SlideShare a Scribd company logo
1 of 21
Download to read offline
VISVESVARAYA TECHNOLOGICAL UNIVERSITY
BELGAUM
A
TECHNICAL SEMINAR REPORT
ON
NIGHT VISION TECHNOLOGY IN AUTOMOBILES
Submitted in partial fulfilment of the requirements of the degree of
Bachelor of Engineering
in
Mechanical Engineering
For the academic year
2017-2018
By
AFTAB ALAM
H.K.B.K.C.E,Bangalore
Department of Mechanical Engineering
H.K.B.K College of Engineering
S.No:22/1,Near Manyata Tech park, Bangalore-560045
Stirling Engine
Department of Mechanical Engineering 1
CHAPTER 1
INTRODUCTION
The Stirling Engine was invented by Robert Stirling. This device was born as a competence to the
vapour machine, since a Stirling Engine works with smaller pressures than the device created by Watt
and it did not require a qualified train engineer. At the end of with the development of the internal
combustion engine and the appearance of electric engines, the machine of this study was forgotten.
Now a day the technology that involves the invention of Robert Stirling is in completely development
because of the fact that now very useful applications are available.
This document travels in the history of this curious device looking for reasons of this incredible
development in this called high technology with its different applications and doing an analysis from
the point of view of the economy. This project explains the principle function of the engine with a
deep investigation. And we show how the Sterling Engine in combination with renewable energy
sources.
Fig.1.1: Sketch of Robert Stirling of his invent
Stirling Engine
Department of Mechanical Engineering 2
CHAPTER 2
HISTORY
The Stirling Engine is one of the hot air engines. It was invented by Robert Stirling
(1790-1878) and his brother James. His father was interesting in engine and he inherited it. He
became a minister of the church at Scotland in 1816. At this period, he found the steam engines
are dangerous for the workers. He decided to improve the design of an existing air engine. He
hope it wound be safer alternative. After one year, he invented a regenerator. He called the
“Economiser” and the engine improves the efficiency. This is the earliest Stirling Engine. It is
put out 100 W to 4 kW. But the internal combustion engine substituted for it quickly. The
Ericsson invented the solar energy in 1864 and did some improvements for after several years.
Robert’s brother, James Stirling, also played an important role in the development of Stirling
engines.
Fig.2.1: Earliest Stirling engine
Stirling Engine
Department of Mechanical Engineering 3
Robert Stirling gets a patent for the economizer with an air engine incorporating it in
1817.
Fig.2.2: Stirling Engine’s principle of operation
Stirling engine of the second generation began in 1937.The Philips of Holland used new
materials and technology to ascend a very high level. The knowledge about the heat transfer
and fluid physical, which is a great significance to improving of the structure and raised the
stability.
Throughout World War II and by the late 1940s, Philips’ subsidiary Johan de Witt does
this work continued. And they did the Type 10, incorporated into a generator set as originally
planned The set progressed through three prototypes (102A, B, and C), with the production
version, rated at 200 watts electrical output from a bore and stroke of 55x27mm, being
designated MP1002CA.
In 1951, the price of Stirling engine is too high for the market. It made used of radios
at that time. Though the MP1002CA may have been a dead end, it represents the blooming of
the modern age of Stirling Engine development. In addition to which the advent of transistor
radios with their much lower power requirements meant that the market for the set was fast
disappearing. Though the MP1002CA may have been a dead end, it represents the start of the
modern age of Stirling engine development.
