‬VRPTW‫ارزیابی‬‫کنیم‬ ‫می‬.
‫در‬‫الگوریتم‬ ‫سه‬ ‫با‬ ‫مقایسه‬BFO‫دیگر‬‫نقلی‬ ‫وسایل‬ ‫مسیریابی‬ ‫مسئله‬ ‫حل‬ ‫برای‬ ‫را‬ ‫آن‬ ‫پتانسیل‬ ‫و‬ ‫است‬ ‫برتر‬ ‫پیشنهادی‬ ‫الگوریتم‬ ،‫زمان‬ ‫با‬ ‫ه‬
‫ویندوز‬VRPTW‫تأیید‬‫کند‬ ‫می‬.
‫کار‬ ‫شروع‬
4
‫هوشمند‬ ‫سازی‬ ‫بهینه‬ ‫های‬ ‫الگوریتم‬Swarm‫بیولوژیک‬ ‫سیستم‬ ‫در‬ ‫اجتماعی‬ ‫رفتارهای‬ ‫از‬ ‫ناشی‬ ‫محرک‬ ‫محاسبات‬ ‫از‬ ‫جدید‬ ‫نوعی‬ ‫عنوان‬ ‫به‬‫ی‬
‫است‬ ‫کرده‬ ‫جلب‬ ‫خود‬ ‫به‬ ‫را‬ ‫بسیاری‬ ‫دانشمندان‬.
‫بهینه‬‫ذرات‬ ‫سازی‬PSO،‫و‬ ‫کندی‬ ‫توسط‬ ‫شده‬ ‫پیشنهاد‬،‫ابرهارت‬‫است‬ ‫شده‬ ‫تحریک‬ ‫ماهی‬ ‫آموزش‬ ‫یا‬ ‫پرندگان‬ ‫های‬ ‫گله‬ ‫ازدحام‬ ‫رفتار‬ ‫با‬.
‫الگوریتم‬‫ماهی‬ ‫ازدحام‬‫مصنوعی‬AFSA‫است‬ ‫گرفته‬ ‫سرچشمه‬ ‫ماهی‬ ‫متالطم‬ ‫رفتار‬ ‫در‬.
‫بهینه‬‫ها‬ ‫مورچه‬ ‫کلونی‬ ‫سازی‬‫از‬ACO‫رفتار‬‫شد‬ ‫داده‬ ‫انگیزه‬ ‫ها‬ ‫مورچه‬ ‫ای‬ ‫علوفه‬.‫زنبورهای‬ ‫کلونی‬ ‫الگوریتم‬‫مصنوعی‬ABCA‫از‬
‫است‬ ‫شده‬ ‫گرفته‬ ‫الهام‬ ‫زنبورها‬ ‫اجتماعی‬ ‫تخصصی‬ ‫رفتار‬.
‫اینها‬‫می‬ ‫بهره‬ ، ‫کنند‬ ‫می‬ ‫تعامل‬ ‫خود‬ ‫محیط‬ ‫و‬ ‫یکدیگر‬ ‫با‬ ‫محلی‬ ‫افراد‬ ‫که‬ ‫جهانی‬ ‫رفتار‬ ‫از‬ ‫که‬ ‫هستند‬ ‫جمعیت‬ ‫بر‬ ‫مبتنی‬ ‫های‬ ‫تکنیک‬‫گیرند‬.
Bacterial Foraging Optimization
5
‫باکتریایی‬ ‫باکتریایی‬ ‫سازی‬ ‫بهینه‬ ‫الگوریتم‬BFO‫یک‬‫باکتریهای‬ ‫اجتماعی‬ ‫علوفه‬ ‫رفتار‬ ‫از‬ ‫که‬ ‫است‬ ‫تکاملی‬ ‫سازی‬ ‫بهینه‬ ‫جدید‬ ‫روش‬E.
coli‫کند‬ ‫می‬ ‫تقلید‬.
‫با‬‫ای‬ ‫علوفه‬ ‫رفتارهای‬ ‫اساسی‬ ‫فیزیک‬ ‫و‬ ‫شناسی‬ ‫زیست‬ ‫به‬ ‫توجه‬E. coli،Passino‫و‬Liu‫از‬‫و‬ ‫باکتریایی‬ ‫پرخاشگری‬ ‫رفتارهای‬ ‫انواع‬
‫کنترل‬ ‫سیستم‬ ‫چگونگی‬ ‫مورد‬ ‫در‬ ، ‫اند‬ ‫کرده‬ ‫سوءاستفاده‬ ‫اجتماعی‬ ‫رفتارهای‬E. coli‫کنید‬ ‫استفاده‬ ‫غذایی‬ ‫های‬ ‫برنامه‬ ‫اجرای‬ ‫بیانگر‬.
‫فرایند‬‫پراکند‬ ‫و‬ ‫حذف‬ ‫و‬ ‫مثل‬ ‫تولید‬ ، ‫ازدحام‬ ، ‫کموتاکسی‬ ‫یعنی‬ ، ‫کرد‬ ‫تقسیم‬ ‫بخش‬ ‫چهار‬ ‫به‬ ‫توان‬ ‫می‬ ‫را‬ ‫ها‬ ‫باکتری‬ ‫سازی‬ ‫علوفه‬‫گی‬.
Bacterial Foraging Optimization
6
𝜃 𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃 𝑖 𝑗, 𝑘, 𝑙 +
𝐶 𝑖 Δ 𝑖
√Δ 𝑇 𝑖 Δ(i)
𝐽ℎ𝑒𝑎𝑙𝑡ℎ
𝑖
= Σ𝑗=1
𝑁 𝑐
𝐽(𝑖, 𝑗, 𝑘, 𝑙)
Reproduction
Chemotaxis
Adaptive Comprehensive Learning Bacterial Foraging Optimization
7
𝐶𝑗 = 𝐶_ min + exp −𝑎 ∗
𝑘
𝑁𝑟𝑒
𝑛
∗ (𝐶_ max −𝐶_ min)
𝜃 𝑑
𝑖
𝑗 + 1, 𝑘, 𝑙 = 𝜃 𝑑
𝑖
+
𝐶 𝑖 Δ i
√Δ 𝑇 𝑖 Δ(i)
+ 𝜆 ∗ 𝑟1 ∗ 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − tetha 𝑑
𝑖
𝑗, 𝑘, 𝑙 + 1 − 𝜆 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖𝑑 − 𝜃 𝑑
𝑖
𝑗, 𝑘, 𝑙 )
Comprehensive Learning Mechanism
Chemotaxis step size
𝑝𝑏𝑒𝑠𝑡𝑖𝑑 = 𝜃 ∗ 𝑝𝑏𝑒𝑠𝑡 𝑐𝑜𝑚𝑝𝑒𝑟 + 1 − 𝜃 ∗ 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑝𝑏𝑒𝑠𝑡𝑖𝑑 = 𝑏𝑖 ∗ 𝑝𝑏𝑒𝑠𝑡 𝑛 + 1 − 𝑏𝑖 𝑝𝑏𝑒𝑠𝑡 𝑚
𝑝𝑐
𝑖 = 𝜖 + 0.5 − 𝜖 ∗
𝑒 𝑡 𝑖−𝑒 𝑡1
𝑒 𝑡 𝑠−𝑒 𝑡1
𝜆 = 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑑 − 1 + 𝑝𝑐)
𝑡𝑖 =
5 𝑖 − 1
𝑆 − 1
, 𝑡1 = 0 𝑎𝑛𝑑 𝑡 𝑆 = 5
Description of VRPTW
8
min 𝑧 = Σ𝑖=0
𝑁
Σ𝑗=0
𝑁
Σ 𝑘=1
𝐾
𝐶 ∗ 𝑥𝑖𝑗𝑘 + Σ𝑖=1
𝑁
max{𝑒 ∗ 𝐸𝑇𝑖 − 𝑡𝑖 ; 0 ; 𝑓 ∗ 𝑡𝑖 − 𝐿𝑇𝑖 }
𝑤ℎ𝑒𝑟𝑒 ∶ 𝑡𝑖𝑗 = Σ𝑥𝑖𝑗𝑘 𝑡𝑖 +
𝑑𝑖𝑗
𝑣
+ 𝑠𝑖 (𝑡0 = 0, 𝑠0 = 0)
Σ𝑗=1
𝑁
Σ 𝑘=1
𝐾
𝑥𝑗𝑖𝑘 = Σ𝑗=1
𝑁
Σ 𝑘=1
𝐾
= 𝑘 (𝑖 = 0)
Σ𝑗=0
𝑁
Σ 𝑘=1
𝐾
𝑥𝑖𝑗𝑘 = 1 (𝑖 ∈ 𝑁)
Σ𝑖=0
𝑁
Σ 𝑘=1
𝑘
𝑥𝑖𝑗𝑘 = 1 (𝑖 ∈ 𝑁)
Σ𝑗=1
𝑁
𝑥𝑖𝑗𝑘 = Σ𝑗=1
𝑁
𝑥𝑗𝑖𝑘 = 1 (𝑖 = 0, 𝑘 ∈ 𝐾)
Σ𝑖=0
𝑁
Σ𝑗=0
𝑁
𝑥𝑖𝑗𝑘 ∗ 𝑔𝑖 ≤ 𝑞
‫کد‬ ‫شبه‬Adaptive Comprehensive Learning
9
Begin
1: Initialize all the parameters and positions: S , c N , s N , re N , ed N , ed P ,C , c p , etc.
2: While (Terminate-condition is not met)
3: Evaluate fitness values of the initial population.
4: Figure out the gbest and the pbest of each bacterium
5: For (Elimination-dispersal loop)
6: For (Reproduction loop)
7: For (Chemotaxis loop)
8: Update the chemotaxis step size using Equation 3
9: Compute fitness function
10: Update the position using Equation 4
11: Boundary control(bacteria are not allowed to go out of bounds)
‫کد‬ ‫شبه‬Adaptive Comprehensive Learning
10
12: Tumbleing, Swimming for s N steps
13: Update the gbest and the pbest
14: End For (Chemotaxis loop)
15: Compute the health values of each bacterium using Equation 2
16: Sort bacteria based on health values
17: Copy the best bacteria using health sorting approach
18: End For (Reproduction loop)
19: Eliminate and disperse each bacterium with probability ed P
