SlideShare a Scribd company logo
1 of 27
Blastocyst
(ANA 205)
Dr Ibitoye B. O
Follicle Maturation and Ovulation
Oocytes
~2 million at birth
~40,000 at puberty
~400 ovulated over lifetime
Leutinizing Hormone surge
(from pituitary gland)
causes changes in tissues
and within follicle:
• Swelling within follicle due to
increased hyaluronan
• Matrix metalloproteinases
degrade surrounding tissue
causing rupture of follicle
Egg and surrounding cells
(corona radiata) ejected into
peritoneum
Corona radiata provides bulk to
facilitate capture of egg.
Corona radiata
Zona pellucida
(ZP-1, -2, and -3)
Cortical granules
The egg (and corona radiata) at ovulation
Transport through the oviduct
At around the midpoint of the
menstrual cycle (~day 14), a
single egg is ovulated and
swept into the oviduct.
Fertilization usually occurs in
the ampulla of the oviduct
within 24 hrs. of ovulation.
Series of cleavage and
differentiation events results in
the formation of a blastocyst by
the 4th embryonic day.
Inner cell mass generates
embryonic tissues
Outer trophectoderm
generates placental tissues
Implantation into the uterine
wall occurs ~6th embryonic day
(day 20 of the menstrual cycle)
Embryologists
Fertilization age: moment of fertilization is dO
Division of pregnancy corresponding to development:
0-3 weeks –early development
3-8 weeks –embryonic period (organogenesis)
8 wks-term –fetal period
Total gestation time = 38 weeks
Clinicians
Menstrual age: last menses is dO
Division of pregnancy into trimesters
Total gestation time = 40 weeks
Timing of
pregnancy
Week 1: days 1-6
• Fertilization, day 1
• Cleavage, day 2-3
• Compaction, day 3
• Formation of blastocyst, day 4
• Ends with implantation, day 6
Fertilized egg
2 polar bodies
2 pronuclei
Day 1
0.1 mm
Fertilized egg (zygote)
Cleavage
Cleavage = cell division
Goals: grow unicellular
zygote to multicellular embryo.
Divisions are slow: 12 - 24h ea
No growth of the embryo-
stays at ~100 um in diameter
Divisions are not synchronous
Cleavage begins about 24h after
pronuclear fusion
2 Cell Stage
Individual cells = blastomeres
Mitotic divisions maintain
2N (diploid) complement
Cells become smaller
Blastomeres are equivalent (aka totipotent).
4 cell; second cleavage
4 equivalent blastomeres
Still in zona pellucida
8 Cell;
third
cleavage
Blastomeres still
equivalent
Embryo undergoes compaction after 8-cell stage:
first differentiation of embryonic lineages
Caused by increased cell-cell adhesion
Cells that are forced to the outside of the morula are destined
to become trophoblast--cells that will form placenta
The inner cells will form the embryo proper and are called
the inner cell mass (ICM).
Formation of the blastocyst
Sodium channels appear on the surface of the outer trophoblast cells;
sodium and water are pumped into the forming blastocoele. Note that
the embryo is still contained in the zona pellucida.
Early blastocyst
Day 3
Later blastocyst
Day 5
blastocoele
inner cell mass
Monozygotic twinning typically occurs
during cleavage/blastocyst stages
“Hatching” of the blastocyst:
preparation for implantation
Hatching of the embryo from the zona pellucida occurs just
prior to implantation. Occasionally, the inability to hatch
results in infertility, and premature hatching can result in abnormal
implantation in the uterine tube.
Ectopic
Implantation
Implantation somewhere
other than upper portion
of uterus
“Rupture” can lead to life-
threatening hemorrhage
Tubal pregnancy
Week 2: days 7-14
implantation
• Implanted embryo becomes more deeply
embedded in endometrium
• Further development of trophoblast into
placenta
• Development of a bi-laminar embryo,
amniotic cavity, and yolk sac.
Implantation and placentation (day 8)
Trophoblast further differentiates and invades maternal tissues
– Cytotrophoblast: stem cell population
– Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast
– Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood
Inner cell mass divides into epiblast and hypoblast:
– Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity
– Hypoblast contributes to forming the underlying yolk sac.
Implantation and placentation (day 9)
Trophoblast further differentiates and invades maternal tissues
– Cytotrophoblast: stem cell population
– Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast
– Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood
Inner cell mass divides into epiblast and hypoblast:
– Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity
– Hypoblast contributes to forming the underlying yolk sac.
Implantation and placentation (day 12)
Trophoblast further differentiates and invades maternal tissues
– Cytotrophoblast: stem cell population
– Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast
– Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood
Inner cell mass divides into epiblast and hypoblast:
– Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity
– Hypoblast contributes to forming the underlying yolk sac.
Implantation and placentation (day 13)
Trophoblast further
differentiates and invades
maternal tissues
– Cytotrophoblast: stem cell
population
– Syncytiotrophoblast: invasive
fused cells (syncytium) derived
from cytotrophoblast
– Breaks maternal capillaries,
trophoblastic lacunae fill with
maternal blood
Inner cell mass divides into
epiblast and hypoblast:
– Epiblast contributes to forming
the overlying amniotic
membrane and amniotic cavity
– Hypoblast contributes to
forming the underlying yolk sac.
Week 3: Days 14-21
• Two layer germ disc
• Primitive streak forms
• Gastrulation forms tri-laminar embryo
• Neural induction
• Left-right asymmetry
• 0.4mm - 2.0mm
•THANK YOU