Stirling Engine
Department of Mechanical Engineering 4
CHAPTER 3
Presentation of Stirling Engines
3.1 Stirling thermodynamic cycle
The Stirling engine cycle is a closed cycle and it contains, most commonly a fixed mass of
gas called the "working fluid" (air, hydrogen or helium). The principle is that of thermal
expansion and contraction of this fluid due to differential. a temperature
So the ideal Stirling cycle consists of four thermodynamics distinct processes acting on the
working fluid: two constant-temperature processes and two constant- volume processes. The
gasses used inside a Stirling engine never leave the engine. There are no exhaust valves that
vent high-pressure gasses, as in a gasoline or diesel engine, and there are no explosions taking
place. Another useful characteristic of the Stirling engine is that if supplied with mechanical
power, it can function as a heat pump (reversibility of the Stirling cycle). Understanding how
a Stirling engine works is not a simple matter. It is not overly intuitive. Let’s explain the device
through the presentation of the different engines configuration.
3.2. Engine configurations
Mechanical configurations of Stirling engines are classified into three important distinct
types: Alpha, Beta and Gamma arrangements. These engines also feature a regenerator
(invented by Robert Stirling). The regenerator is constructed by a material that conducts readily
heat and has a high surface area (a mesh of closely spaced thin metal plates for example). When
hot gas is transferred to the cool cylinder, it is first driven through the regenerator, where a
portion of the heat is deposited. When the cool gas is transferred back, this heat is reclaimed.
Thus the regenerator “pre heats” and “pre cools” the working gas, and so improve the
efficiency. But many engines have no apparent regenerator like beta and gamma engines
configurations with a “loose fitting” displacer, the surfaces of the displacer and its cylinder will
cyclically exchange heat with the working fluid providing some regenerative effect.
3.2.1 Alpha Stirling
Alpha engines have two separate power pistons in separate cylinders which are connected
in series by a heater, a regenerator and a cooler. One is a “hot” piston and the other one a “cold
piston”.
Stirling Engine
Department of Mechanical Engineering 5
Fig.3.1: Alpha engine’s configuration
The hot piston cylinder is situated inside the high temperature heat exchanger and the
cold piston cylinder is situated inside the low temperature heat exchanger. The generator is
illustrated by the chamber containing the hatch lines.
Transfer: At this point, the gas has expanded. Most of the gas is still in the hot
cylinder. As the crankshaft continues to turn the next 90°, transferring the bulk of the
gas to the cold piston cylinder. As it does so, it pushes most of the fluid through the
heat exchanger and into the cold piston cylinder.
Expansion: At this point, the most of the gas in the system is at the hot piston
cylinder. The gas heats and expands, pushing the hot piston down, and flowing
through the pipe into the cold cylinder, pushing it down as well.
Stirling Engine
Department of Mechanical Engineering 6
Fig.3.2: Example of a real cycle of an alpha engine
3.2.2 Beta Stirling
The Beta configuration is the classic Stirling engine configuration and has enjoyed
popularity from its inception until today. Stirling's original engine from his patent drawing of
1816 shows a Beta arrangement.
Both Beta and Gamma engines use displacer-piston arrangements. The Beta engine has
both the displacer and the piston in an in-line cylinder system. The Gamma engine uses separate
cylinders.
Fig.3.3: Beta engine’s configuration
Stirling Engine
Department of Mechanical Engineering 7
The purpose of the single power piston and displacer is to “displace” the working gas
at constant volume, and shuttle it between the expansion and the compression spaces
through the series arrangement cooler, regenerator, and heater.
A beta stirling has a single power piston arranged within the same cylinder on the same
shaft as a displacer piston. The displacer piston is a loose fit and does not extract any power
from the expanding gas but only serves to shuttle the working gas from the hot heat exchanger
to the cold heat exchanger. When the working gas is pushed to the hot end of the cylinder it
expands and pushes the power piston. When it is pushed to the cold end of the cylinder it
contracts and the momentum of the machine, usually enhanced by a flywheel, pushes the power
piston the other way to compress the gas. Unlike the alpha type, the beta type avoids the
technical problems of hot moving seals.
Fig.3.4: Beta engine with momentum flywheel
Expansion: At this point, most
of the gas in the system is at
the heated end of the cylinder.
The gas heats and expands
driving the power piston
outward.