20: End For (Elimination-dispersal loop)
21: EndWhile
22. End
‫آزمون‬ ‫توابع‬ ‫امترهای‬‫ر‬‫پا‬
11
Functioni=1 Mathematical Representation X* F(X*) R
Sphere 𝑓1 𝑥 = Σ𝑖=1
𝑛
𝑥𝑖
2 [0, 0, …, 0] 0 [-100, 100]^n
Rosenbrock 𝑓2 𝑥 = Σ𝑖=1
𝑛
100 ∗ 𝑥𝑖+1 − 𝑥𝑖
2 2
+ (1 − 𝑥𝑖
2
) [0, 0, …, 0] 0 [-100. 100]^n
Rastrigin 𝑓3 𝑥 = Σ𝑖=1
𝑛
𝑥𝑖
2
− 10 cos 2𝜋𝑥𝑖 + 10 [0, 0, …, 0] 0 [5.12, 5.12]^n
Griewank
𝑓4 𝑥 =
1
4000
Σ𝑖=1
𝑛
𝑥𝑖
2
− ෑ
𝑖=1
𝑛
cos
𝑥𝑖
𝑖
+ 1
𝑓5 𝑥 = Σ𝑖=1
𝑛
(Σ 𝑘=0
𝑘max
𝑎 𝑘
cos 2𝜋𝑏 𝑘
𝑥𝑖 + 0.5 )
[0, 0, …, 0] 0 [-600, 600]^n
Weierstrass −𝐷Σ 𝑘=0
𝑘max
𝑎 𝑘
cos 2pib 𝑘
. 0.5 𝑎 = 0.5, 𝑏
= 3, 𝑘_ max = 20
[0, 0, …, 0] 0 [-0.5, 0.5]^n
Ackley
− exp
1
𝐷
Σ𝑖=1
𝐷
cos 2𝜋𝑥𝑖 + 20 + 𝑒
[0, 0, …, 0] 0 [-32, 32]^n
‫منابع‬
12
• [1] J. Kennedy, R.C. Eberhart, Swarm intelligence, Morgan Kaufmann Publisher, San Francisco, 2001.
• [2] X.L. Li, Z. J. Shao, J.X. Qian, An optimizing method based on autonomous animats: fishswarm algorithm, Syst. Eng., Theory Prac. 22 (2002) 32–38.
• [3] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence: from natural to artificial system, Oxford University Press, New York, 1999.
• [4] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math.Comput. 214 (2009) 108–132.
• [5] K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. (2002) 52–67.
• [6] B.K. Panigrahi, V.R. Pandi, Bacterial foraging optimization: Nelder-Mead hybrid algorithm for economic load dispatch, IET Gener. Transm. Dis. 2(4) (2008)
556–565.
• [7] P.K. Hota, A.K. Barisal, R. Chakrabarti, Economic emission load dispatch through fuzzy based bacterial foraging algorithm, Int. J. Elec. Power & energy
Systems. 32(7) (2010) 794–803.
• [8] P.G. Kou, J.Z. Zhou, Y.Y. He, X.Q. Xiang, C.S. Li, Optimal PID governor tuning of hydraulic turbine generators with bacterial foraging particle swarm
optimization algorithm, Proceedings of the Chinese Society of Electrical Engineering 29(26)
• [9] E.S Ali, S.M. Abd-Elazim, Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, Int. J. Elec. Power.
33(3) (2011) 633–638.
• [10] B. Niu, Y. Fan, H. Xiao, B. Xue, Bacterial foraging based approaches to portfolio optimization with liquidity risk, Neurocomputing. 98 (2012) 90–100.
‫منابع‬
13
• [11] W.J. Tang, M.S. Li, S. He, Q.H. Wu, Optimal power flow with dynamic loads using bacterial foraging algorithm, In: 2006 International Conference on
Power System Technology 2006 pp. 1–5.
• [12] N.A. Okaeme, P. Zanchetta, Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives, IEEE Trans. Ind.
Inf. 9(2) (2013) 668–678.
• [13] M. Hanmandlu, O. P.Verma, S. Susan, V.K. Madasu, Color segmentation by fuzzy coclustering of chrominance color features, Neurocomputing 120 (2013)
235–249.
• [14] B. Niu, H. Wang, L.J. Tan, J. Xu, Multi-objective optimization using BFO algorithm. In: D.S. Huang et al. (eds.) ICIC 2011. LNBI, vol. 6840,. Springer,
Heidelberg, 2012, pp. 582– 587
• [15] S. Das, S. Dasgupta, A. Biswas, A. Abraham, A. Konar On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm. IEEE T. SYST.
MAN CY. A 39(3) (2009) 670–679.
• [16] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Adaptive computational chemotaxis in bacterial foraging optimization: An analysis. IEEE T. Evolut. Comput.
13(4) (2009) 919– 941.
• [17] D.H. Kim, A. Abraham, J.H. Cho, A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inform. Sciences 177(18) (2007)
3918–3937.
‫منابع‬
14
• . [18] A. Biswas, S. Dasgupta, S. Das, A. Abraham, Synergy of PSO and bacterial foraging optimization - A comparative study on numerical benchmarks.
Innovations in Hybrid Intelligent Systems. 44(2007) 255–263.
• [19] N. Sarasiri, K. Suthamno, S. Sujitjorn, Bacterial foraging-Tabu search metaheuristics for identification of nonlinear friction model, J. Appl. Math. Volume
2012, Article ID 238563, 23 pages
• [20] B. Kallehauge, J. Larsen, O.B.G. Madsen, M. Solomon, Vehicle routing problem with time windows. Springer, Column Generation, 2005, pp. 67–98.