More Related Content

Similar to Blastocyst ANA 205.ppt

Cleavage, implantation of the embryo and bilaminar
Cleavage, implantation of the embryo and bilaminarCleavage, implantation of the embryo and bilaminar
Cleavage, implantation of the embryo and bilaminar
Robinson Wafula
 
Embroylogy
Embroylogy Embroylogy
Embroylogy
junni86
 
Embroylogy
Embroylogy Embroylogy
Embroylogy
junni86
 
Embroylogy
Embroylogy Embroylogy
Embroylogy
junni86
 
Embroylogy
EmbroylogyEmbroylogy
Embroylogy
junni86
 

Similar to Blastocyst ANA 205.ppt (20)

Embryology.pptx
Embryology.pptxEmbryology.pptx
Embryology.pptx
 
1st and 2nd week of human development
1st and 2nd week of human development1st and 2nd week of human development
1st and 2nd week of human development
 
Cleavage, implantation of the embryo and bilaminar
Cleavage, implantation of the embryo and bilaminarCleavage, implantation of the embryo and bilaminar
Cleavage, implantation of the embryo and bilaminar
 
Human Embryology I
Human Embryology IHuman Embryology I
Human Embryology I
 
Fertilization, implantaion and embryology
Fertilization, implantaion and embryologyFertilization, implantaion and embryology
Fertilization, implantaion and embryology
 
I week of development
I week of developmentI week of development
I week of development
 
I week of development
I week of developmentI week of development
I week of development
 
357 lectures (1-2) a
357 lectures (1-2) a357 lectures (1-2) a
357 lectures (1-2) a
 
Human reproduction-III
Human reproduction-IIIHuman reproduction-III
Human reproduction-III
 
Lecture4
Lecture4Lecture4
Lecture4
 
Pregnancy
PregnancyPregnancy
Pregnancy
 
Gametogenesis
GametogenesisGametogenesis
Gametogenesis
 
4-EMBRYOLOGICAL_DEVELOPMENT_OF_BODY_TISSUES,_ORGANS_AND_SYSTEMS.[1].pptx
4-EMBRYOLOGICAL_DEVELOPMENT_OF_BODY_TISSUES,_ORGANS_AND_SYSTEMS.[1].pptx4-EMBRYOLOGICAL_DEVELOPMENT_OF_BODY_TISSUES,_ORGANS_AND_SYSTEMS.[1].pptx
4-EMBRYOLOGICAL_DEVELOPMENT_OF_BODY_TISSUES,_ORGANS_AND_SYSTEMS.[1].pptx
 
Embroylogy
Embroylogy Embroylogy
Embroylogy
 
Embroylogy
Embroylogy Embroylogy
Embroylogy
 
Embroylogy
Embroylogy Embroylogy
Embroylogy
 
Embroylogy
EmbroylogyEmbroylogy
Embroylogy
 
Physiological changes during pregnancy
Physiological changes during pregnancyPhysiological changes during pregnancy
Physiological changes during pregnancy
 