Transfer: At this point, the gas has
expanded. Most of the gas is still
located in the hot end of the cylinder.
Flywheel momentum carries the
crankshaft the next quarter turn. As
the crank goes round, the bulk of
the gas is transferred around the
displacer to the cool end of the
cylinder, driving more fluid into the
cooled end of the cylinder.
Stirling Engine
Department of Mechanical Engineering 8
Fig.3.5: Example of a real cycle of a beta engine
3.2.3 Gamma Stirling
A gamma Stirling is simply a beta Stirling in which the power piston is mounted in a
separate cylinder alongside the displacer piston cylinder, but is still connected to the same
flywheel. The gas in the two cylinders can flow freely between them and remains a single body.
This configuration produces a lower compression ratio but is mechanically simpler and often
used in multi-cylinder Stirling engines. Gamma type engines have a displacer and power piston,
similar to Beta machines, but in different cylinders. This allows a convenient complete
separation between the heat exchangers associated with the displacer cylinder and the
compression and expansion work space associated with the piston.
Fig.3.6: Gamma engine’s configuration
Further more during the expansion process some of the expansion must taken place in
the compression space leading to a reduction of specific power. Gamma engines are therefore
used when the advantages of having separate cylinders outweigh the specific power
disadvantage. The advantage of this design is that it is mechanically simpler because of the
convenience of two cylinders in which only the piston has to be sealed. The disadvantage
Stirling Engine
Department of Mechanical Engineering 9
is the lower compression ratio but the gamma configuration is the favorite for modelers and
hobbyists
3.2.4 Other types
Changes to the configuration of mechanical Stirling engines continue to interest engineers
and inventors who create a lot of different version of the Stirling engine. There is also a large
field of "free piston" Stirling cycles engines, including those with liquid pistons and those with
diaphragms as pistons. For example, as an alternative to the mechanical Stirling engine is the
fluidyne pump, which uses the Stirling cycle via a hydraulic piston. In its most basic form it
contains a working gas, a liquid and two non-return valves. The work produced by the fluidyne
goes into pumping the liquid.
Stirling Engine
Department of Mechanical Engineering 10
CHAPTER 4
Reasons to use a Stirling Engine
There are several reasons to use a Stirling Engine:
➢ One reason is that for this kind of engine it’s almost impossible to explode. You don’t
have to produce steam in a high pressure boiler. And inside the cylinder there are no
explosions needed to run the pistons like in an Otto or Diesel engine. There are no
ignitions, no carburetion because you only need one kind of gas and no valve train
because there are no valves. This was a big advantage to the steam engines in the days
when Stirling invented his engine because it was much less dangerous to work next to
a Sterling Engine than to a common steam engine.
➢ Inside the pistons can be used air, helium, nitrogen or hydrogen and you don’t have to
refill it because it uses always the same body of gas.
Fig.4.1: Schematic Stirling Engine
➢ To produce heat you can use whatever you want: fuel, oil, gas, nuclear power and of
course renewable energies like solar, biomass or geothermal heat.
➢ The external combustion process can be designed as a continuous process, so the most
types of emissions can be reduced.
➢ If heat comes from a renewable energy source they produce no emissions.
Stirling Engine
Department of Mechanical Engineering 11
➢ They run very silent and they don’t need any air supply. That’s why they are used a
lot in submarines. E.g. in the Royal Swedish Navy.
➢ They can be constructed to run very quiet and practically without any vibration.
➢ They can run with a small temperature difference, e.g. with the heat of your hand or
from a cup of hot coffee. They can be used as little engines for work which needs only
low power.
➢ They can run for a very long time because the bearings and seals can be placed at the
cool side of the engine → they need less lubricant and they don’t have to be checked
very often ( longer period between the overhauls ).
➢ They are extremely flexible. The engine can run as a CHP (combined heat and power)
because the heat which is produced to run it can easily be collected. Or in summers
they can be used as coolers.