• [21] R.A. Russell, Hybrid heuristics for the vehicle routing problem with time windows. Transp. Sci. 29(2) (1995) 156–166.
• [22] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberin, D. Naddef, Separating capacity constraints in the CVRP using Tabu search. Eur. J. Oper. Res.
106(1998) 546–557.
• [23] J.Y. Potvin, T.Kervahut, B.L. Garcia, J.M. Rousseau, The vehicle routing problem with time windows part I: Tabu search, INFORMS J. Comput. 8(2)(1996)
158 –164.
• [24] X.Y. Yin, Z.Y. Yuan, Multiple vehicle routing with time windows using genetic algorithms. In: Proceedings of Evolutionary Computation. CEC 1999. vol. 3,
1999, pp. 1804–1808.
• [25] J. Ai, V. Kachitvichyanukul, A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36(5)
(2009) 1693–1702.
‫منابع‬
15
• [26] Z.G. Dan, L.N. Cai, L. Zheng, Improved multi-agent system for the vehicle routing problem with time windows, Tsinghua Science and Technology 14(3)
(2009) 407–412.
• [27] Y. Liu, K.M. Passino, Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors, J. Optim. Theory
Appl. 115(2002) 603–628.
• [28] B. Niu, Y. Fan, P. Zhao, B. Xue, L. Li, Y.J. Chai, A novel bacterial foraging optimizer with linear decreasing chemotaxis step. In: 2nd International Workshop
on Intelligent Systems and Applications (ISA), 2010, pp.1–4.
• [29] B. Niu, Y. Fan, H. Wang, Novel bacterial foraging optimization with time-varying chemotaxis step. Int. J. Artif. Intell. (2011) 257–273.
• [30] B. Niu, H. Wang, L.J. Tan, L. Li, Improved BFO with adaptive chemotaxis step for global optimization. In: International Conference on Computational
Intelligence and Security (CIS) 2011, 2011, pp.76–80.
• [31] B. Niu, H. Wang, Y.J. Chai, Bacterial colony optimization. Discrete Dyn. Nat. soc. (2012) 1–28.
• [32] J.J. Liang, A.K. Qin, P.N. Suganthan, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol.
Comput. 10(3) (2006), 281–295.
• [33] X.Yao, Y. Liu, G. Liu, Evolutionary programming made faster. IEEE Trans. Evol. Comput 3(2) (1999) 82–102. [34] D. Ashlock, Evolutionary computation for
modeling and optimization. New York: Springer-Verlag, 2006.
‫منابع‬
16
• [34] D. Ashlock, Evolutionary computation for modeling and optimization. New York: Springer-Verlag, 2006.
• [35] Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization. In: Proceedings of the IEEE Congress Evolutionary Computation, 1999, pp.1945–
1950.
• [36] G.B. Dantzig, J.H. Ramser, The truck dispatching problem. Manage. Sci. 6(1) (1959) 80– 91.
• [37] G. Desaulniers, J. Desrosiers, A. Erdman, M.M. Solomon, F. Soumis, The VRP with pickup and delivery. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA, 2001.
• [38] J. Renaud, G. Laporte, F.F. Boctor, A tabu search heuristic for the multi-depot vehicle routing problem. Comput. Oper. Res. 23(3) (1996) 229–235.
• [39] M. Iori, J.J. Salazar-González, D. Vigo, An exact approach for the vehicle routing problem with two-dimensional loading constraints. Transp. Sci. 41(2007)
253–264.
• [40] B. Nag, B.L. Golden, A. Assad, Vehicle routing with site dependencies. In: Golden B., Assad A., editors. Vehicle routing: methods and studies. Amsterdam:
Elsevier, 1988, pp. 149–159.
• [41] D. Sariklis, S. Powell, A heuristic method for the open vehicle routing problem. J. Oper. Res. Soc. 51(2000) 564–573.
• [42] B. Kallehauge, J. Larsen, O.B.G. Madsen, M. Solomon, Vehicle routing problem with time windows. Springer, Column Generation, 2005, pp. 67–98.
• [43] O. Bräysy, M. Gendreau, Vehicle routing problem with time windows, part II: metaheuristics. Transp.Sci. 39(2005) 119–139.
‫منابع‬
17
• [44] B. Niu, H. Wang, L.J. Tan, L. Li, J.W. Wang, Vehicle routing problem with time windows based on adaptive bacterial foraging optimization. Intell. Comput.
Theories Appl. Lect. Notes Comput. Sci., 7390(2012) 672–679.
• [45] J.Y. Potvin, Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 63(1996) 339–370.
Thank You
Amir shokri
Amirsh.nll@gmail.com
Dr. Kourosh Kiani