Anomalies of the first and second branchial arches
Anomalies of the first and second branchial archesAnomalies of the first and second branchial arches
Anomalies of the first and second branchial arches
 
GENERAL EMBRYOLOGY
GENERAL EMBRYOLOGYGENERAL EMBRYOLOGY
GENERAL EMBRYOLOGY
 

Recently uploaded

Connective Tissue II - Dr Muhammad Ali Rabbani - Medicose Academics
Connective Tissue II - Dr Muhammad Ali Rabbani - Medicose AcademicsConnective Tissue II - Dr Muhammad Ali Rabbani - Medicose Academics
Connective Tissue II - Dr Muhammad Ali Rabbani - Medicose Academics
MedicoseAcademics
 
CAD CAM DENTURES IN PROSTHODONTICS : Dental advancements
CAD CAM DENTURES IN PROSTHODONTICS : Dental advancementsCAD CAM DENTURES IN PROSTHODONTICS : Dental advancements
CAD CAM DENTURES IN PROSTHODONTICS : Dental advancements
Naveen Gokul Dr
 
Unveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdf
Unveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdfUnveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdf
Unveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdf
NoorulainMehmood1
 

Recently uploaded (20)

Varicose Veins Treatment Aftercare Tips by Gokuldas Hospital
Varicose Veins Treatment Aftercare Tips by Gokuldas HospitalVaricose Veins Treatment Aftercare Tips by Gokuldas Hospital
Varicose Veins Treatment Aftercare Tips by Gokuldas Hospital
 
Tips and tricks to pass the cardiovascular station for PACES exam
Tips and tricks to pass the cardiovascular station for PACES examTips and tricks to pass the cardiovascular station for PACES exam
Tips and tricks to pass the cardiovascular station for PACES exam
 
parliaments-for-health-security_RecordOfAchievement.pdf
parliaments-for-health-security_RecordOfAchievement.pdfparliaments-for-health-security_RecordOfAchievement.pdf
parliaments-for-health-security_RecordOfAchievement.pdf
 
Hemodialysis: Chapter 1, Physiological Principles of Hemodialysis - Dr.Gawad
Hemodialysis: Chapter 1, Physiological Principles of Hemodialysis - Dr.GawadHemodialysis: Chapter 1, Physiological Principles of Hemodialysis - Dr.Gawad
Hemodialysis: Chapter 1, Physiological Principles of Hemodialysis - Dr.Gawad
 
Top 10 Most Beautiful Russian Pornstars List 2024
Top 10 Most Beautiful Russian Pornstars List 2024Top 10 Most Beautiful Russian Pornstars List 2024
Top 10 Most Beautiful Russian Pornstars List 2024
 
CONGENITAL HYPERTROPHIC PYLORIC STENOSIS by Dr M.KARTHIK EMMANUEL
CONGENITAL HYPERTROPHIC PYLORIC STENOSIS  by Dr M.KARTHIK EMMANUELCONGENITAL HYPERTROPHIC PYLORIC STENOSIS  by Dr M.KARTHIK EMMANUEL
CONGENITAL HYPERTROPHIC PYLORIC STENOSIS by Dr M.KARTHIK EMMANUEL
 
duus neurology.pdf anatomy. phisiology///
duus neurology.pdf anatomy. phisiology///duus neurology.pdf anatomy. phisiology///
duus neurology.pdf anatomy. phisiology///
 
Sell 5cladba adbb JWH-018 5FADB in stock
Sell 5cladba adbb JWH-018 5FADB in stockSell 5cladba adbb JWH-018 5FADB in stock
Sell 5cladba adbb JWH-018 5FADB in stock
 
Mgr university bsc nursing adult health previous question paper with answers
Mgr university  bsc nursing adult health previous question paper with answersMgr university  bsc nursing adult health previous question paper with answers
Mgr university bsc nursing adult health previous question paper with answers
 
High Purity 99% PMK Ethyl Glycidate Powder CAS 28578-16-7
High Purity 99% PMK Ethyl Glycidate Powder CAS 28578-16-7High Purity 99% PMK Ethyl Glycidate Powder CAS 28578-16-7
High Purity 99% PMK Ethyl Glycidate Powder CAS 28578-16-7
 