Fig.4.2: Combined heat and power
Stirling Engine
Department of Mechanical Engineering 12
CHAPTER 5
Analyse from Economic point
the Stirling engine is a kind of external combustion engine, and it can use a variety of
fuels. It can be estimated that combustible gases are the best material, including gasoline,
diesel, propane, sunshine and salad oil; even cow dung can be run on as fuels. A cup of coffee
cannot become a cup of gasoline, but it can be also used as a Stirling engine driver. There is a
famous experiment that a Stirling engine can easily run on a cup of coffee. The Stirling engine
is a kind of piston engine. In the external heating sealed chamber, the expansion of gases inside
the engine promotes the pistons work. After the expanded gases cooling down in the air-
conditioned room, next process is taking on. As long as a certain value of the temperature
difference exists, a Stirling Engine can be formed.
Fig: 5.1: Stirling Engine working on a cup of coffee
This experiment shows that only a very small power operation can carry out a Stirling
engine, which contributes a lot to energy conservation. This characteristic especially shows
out on economy point. The benefits obtained from the Stirling engine are definitely far beyond
the costs. So once solar is used to produce energy for the Stirling engine, the cost would surely
be cut down for quite a lot. As long as there is sunshine, the Stirling engine will run on and on.
Of course it costs much to manufacture a Stirling engine, as it requires a high level of the
materials and manufacturing processes. The expansion-side heat exchanger’s temperature is
often very high, so the materials must stand the corrosive consequences of the heat. Typically
these material requirements substantially increase the cost of the engine. The materials and
assembly costs for a high temperature heat exchanger typically accounts for 40% of the total
Stirling Engine
Department of Mechanical Engineering 13
engine cost. But once the Stirling engine is made and put into a proper condition, quite a few
costs would be paid for keeping it running.
Some engines cause a lot of pollution, so much is cost for pollution control and
government. On contrast, Stirling engine exhausts cleanly and avoid this type of matter.
Development and utilization of solar will not pollute the environment, as solar is one of the
cleanest energy. While the environmental pollution is becoming more and more serious today,
this characteristic is extremely valuable. It saves the cost for a lot while making sustainable
development.
At the end of 18th century and the early 19th century, heat engine generally is steam
engine. Its efficiency is very low, only 3% to 5%, that is, over 95% of the heat is not used.
Stirling thermodynamic theory is aiming to improve the thermal efficiency. Stirling proposed
that the Stirling cycle efficiency, under the ideal condition, may get the infinite enhancement.
Certainly it cannot come to 100% due to the physical limitation, however the theory provide a
direction for improving the thermal efficiency. In fact, now the efficiency of Stirling engine
can come up to 80% or even more. So another part of cost is saved.
Nowadays, more and more countries have recognized that a society with sustainable
development should be able to meet the needs of the community without endangering future
generations. Therefore, use clean energy as much as possible instead of the high carbon content
of fossil energy is a principle which should be followed during energy construction. Vigorously
develop new and renewable sources of energy utilization technology will be an important
measure to reduce pollution. Energy problem is a worldwide one, and it is sooner or later to
get into the transition- to-new-energy period. Because of its sustainability, renewably and
efficiency, the Stirling engine is just the very one being consistent with the requirements of the
times.
Stirling Engine
Department of Mechanical Engineering 14
CHAPTER 6
6.1 APPLICATIONS
➢ Cars
In the ages of 1970s and 1980s several automobile companies like “General Motors” or
“Ford” were researching about Stirling Engine. This device is good for a constant power
setting, but it is a challenge for the stop and go of the automobile. A good car can change the
power quickly. One possibility to obtain this important characteristic is design a power control
mechanism that will turn up or down the burner. This is a slow method of changing power
levels because is not enough to accelerate crossing an intersection.