More Related Content

Similar to adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows

Evolutionary techniques-for-model-order-reduction-of-large-scale-linear-systems
Evolutionary techniques-for-model-order-reduction-of-large-scale-linear-systemsEvolutionary techniques-for-model-order-reduction-of-large-scale-linear-systems
Evolutionary techniques-for-model-order-reduction-of-large-scale-linear-systems
Cemal Ardil
 
Feature selection of unbalanced breast cancer data using particle swarm optim...
Feature selection of unbalanced breast cancer data using particle swarm optim...Feature selection of unbalanced breast cancer data using particle swarm optim...
Feature selection of unbalanced breast cancer data using particle swarm optim...
IJECEIAES
 

Similar to adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows (20)

Cukoo srch
Cukoo srchCukoo srch
Cukoo srch
 
Particle swarm optimization
Particle swarm optimizationParticle swarm optimization
Particle swarm optimization
 
Cuckoo algorithm with great deluge local-search for feature selection problems
Cuckoo algorithm with great deluge local-search for feature  selection problemsCuckoo algorithm with great deluge local-search for feature  selection problems
Cuckoo algorithm with great deluge local-search for feature selection problems
 
Improved Particle Swarm Optimization
Improved Particle Swarm OptimizationImproved Particle Swarm Optimization
Improved Particle Swarm Optimization
 
an improver particle optmizacion plan de negocios
an improver particle optmizacion plan de negociosan improver particle optmizacion plan de negocios
an improver particle optmizacion plan de negocios
 
Evolutionary techniques-for-model-order-reduction-of-large-scale-linear-systems
Evolutionary techniques-for-model-order-reduction-of-large-scale-linear-systemsEvolutionary techniques-for-model-order-reduction-of-large-scale-linear-systems
Evolutionary techniques-for-model-order-reduction-of-large-scale-linear-systems
 
Bat algorithm and applications
Bat algorithm and applicationsBat algorithm and applications
Bat algorithm and applications
 
Evolutionary Computing Techniques for Software Effort Estimation
Evolutionary Computing Techniques for Software Effort EstimationEvolutionary Computing Techniques for Software Effort Estimation
Evolutionary Computing Techniques for Software Effort Estimation
 
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATIONEVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
 
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATIONEVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
 
journal of mathematics
journal of mathematics journal of mathematics
journal of mathematics
 
An optimal design of current conveyors using a hybrid-based metaheuristic alg...
An optimal design of current conveyors using a hybrid-based metaheuristic alg...An optimal design of current conveyors using a hybrid-based metaheuristic alg...
An optimal design of current conveyors using a hybrid-based metaheuristic alg...
 
An Adaptive Masker for the Differential Evolution Algorithm
An Adaptive Masker for the Differential Evolution AlgorithmAn Adaptive Masker for the Differential Evolution Algorithm
An Adaptive Masker for the Differential Evolution Algorithm
 
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony OptimizationA Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
 
Parallel hybrid chicken swarm optimization for solving the quadratic assignme...
Parallel hybrid chicken swarm optimization for solving the quadratic assignme...Parallel hybrid chicken swarm optimization for solving the quadratic assignme...
Parallel hybrid chicken swarm optimization for solving the quadratic assignme...
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
 
Feature selection of unbalanced breast cancer data using particle swarm optim...
Feature selection of unbalanced breast cancer data using particle swarm optim...Feature selection of unbalanced breast cancer data using particle swarm optim...
Feature selection of unbalanced breast cancer data using particle swarm optim...
 
Modifed my_poster
Modifed my_posterModifed my_poster
Modifed my_poster
 
I046850
I046850I046850
I046850
 
HYBRID DATA CLUSTERING APPROACH USING K-MEANS AND FLOWER POLLINATION ALGORITHM
HYBRID DATA CLUSTERING APPROACH USING K-MEANS AND FLOWER POLLINATION ALGORITHMHYBRID DATA CLUSTERING APPROACH USING K-MEANS AND FLOWER POLLINATION ALGORITHM
HYBRID DATA CLUSTERING APPROACH USING K-MEANS AND FLOWER POLLINATION ALGORITHM
 

More from Amir Shokri

More from Amir Shokri (20)

LAUNCH - growth practices - PRODUCT MANAGER
LAUNCH - growth practices - PRODUCT MANAGERLAUNCH - growth practices - PRODUCT MANAGER
LAUNCH - growth practices - PRODUCT MANAGER
 
Remote work
Remote workRemote work
Remote work
 
Project Management Growth Practices
Project Management Growth PracticesProject Management Growth Practices
Project Management Growth Practices
 
GROWTH PRACTICES - Cracking the PM Career - CHAPTER 7
GROWTH PRACTICES - Cracking the PM Career - CHAPTER 7GROWTH PRACTICES - Cracking the PM Career - CHAPTER 7
GROWTH PRACTICES - Cracking the PM Career - CHAPTER 7
 