Creeping Stroke - Venous thrombosis presenting with pc-stroke.pptx
Creeping Stroke - Venous thrombosis presenting with pc-stroke.pptxCreeping Stroke - Venous thrombosis presenting with pc-stroke.pptx
Creeping Stroke - Venous thrombosis presenting with pc-stroke.pptx
 
Connective Tissue II - Dr Muhammad Ali Rabbani - Medicose Academics
Connective Tissue II - Dr Muhammad Ali Rabbani - Medicose AcademicsConnective Tissue II - Dr Muhammad Ali Rabbani - Medicose Academics
Connective Tissue II - Dr Muhammad Ali Rabbani - Medicose Academics
 
NDCT Rules, 2019: An Overview | New Drugs and Clinical Trial Rules 2019
NDCT Rules, 2019: An Overview | New Drugs and Clinical Trial Rules 2019NDCT Rules, 2019: An Overview | New Drugs and Clinical Trial Rules 2019
NDCT Rules, 2019: An Overview | New Drugs and Clinical Trial Rules 2019
 
Report Back from SGO: What’s the Latest in Ovarian Cancer?
Report Back from SGO: What’s the Latest in Ovarian Cancer?Report Back from SGO: What’s the Latest in Ovarian Cancer?
Report Back from SGO: What’s the Latest in Ovarian Cancer?
 
Unveiling Alcohol Withdrawal Syndrome: exploring it's hidden depths
Unveiling Alcohol Withdrawal Syndrome: exploring it's hidden depthsUnveiling Alcohol Withdrawal Syndrome: exploring it's hidden depths
Unveiling Alcohol Withdrawal Syndrome: exploring it's hidden depths
 
CAD CAM DENTURES IN PROSTHODONTICS : Dental advancements
CAD CAM DENTURES IN PROSTHODONTICS : Dental advancementsCAD CAM DENTURES IN PROSTHODONTICS : Dental advancements
CAD CAM DENTURES IN PROSTHODONTICS : Dental advancements
 
Storage of Blood Components- equipments, effects of improper storage, transpo...
Storage of Blood Components- equipments, effects of improper storage, transpo...Storage of Blood Components- equipments, effects of improper storage, transpo...
Storage of Blood Components- equipments, effects of improper storage, transpo...
 
Anti viral drug pharmacology classification
Anti viral drug pharmacology classificationAnti viral drug pharmacology classification
Anti viral drug pharmacology classification
 
Renal Replacement Therapy in Acute Kidney Injury -time modality -Dr Ayman Se...
Renal Replacement Therapy in Acute Kidney Injury -time  modality -Dr Ayman Se...Renal Replacement Therapy in Acute Kidney Injury -time  modality -Dr Ayman Se...
Renal Replacement Therapy in Acute Kidney Injury -time modality -Dr Ayman Se...
 
Unveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdf
Unveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdfUnveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdf
Unveiling Pharyngitis: Causes, Symptoms, Diagnosis, and Treatment Strategies.pdf
 