The best solution in spite of these difficulties in automobiles is hybrid electric cars
where Stirling Engine could give enough power to make long trips where could get burn
gasoline or diesel, depending on which fuel was cheaper. The batteries could give the instant
acceleration that drivers are used to. This invention makes the car silent and clean running. On
March 20, 2002 I delivered one of our KY-2000 Stirling engines to the Mechanical Engineering
department at San Diego State University.
➢ Submarine
“Kockums”, a Swedish defense contractor, produce Stirling Engines for the navy making
the quietest submarines in the world. This high-technology is named air-independent
propulsion (AIP). There are four submarines equipment with Stirling AIP. The models are
HMS Näcken, which was launch in 1978 and after ten years 1988 became the first submarine
equipped with AIP system, by means of a cut and lengthened by an intersection of a Stirling
AIP section, which before the installation is equipped by two Stirling units, liquid oxygen
(LOX) tanks and electrical equipment. Successful demonstration of AIP system during many
routine patrols of HMS Näcken made that Gotland, another type of submarine, was the first
submarine designed from the beginning to operate with AIP system.
➢ Aircrafts
In relation about Stirling engines in aircraft, the communities near airports could benefit
from the quiet engine. Unlike other types of aircrafts this kind of aircrafts increases the
performance climbs to altitude.
Stirling Engine
Department of Mechanical Engineering 15
➢ Heat and power System
It is an innovative system developed to provide central heating, water heating and
electricity. Usually this device is called “Micro Combined Heat and Power (CHP)” and
produces much less carbon dioxide than other ways of providing heat and power. In fact, if the
level of CHP was increased to the Government's target of 10,000 MW, the UK could be one
third of the way to meeting its international commitments to reduce carbon dioxide emissions.
➢ Cryocooler
If It is applied mechanical energy instead of cold and heat sources by means of external
engine, It is possible reach temperatures like 10 K (-263°C) in machines of high technology.
The first Stirling-cycle cryocooler was developed at Philips in the 1950s and commercialized
in such places as liquid nitrogen production plants. This company is still active in the
development and manufacturing Stirling cryocoolers and cryogenic cooling systems.
A wide variety of smaller size Stirling cryocoolers are commercially available for tasks such
as the cooling of sensors.
Thermoacoustic refrigeration uses a Stirling cycle in a working gas which is created by high
amplitude sound waves.
➢ Nuclear power
Steam turbines of a nuclear plan can be replaced by Stirling engine thus reduce the
radioactive by-products and be more efficient. Steam plants use liquid sodium as coolant in
breeder reactors, water/sodium exchanger are required, which in some cases that temperature
increase so much this coolant could reacts violently with water.
➢ Solar Energy
Placed at the focus of a parabolic mirror a Stirling engine can convert solar energy to
electricity with efficiency better than non-concentrated photovoltaic cells.
In 2005 It is created a 1 kW Stirling generator with a solar concentrator, this was a herald
of the coming of a revolutionary solar, nowadays It generates electricity much more efficiently
and economically than Photovoltaic (PV) systems whit technology called concentrated solar
power (CPS). Nowadays the company Infina Applications has development a 3 kW Solar
Stirling Product.
Stirling Engine
Department of Mechanical Engineering 16
6.2 ADVANTAGES
➢ Stirling engines can run directly on any available heat source, not just one produced by
combustion, so they can run on heat from solar, geothermal, biological, nuclear sources or
waste heat from industrial processes.
➢ A continuous combustion process can be used to supply heat, so those emissions associated
with the intermittent combustion processes of a reciprocating internal combustion engine
can be reduced.
➢ Some types of Stirling engines have the bearings and seals on the cool side of the engine,
where they require less lubricant and last longer than equivalents on other reciprocating
engine types.
➢ The engine mechanisms are in some ways simpler than other reciprocating engine types.
No valves are needed, and the burner system can be relatively simple. Crude Stirling
engines can be made using common household materials.
➢ A Stirling engine uses a single-phase working fluid that maintains an internal pressure close
to the design pressure, and thus for a properly designed system the risk of explosion is low.