Numbers, math operation, converting bases
Numbers, math operation, converting basesNumbers, math operation, converting bases
Numbers, math operation, converting bases
 
GROWTH PRACTICES - Cracking the PM Career - CHAPTER 4
GROWTH PRACTICES - Cracking the PM Career - CHAPTER 4GROWTH PRACTICES - Cracking the PM Career - CHAPTER 4
GROWTH PRACTICES - Cracking the PM Career - CHAPTER 4
 
review of image memorability methods
review of image memorability methodsreview of image memorability methods
review of image memorability methods
 
key.net
key.netkey.net
key.net
 
beyesian learning exercises
beyesian learning exercisesbeyesian learning exercises
beyesian learning exercises
 
Knn
KnnKnn
Knn
 
Bayesian learning
Bayesian learningBayesian learning
Bayesian learning
 
machine learning code
machine learning codemachine learning code
machine learning code
 
machine learning - id3, find-s, candidate elimination, desicion tree example
machine learning - id3, find-s, candidate elimination, desicion tree examplemachine learning - id3, find-s, candidate elimination, desicion tree example
machine learning - id3, find-s, candidate elimination, desicion tree example
 
ID3 Algorithm
ID3 AlgorithmID3 Algorithm
ID3 Algorithm
 
Concept learning
Concept learningConcept learning
Concept learning
 
logical operators decision tree
logical operators decision treelogical operators decision tree
logical operators decision tree
 
Matplotlib
MatplotlibMatplotlib
Matplotlib
 
Mining social network graphs - persian
Mining social network graphs - persianMining social network graphs - persian
Mining social network graphs - persian
 
product glossary
product glossaryproduct glossary
product glossary
 
Popular Maple codes Book - Persian
Popular Maple codes Book - PersianPopular Maple codes Book - Persian
Popular Maple codes Book - Persian
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 

Recently uploaded (20)

AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 

adaptive comprehensive learning bacterial foraging optimization and its application on vehicle routing problem with time windows