Blastocyst ANA 205.ppt

  • 2. Follicle Maturation and Ovulation Oocytes ~2 million at birth ~40,000 at puberty ~400 ovulated over lifetime Leutinizing Hormone surge (from pituitary gland) causes changes in tissues and within follicle: • Swelling within follicle due to increased hyaluronan • Matrix metalloproteinases degrade surrounding tissue causing rupture of follicle Egg and surrounding cells (corona radiata) ejected into peritoneum Corona radiata provides bulk to facilitate capture of egg.
  • 3. Corona radiata Zona pellucida (ZP-1, -2, and -3) Cortical granules The egg (and corona radiata) at ovulation
  • 4. Transport through the oviduct At around the midpoint of the menstrual cycle (~day 14), a single egg is ovulated and swept into the oviduct. Fertilization usually occurs in the ampulla of the oviduct within 24 hrs. of ovulation. Series of cleavage and differentiation events results in the formation of a blastocyst by the 4th embryonic day. Inner cell mass generates embryonic tissues Outer trophectoderm generates placental tissues Implantation into the uterine wall occurs ~6th embryonic day (day 20 of the menstrual cycle)
  • 5. Embryologists Fertilization age: moment of fertilization is dO Division of pregnancy corresponding to development: 0-3 weeks –early development 3-8 weeks –embryonic period (organogenesis) 8 wks-term –fetal period Total gestation time = 38 weeks Clinicians Menstrual age: last menses is dO Division of pregnancy into trimesters Total gestation time = 40 weeks Timing of pregnancy
  • 6. Week 1: days 1-6 • Fertilization, day 1 • Cleavage, day 2-3 • Compaction, day 3 • Formation of blastocyst, day 4 • Ends with implantation, day 6
  • 7. Fertilized egg 2 polar bodies 2 pronuclei Day 1 0.1 mm Fertilized egg (zygote)
  • 8. Cleavage Cleavage = cell division Goals: grow unicellular zygote to multicellular embryo. Divisions are slow: 12 - 24h ea No growth of the embryo- stays at ~100 um in diameter Divisions are not synchronous Cleavage begins about 24h after pronuclear fusion
  • 9. 2 Cell Stage Individual cells = blastomeres Mitotic divisions maintain 2N (diploid) complement Cells become smaller Blastomeres are equivalent (aka totipotent).
  • 10. 4 cell; second cleavage 4 equivalent blastomeres Still in zona pellucida
  • 12. Embryo undergoes compaction after 8-cell stage: first differentiation of embryonic lineages Caused by increased cell-cell adhesion Cells that are forced to the outside of the morula are destined to become trophoblast--cells that will form placenta The inner cells will form the embryo proper and are called the inner cell mass (ICM).
  • 13. Formation of the blastocyst Sodium channels appear on the surface of the outer trophoblast cells; sodium and water are pumped into the forming blastocoele. Note that the embryo is still contained in the zona pellucida.
  • 14.
  • 15. Early blastocyst Day 3 Later blastocyst Day 5 blastocoele inner cell mass
  • 16. Monozygotic twinning typically occurs during cleavage/blastocyst stages
  • 17. “Hatching” of the blastocyst: preparation for implantation Hatching of the embryo from the zona pellucida occurs just prior to implantation. Occasionally, the inability to hatch results in infertility, and premature hatching can result in abnormal implantation in the uterine tube.
  • 18. Ectopic Implantation Implantation somewhere other than upper portion of uterus “Rupture” can lead to life- threatening hemorrhage
  • 20. Week 2: days 7-14 implantation • Implanted embryo becomes more deeply embedded in endometrium • Further development of trophoblast into placenta • Development of a bi-laminar embryo, amniotic cavity, and yolk sac.
  • 21. Implantation and placentation (day 8) Trophoblast further differentiates and invades maternal tissues – Cytotrophoblast: stem cell population – Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast – Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood Inner cell mass divides into epiblast and hypoblast: – Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity – Hypoblast contributes to forming the underlying yolk sac.
  • 22. Implantation and placentation (day 9) Trophoblast further differentiates and invades maternal tissues – Cytotrophoblast: stem cell population – Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast – Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood Inner cell mass divides into epiblast and hypoblast: – Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity – Hypoblast contributes to forming the underlying yolk sac.
  • 23. Implantation and placentation (day 12) Trophoblast further differentiates and invades maternal tissues – Cytotrophoblast: stem cell population – Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast – Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood Inner cell mass divides into epiblast and hypoblast: – Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity – Hypoblast contributes to forming the underlying yolk sac.
  • 24. Implantation and placentation (day 13) Trophoblast further differentiates and invades maternal tissues – Cytotrophoblast: stem cell population – Syncytiotrophoblast: invasive fused cells (syncytium) derived from cytotrophoblast – Breaks maternal capillaries, trophoblastic lacunae fill with maternal blood Inner cell mass divides into epiblast and hypoblast: – Epiblast contributes to forming the overlying amniotic membrane and amniotic cavity – Hypoblast contributes to forming the underlying yolk sac.
  • 25. Week 3: Days 14-21 • Two layer germ disc • Primitive streak forms • Gastrulation forms tri-laminar embryo • Neural induction • Left-right asymmetry • 0.4mm - 2.0mm
  • 26.