In comparison, a steam engine uses a two-phase gas/liquid working fluid, so a faulty
overpressure relief valve can cause an explosion.
➢ In some cases, low operating pressure allows the use of lightweight cylinders.
➢ They can be built to run quietly and without an air supply, for air-independent
propulsion use in submarines.
➢ They start easily (albeit slowly, after warmup) and run more efficiently in cold weather, in
contrast to the internal combustion, which starts quickly in warm weather, but not in cold
weather.
➢ A Stirling engine used for pumping water can be configured so that the water cools the
compression space. This increases efficiency when pumping cold water.
➢ They are extremely flexible. They can be used as combined heat and power in the winter
and as coolers in summer.
➢ Waste heat is easily harvested (compared to waste heat from an internal combustion
engine), making Stirling engines useful for dual-output heat and power systems.
➢ In 1986 NASA built a Stirling automotive engine and installed it in a Chevrolet Celebrity.
Fuel economy was improved 45% and emissions were greatly reduced. Acceleration
(power response) was equivalent to the standard internal combustion engine.
Stirling Engine
Department of Mechanical Engineering 17
6.3 DISADVANTAGES
➢ Greater volume and greater weight.
More voluminous and heavy. External combustion, which requires heat exchangers at both
hot and cold points, makes the Stirling engine generally more bulky and heavier than a
generic internal combustion engine with the same output power
➢ Higher economic cost of the engine
High cost. Stirling engines require inlet and outlet heat exchangers, which contain the high-
temperature working fluid, and must withstand the corrosive effects of the heat source and
the atmosphere. This involves the use of materials that significantly address the machine
➢ The Stirling engine have a slower start
Slower start. The inherent thermal inertia of an external combustion engine
makes it slower to start. For this reason the Stirling engine is not suitable for
applications that require fast starts or rapid changes in speed.
➢ More dangerous
More dangerous. The mixture of air and lubricating combustible fluids inside the
engine can produce explosive mixtures due to the oxygen contained in the air, a
danger that is accentuated in high-pressure engines. The problem was solved using
reducing (hydrogen) or neutral (helium, nitrogen) working gases or without the use
of conventional lubricants.
Stirling Engine
Department of Mechanical Engineering 18
CONCLUSION
Stirling engines qualify for “free energy” designation when they allow us to tap
previously inaccessible sources of naturally occurring energy. Stirling cycle engines are very
efficient for a given temperature difference between the heat source and the heat sink. Actually,
steam engines (the Rankine cycle) fall into this category, too. But depending upon what kind
of hardware and its maintenance you prefer, one or the other will be preferred. Steamers have
fewer parts and higher power density. Other fluids, such as a variety of refrigerants, can be
used instead of water. Stirlings avoid fluid containment problems, as they can run with air as
the working fluid, and will have less maintenance issues. Stirling Engines are very flexible.
There are a lot of different types of engines. They can be very small and run with only a small
temperature difference, they are very quiet, for example to use them in submarines or they can
be used as a CHP plant.
Another good point is that they can be constructed in a way that they produce no
emissions. That means, in combination with solar or geothermal heat, they can be used as a
renewable energy source to produce electricity. As is showed above, the Stirling engine has
strong economic practicality. Above all, the original cost is quite lower than for any other
engines. Even a few calories can drive it and keep it running. The next point is that the auxiliary
costs are low, because the Stirling engine costs little on environment protection. The fuels it
uses can be clean, so it costs little to handle with pollution governance. What is more, the profit
of the Stirling engine is far beyond the cost. And the high efficiency can bring the maximum
utilization. And last but not least, the Stirling engine is consistent with the requirements of
sustainable development. It is the main development way in the future, so the Stirling engine
does not only meet the economic needs at present time, but also in the future.