  • 1. Amir Shokri ‫الگوریتم‬ ‫در‬ ‫آن‬ ‫کاربرد‬ ‫و‬ ‫نقلیه‬ ‫وسایل‬ ‫مسیریابی‬ ‫مسئله‬ ‫در‬ ‫یادگیری‬ ‫جامع‬ ‫سازی‬ ‫بهینه‬Bacterial Foraging Optimization Amirsh.nll@gmail.com Dr. Kourosh Kiani
  • 2. ‫مقدمه‬ 2 ‫الگوریتم‬ ‫از‬ ‫نوعی‬ ‫مقاله‬ ‫این‬ ‫در‬BFO‫با‬‫یادگیر‬ ‫سازی‬ ‫بهینه‬ ‫را‬ ‫آن‬ ‫ما‬ ‫که‬ ‫جامع‬ ‫یادگیری‬ ‫استراتژی‬ ‫و‬ ‫کموتاکسیس‬ ‫مختلف‬ ‫مرحله‬ ‫طول‬‫ی‬ ‫باکتریایی‬ ‫جامع‬‫باکتریایی‬ALCBFO‫می‬‫دهد‬ ‫می‬ ‫ارائه‬ ، ‫نامیم‬. ‫یک‬‫استف‬ ‫پیشنهادی‬ ‫الگوریتم‬ ‫از‬ ‫برداری‬ ‫بهره‬ ‫و‬ ‫اکتشاف‬ ‫بین‬ ‫خوبی‬ ‫تعادل‬ ‫حفظ‬ ‫برای‬ ‫تطبیقی‬ ‫کاهش‬ ‫خطی‬ ‫غیر‬ ‫تعدیل‬ ‫مدل‬‫شود‬ ‫می‬ ‫اده‬. ‫مکانیسم‬‫دهد‬ ‫می‬ ‫کاهش‬ ‫را‬ ‫زودرس‬ ‫همگرایی‬ ‫بنابراین‬ ‫و‬ ‫کند‬ ‫می‬ ‫حفظ‬ ‫را‬ ‫ها‬ ‫باکتری‬ ‫جمعیت‬ ‫تنوع‬ ، ‫جامع‬ ‫یادگیری‬.
  • 3. ‫مقدمه‬ 3 ‫در‬‫کالسیک‬ ‫الگوریتم‬ ‫با‬ ‫مقایسه‬GA،PSO،BFO‫اصلی‬‫یافته‬ ‫بهبود‬ ‫دو‬ ‫و‬BFO (BFO-LDC‫و‬BFO-NDC)،ACLBFO‫شده‬ ‫ارائه‬ ‫دهد‬ ‫می‬ ‫نشان‬ ‫حالته‬ ‫چند‬ ‫مشکالت‬ ‫حل‬ ‫در‬ ‫بهتر‬ ‫توجهی‬ ‫قابل‬ ‫عملکرد‬. ‫ما‬‫روش‬ ‫عملکرد‬ ‫همچنین‬ACLBFO‫را‬‫ویندوز‬ ‫زمان‬ ‫با‬ ‫نقلیه‬ ‫وسایل‬ ‫مسیریابی‬ ‫مسئله‬ ‫در‬VRPTW‫ارزیابی‬‫کنیم‬ ‫می‬. ‫در‬‫الگوریتم‬ ‫سه‬ ‫با‬ ‫مقایسه‬BFO‫دیگر‬‫نقلی‬ ‫وسایل‬ ‫مسیریابی‬ ‫مسئله‬ ‫حل‬ ‫برای‬ ‫را‬ ‫آن‬ ‫پتانسیل‬ ‫و‬ ‫است‬ ‫برتر‬ ‫پیشنهادی‬ ‫الگوریتم‬ ،‫زمان‬ ‫با‬ ‫ه‬ ‫ویندوز‬VRPTW‫تأیید‬‫کند‬ ‫می‬.
  • 4. ‫کار‬ ‫شروع‬ 4 ‫هوشمند‬ ‫سازی‬ ‫بهینه‬ ‫های‬ ‫الگوریتم‬Swarm‫بیولوژیک‬ ‫سیستم‬ ‫در‬ ‫اجتماعی‬ ‫رفتارهای‬ ‫از‬ ‫ناشی‬ ‫محرک‬ ‫محاسبات‬ ‫از‬ ‫جدید‬ ‫نوعی‬ ‫عنوان‬ ‫به‬‫ی‬ ‫است‬ ‫کرده‬ ‫جلب‬ ‫خود‬ ‫به‬ ‫را‬ ‫بسیاری‬ ‫دانشمندان‬. ‫بهینه‬‫ذرات‬ ‫سازی‬PSO،‫و‬ ‫کندی‬ ‫توسط‬ ‫شده‬ ‫پیشنهاد‬،‫ابرهارت‬‫است‬ ‫شده‬ ‫تحریک‬ ‫ماهی‬ ‫آموزش‬ ‫یا‬ ‫پرندگان‬ ‫های‬ ‫گله‬ ‫ازدحام‬ ‫رفتار‬ ‫با‬. ‫الگوریتم‬‫ماهی‬ ‫ازدحام‬‫مصنوعی‬AFSA‫است‬ ‫گرفته‬ ‫سرچشمه‬ ‫ماهی‬ ‫متالطم‬ ‫رفتار‬ ‫در‬. ‫بهینه‬‫ها‬ ‫مورچه‬ ‫کلونی‬ ‫سازی‬‫از‬ACO‫رفتار‬‫شد‬ ‫داده‬ ‫انگیزه‬ ‫ها‬ ‫مورچه‬ ‫ای‬ ‫علوفه‬.‫زنبورهای‬ ‫کلونی‬ ‫الگوریتم‬‫مصنوعی‬ABCA‫از‬ ‫است‬ ‫شده‬ ‫گرفته‬ ‫الهام‬ ‫زنبورها‬ ‫اجتماعی‬ ‫تخصصی‬ ‫رفتار‬. ‫اینها‬‫می‬ ‫بهره‬ ، ‫کنند‬ ‫می‬ ‫تعامل‬ ‫خود‬ ‫محیط‬ ‫و‬ ‫یکدیگر‬ ‫با‬ ‫محلی‬ ‫افراد‬ ‫که‬ ‫جهانی‬ ‫رفتار‬ ‫از‬ ‫که‬ ‫هستند‬ ‫جمعیت‬ ‫بر‬ ‫مبتنی‬ ‫های‬ ‫تکنیک‬‫گیرند‬.
  • 5. Bacterial Foraging Optimization 5 ‫باکتریایی‬ ‫باکتریایی‬ ‫سازی‬ ‫بهینه‬ ‫الگوریتم‬BFO‫یک‬‫باکتریهای‬ ‫اجتماعی‬ ‫علوفه‬ ‫رفتار‬ ‫از‬ ‫که‬ ‫است‬ ‫تکاملی‬ ‫سازی‬ ‫بهینه‬ ‫جدید‬ ‫روش‬E. coli‫کند‬ ‫می‬ ‫تقلید‬. ‫با‬‫ای‬ ‫علوفه‬ ‫رفتارهای‬ ‫اساسی‬ ‫فیزیک‬ ‫و‬ ‫شناسی‬ ‫زیست‬ ‫به‬ ‫توجه‬E. coli،Passino‫و‬Liu‫از‬‫و‬ ‫باکتریایی‬ ‫پرخاشگری‬ ‫رفتارهای‬ ‫انواع‬ ‫کنترل‬ ‫سیستم‬ ‫چگونگی‬ ‫مورد‬ ‫در‬ ، ‫اند‬ ‫کرده‬ ‫سوءاستفاده‬ ‫اجتماعی‬ ‫رفتارهای‬E. coli‫کنید‬ ‫استفاده‬ ‫غذایی‬ ‫های‬ ‫برنامه‬ ‫اجرای‬ ‫بیانگر‬. ‫فرایند‬‫پراکند‬ ‫و‬ ‫حذف‬ ‫و‬ ‫مثل‬ ‫تولید‬ ، ‫ازدحام‬ ، ‫کموتاکسی‬ ‫یعنی‬ ، ‫کرد‬ ‫تقسیم‬ ‫بخش‬ ‫چهار‬ ‫به‬ ‫توان‬ ‫می‬ ‫را‬ ‫ها‬ ‫باکتری‬ ‫سازی‬ ‫علوفه‬‫گی‬.
  • 6. Bacterial Foraging Optimization 6 𝜃 𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃 𝑖 𝑗, 𝑘, 𝑙 + 𝐶 𝑖 Δ 𝑖 √Δ 𝑇 𝑖 Δ(i) 𝐽ℎ𝑒𝑎𝑙𝑡ℎ 𝑖 = Σ𝑗=1 𝑁 𝑐 𝐽(𝑖, 𝑗, 𝑘, 𝑙) Reproduction Chemotaxis
  • 7. Adaptive Comprehensive Learning Bacterial Foraging Optimization 7 𝐶𝑗 = 𝐶_ min + exp −𝑎 ∗ 𝑘 𝑁𝑟𝑒 𝑛 ∗ (𝐶_ max −𝐶_ min) 𝜃 𝑑 𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃 𝑑 𝑖 + 𝐶 𝑖 Δ i √Δ 𝑇 𝑖 Δ(i) + 𝜆 ∗ 𝑟1 ∗ 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − tetha 𝑑 𝑖 𝑗, 𝑘, 𝑙 + 1 − 𝜆 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖𝑑 − 𝜃 𝑑 𝑖 𝑗, 𝑘, 𝑙 ) Comprehensive Learning Mechanism Chemotaxis step size 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 = 𝜃 ∗ 𝑝𝑏𝑒𝑠𝑡 𝑐𝑜𝑚𝑝𝑒𝑟 + 1 − 𝜃 ∗ 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 = 𝑏𝑖 ∗ 𝑝𝑏𝑒𝑠𝑡 𝑛 + 1 − 𝑏𝑖 𝑝𝑏𝑒𝑠𝑡 𝑚 𝑝𝑐 𝑖 = 𝜖 + 0.5 − 𝜖 ∗ 𝑒 𝑡 𝑖−𝑒 𝑡1 𝑒 𝑡 𝑠−𝑒 𝑡1 𝜆 = 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑑 − 1 + 𝑝𝑐) 𝑡𝑖 = 5 𝑖 − 1 𝑆 − 1 , 𝑡1 = 0 𝑎𝑛𝑑 𝑡 𝑆 = 5
  • 8. Description of VRPTW 8 min 𝑧 = Σ𝑖=0 𝑁 Σ𝑗=0 𝑁 Σ 𝑘=1 𝐾 𝐶 ∗ 𝑥𝑖𝑗𝑘 + Σ𝑖=1 𝑁 max{𝑒 ∗ 𝐸𝑇𝑖 − 𝑡𝑖 ; 0 ; 𝑓 ∗ 𝑡𝑖 − 𝐿𝑇𝑖 } 𝑤ℎ𝑒𝑟𝑒 ∶ 𝑡𝑖𝑗 = Σ𝑥𝑖𝑗𝑘 𝑡𝑖 + 𝑑𝑖𝑗 𝑣 + 𝑠𝑖 (𝑡0 = 0, 𝑠0 = 0) Σ𝑗=1 𝑁 Σ 𝑘=1 𝐾 𝑥𝑗𝑖𝑘 = Σ𝑗=1 𝑁 Σ 𝑘=1 𝐾 = 𝑘 (𝑖 = 0) Σ𝑗=0 𝑁 Σ 𝑘=1 𝐾 𝑥𝑖𝑗𝑘 = 1 (𝑖 ∈ 𝑁) Σ𝑖=0 𝑁 Σ 𝑘=1 𝑘 𝑥𝑖𝑗𝑘 = 1 (𝑖 ∈ 𝑁) Σ𝑗=1 𝑁 𝑥𝑖𝑗𝑘 = Σ𝑗=1 𝑁 𝑥𝑗𝑖𝑘 = 1 (𝑖 = 0, 𝑘 ∈ 𝐾) Σ𝑖=0 𝑁 Σ𝑗=0 𝑁 𝑥𝑖𝑗𝑘 ∗ 𝑔𝑖 ≤ 𝑞
  • 9. ‫کد‬ ‫شبه‬Adaptive Comprehensive Learning 9 Begin 1: Initialize all the parameters and positions: S , c N , s N , re N , ed N , ed P ,C , c p , etc. 2: While (Terminate-condition is not met) 3: Evaluate fitness values of the initial population. 4: Figure out the gbest and the pbest of each bacterium 5: For (Elimination-dispersal loop) 6: For (Reproduction loop) 7: For (Chemotaxis loop) 8: Update the chemotaxis step size using Equation 3 9: Compute fitness function 10: Update the position using Equation 4 11: Boundary control(bacteria are not allowed to go out of bounds)
  • 10. ‫کد‬ ‫شبه‬Adaptive Comprehensive Learning 10 12: Tumbleing, Swimming for s N steps 13: Update the gbest and the pbest 14: End For (Chemotaxis loop) 15: Compute the health values of each bacterium using Equation 2 16: Sort bacteria based on health values 17: Copy the best bacteria using health sorting approach 18: End For (Reproduction loop) 19: Eliminate and disperse each bacterium with probability ed P 20: End For (Elimination-dispersal loop) 21: EndWhile 22. End
  • 11. ‫آزمون‬ ‫توابع‬ ‫امترهای‬‫ر‬‫پا‬ 11 Functioni=1 Mathematical Representation X* F(X*) R Sphere 𝑓1 𝑥 = Σ𝑖=1 𝑛 𝑥𝑖 2 [0, 0, …, 0] 0 [-100, 100]^n Rosenbrock 𝑓2 𝑥 = Σ𝑖=1 𝑛 100 ∗ 𝑥𝑖+1 − 𝑥𝑖 2 2 + (1 − 𝑥𝑖 2 ) [0, 0, …, 0] 0 [-100. 100]^n Rastrigin 𝑓3 𝑥 = Σ𝑖=1 𝑛 𝑥𝑖 2 − 10 cos 2𝜋𝑥𝑖 + 10 [0, 0, …, 0] 0 [5.12, 5.12]^n Griewank 𝑓4 𝑥 = 1 4000 Σ𝑖=1 𝑛 𝑥𝑖 2 − ෑ 𝑖=1 𝑛 cos 𝑥𝑖 𝑖 + 1 𝑓5 𝑥 = Σ𝑖=1 𝑛 (Σ 𝑘=0 𝑘max 𝑎 𝑘 cos 2𝜋𝑏 𝑘 𝑥𝑖 + 0.5 ) [0, 0, …, 0] 0 [-600, 600]^n Weierstrass −𝐷Σ 𝑘=0 𝑘max 𝑎 𝑘 cos 2pib 𝑘 . 0.5 𝑎 = 0.5, 𝑏 = 3, 𝑘_ max = 20 [0, 0, …, 0] 0 [-0.5, 0.5]^n Ackley − exp 1 𝐷 Σ𝑖=1 𝐷 cos 2𝜋𝑥𝑖 + 20 + 𝑒 [0, 0, …, 0] 0 [-32, 32]^n
  • 12. ‫منابع‬ 12 • [1] J. Kennedy, R.C. Eberhart, Swarm intelligence, Morgan Kaufmann Publisher, San Francisco, 2001. • [2] X.L. Li, Z. J. Shao, J.X. Qian, An optimizing method based on autonomous animats: fishswarm algorithm, Syst. Eng., Theory Prac. 22 (2002) 32–38. • [3] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence: from natural to artificial system, Oxford University Press, New York, 1999. • [4] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math.Comput. 214 (2009) 108–132. • [5] K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. (2002) 52–67. • [6] B.K. Panigrahi, V.R. Pandi, Bacterial foraging optimization: Nelder-Mead hybrid algorithm for economic load dispatch, IET Gener. Transm. Dis. 2(4) (2008) 556–565. • [7] P.K. Hota, A.K. Barisal, R. Chakrabarti, Economic emission load dispatch through fuzzy based bacterial foraging algorithm, Int. J. Elec. Power & energy Systems. 32(7) (2010) 794–803. • [8] P.G. Kou, J.Z. Zhou, Y.Y. He, X.Q. Xiang, C.S. Li, Optimal PID governor tuning of hydraulic turbine generators with bacterial foraging particle swarm optimization algorithm, Proceedings of the Chinese Society of Electrical Engineering 29(26) • [9] E.S Ali, S.M. Abd-Elazim, Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, Int. J. Elec. Power. 33(3) (2011) 633–638. • [10] B. Niu, Y. Fan, H. Xiao, B. Xue, Bacterial foraging based approaches to portfolio optimization with liquidity risk, Neurocomputing. 98 (2012) 90–100.
  • 13. ‫منابع‬ 13 • [11] W.J. Tang, M.S. Li, S. He, Q.H. Wu, Optimal power flow with dynamic loads using bacterial foraging algorithm, In: 2006 International Conference on Power System Technology 2006 pp. 1–5. • [12] N.A. Okaeme, P. Zanchetta, Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives, IEEE Trans. Ind. Inf. 9(2) (2013) 668–678. • [13] M. Hanmandlu, O. P.Verma, S. Susan, V.K. Madasu, Color segmentation by fuzzy coclustering of chrominance color features, Neurocomputing 120 (2013) 235–249. • [14] B. Niu, H. Wang, L.J. Tan, J. Xu, Multi-objective optimization using BFO algorithm. In: D.S. Huang et al. (eds.) ICIC 2011. LNBI, vol. 6840,. Springer, Heidelberg, 2012, pp. 582– 587 • [15] S. Das, S. Dasgupta, A. Biswas, A. Abraham, A. Konar On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm. IEEE T. SYST. MAN CY. A 39(3) (2009) 670–679. • [16] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Adaptive computational chemotaxis in bacterial foraging optimization: An analysis. IEEE T. Evolut. Comput. 13(4) (2009) 919– 941. • [17] D.H. Kim, A. Abraham, J.H. Cho, A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inform. Sciences 177(18) (2007) 3918–3937.
  • 14. ‫منابع‬ 14 • . [18] A. Biswas, S. Dasgupta, S. Das, A. Abraham, Synergy of PSO and bacterial foraging optimization - A comparative study on numerical benchmarks. Innovations in Hybrid Intelligent Systems. 44(2007) 255–263. • [19] N. Sarasiri, K. Suthamno, S. Sujitjorn, Bacterial foraging-Tabu search metaheuristics for identification of nonlinear friction model, J. Appl. Math. Volume 2012, Article ID 238563, 23 pages • [20] B. Kallehauge, J. Larsen, O.B.G. Madsen, M. Solomon, Vehicle routing problem with time windows. Springer, Column Generation, 2005, pp. 67–98. • [21] R.A. Russell, Hybrid heuristics for the vehicle routing problem with time windows. Transp. Sci. 29(2) (1995) 156–166. • [22] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberin, D. Naddef, Separating capacity constraints in the CVRP using Tabu search. Eur. J. Oper. Res. 106(1998) 546–557. • [23] J.Y. Potvin, T.Kervahut, B.L. Garcia, J.M. Rousseau, The vehicle routing problem with time windows part I: Tabu search, INFORMS J. Comput. 8(2)(1996) 158 –164. • [24] X.Y. Yin, Z.Y. Yuan, Multiple vehicle routing with time windows using genetic algorithms. In: Proceedings of Evolutionary Computation. CEC 1999. vol. 3, 1999, pp. 1804–1808. • [25] J. Ai, V. Kachitvichyanukul, A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36(5) (2009) 1693–1702.
  • 15. ‫منابع‬ 15 • [26] Z.G. Dan, L.N. Cai, L. Zheng, Improved multi-agent system for the vehicle routing problem with time windows, Tsinghua Science and Technology 14(3) (2009) 407–412. • [27] Y. Liu, K.M. Passino, Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors, J. Optim. Theory Appl. 115(2002) 603–628. • [28] B. Niu, Y. Fan, P. Zhao, B. Xue, L. Li, Y.J. Chai, A novel bacterial foraging optimizer with linear decreasing chemotaxis step. In: 2nd International Workshop on Intelligent Systems and Applications (ISA), 2010, pp.1–4. • [29] B. Niu, Y. Fan, H. Wang, Novel bacterial foraging optimization with time-varying chemotaxis step. Int. J. Artif. Intell. (2011) 257–273. • [30] B. Niu, H. Wang, L.J. Tan, L. Li, Improved BFO with adaptive chemotaxis step for global optimization. In: International Conference on Computational Intelligence and Security (CIS) 2011, 2011, pp.76–80. • [31] B. Niu, H. Wang, Y.J. Chai, Bacterial colony optimization. Discrete Dyn. Nat. soc. (2012) 1–28. • [32] J.J. Liang, A.K. Qin, P.N. Suganthan, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput. 10(3) (2006), 281–295. • [33] X.Yao, Y. Liu, G. Liu, Evolutionary programming made faster. IEEE Trans. Evol. Comput 3(2) (1999) 82–102. [34] D. Ashlock, Evolutionary computation for modeling and optimization. New York: Springer-Verlag, 2006.
  • 16. ‫منابع‬ 16 • [34] D. Ashlock, Evolutionary computation for modeling and optimization. New York: Springer-Verlag, 2006. • [35] Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization. In: Proceedings of the IEEE Congress Evolutionary Computation, 1999, pp.1945– 1950. • [36] G.B. Dantzig, J.H. Ramser, The truck dispatching problem. Manage. Sci. 6(1) (1959) 80– 91. • [37] G. Desaulniers, J. Desrosiers, A. Erdman, M.M. Solomon, F. Soumis, The VRP with pickup and delivery. Society for Industrial and Applied Mathematics Philadelphia, PA, USA, 2001. • [38] J. Renaud, G. Laporte, F.F. Boctor, A tabu search heuristic for the multi-depot vehicle routing problem. Comput. Oper. Res. 23(3) (1996) 229–235. • [39] M. Iori, J.J. Salazar-González, D. Vigo, An exact approach for the vehicle routing problem with two-dimensional loading constraints. Transp. Sci. 41(2007) 253–264. • [40] B. Nag, B.L. Golden, A. Assad, Vehicle routing with site dependencies. In: Golden B., Assad A., editors. Vehicle routing: methods and studies. Amsterdam: Elsevier, 1988, pp. 149–159. • [41] D. Sariklis, S. Powell, A heuristic method for the open vehicle routing problem. J. Oper. Res. Soc. 51(2000) 564–573. • [42] B. Kallehauge, J. Larsen, O.B.G. Madsen, M. Solomon, Vehicle routing problem with time windows. Springer, Column Generation, 2005, pp. 67–98. • [43] O. Bräysy, M. Gendreau, Vehicle routing problem with time windows, part II: metaheuristics. Transp.Sci. 39(2005) 119–139.
  • 17. ‫منابع‬ 17 • [44] B. Niu, H. Wang, L.J. Tan, L. Li, J.W. Wang, Vehicle routing problem with time windows based on adaptive bacterial foraging optimization. Intell. Comput. Theories Appl. Lect. Notes Comput. Sci., 7390(2012) 672–679. • [45] J.Y. Potvin, Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 63(1996) 339–370.