The Stirling engine is an interesting device like it is showed in this document with
various applications and high development. Its advantages are really beneficial for the
environment because it is possible produce electricity with the power of sun with high
efficiency (theorically like the Carnot Cycle). It is a huge advantage to the economy because
is possible to burn the cheapest fuel and it is working instead of the more expensive one. And
this engine is comfortable for the people because is quiet and not noisy like an internal
combustion engine.
The real renewable energy is the solar application for this device because the other ways
to produce the heat source are burning something. It is possible to decrease the emissions of
CO2 or other toxic gases but not eliminate completely this problem for the earth and therefore
Stirling Engine
Department of Mechanical Engineering 19
for humans. This application could be one of the different ways to solve the problem of
greenhouse gas emissions and to continue and also to develop our comfort.
In all applications that was showed in this presentation the performance the devices are better,
obviously increase the efficiency is good
Depend of which kind of fuel is getting burn in process. The Stirling Engine is a
machine of external combustion thus if it is burned fuel the emissions of CO2 is not solved. It
is showed that the performance is better but in the point of view of environment the real
problem continues existing. Find a heat source to make it works, this is the case of biomass
fuels in connection with a Stirling engine are concentrated on transferring the heat from the
combustion of the fuel into the working gas and in the same way the solar application. Because,
as companies look increasingly to alternative power units, it is entirely possible that the Stirling
engine will find its own niche in the marketplace, perhaps as part of a hybrid power plant, or
through further development and optimization. No high-tech materials are needed. This
competes with solar cells. Taking one with another, Stirling engine bring a tremendous
revolution to human being. We think there is also a lot of potential in this area because modern
industrialization should be sustained by regenerate power system. It is not a dead end but a new
start.
Stirling Engine
Department of Mechanical Engineering 20
REFERENCES
1. Stirling Engines", G. Walker (1980), Clarenden Press, Oxford, page 1: "A Stirling
engine is a mechanical device which operates on a *closed* regenerative
thermodynamic cycle, with cyclic compression and expansion of the working fluid at
different temperature levels.
2. W.R. Martini (1983), p.6
3. T. Finkelstein; A.J. Organ (2001), Chapters 2&3
4. "The Stirling Engine". mpoweruk.com.
5. Sleeve notes from A.J. Organ (2007)
6. C.M. Hargreaves (1991), Chapter 2.5
7. Graham Walker (1971) Lecture notes for Stirling engine symposium at Bath
University. Page 1.1 "Nomenclature"
8. "Previous Survey Results – StirlingBuilder.com". stirlingbuilder.com. Archived from
the original on 26 May 2014.
9. T. Finkelsteinl; A.J. Organ (2001), Chapter 2.2
10. English patent 4081 of 1816 Improvements for diminishing the consumption of fuel
and in particular an engine capable of being applied to the moving (of) machinery on
a principle entirely new. as reproduced in part in C.M. Hargreaves (1991), Appendix
B, with full transcription of text in R. Sier (1995).
11. Excerpt from a paper presented by James Stirling in June 1845 to the Institution of
Civil Engineers. As reproduced in R. Sier (1995), p.92.

More Related Content

What's hot

Stirling cycle & its applications
Stirling cycle & its applicationsStirling cycle & its applications
Stirling cycle & its applicationsLokesh Raju
 
Thermal Plant report (Mechanical)
Thermal Plant report (Mechanical)Thermal Plant report (Mechanical)
Thermal Plant report (Mechanical)sometech
 
STIRILING ENGINE (Alpha Beta Gamma)
STIRILING ENGINE (Alpha Beta Gamma)STIRILING ENGINE (Alpha Beta Gamma)
STIRILING ENGINE (Alpha Beta Gamma)Umer Azeem
 
Fabrication of prototype of stirling engine
Fabrication of prototype of stirling engineFabrication of prototype of stirling engine
Fabrication of prototype of stirling engineRavi Shekhar
 
Stirling engine case study
Stirling engine case studyStirling engine case study
Stirling engine case studyRohit Srivastava
 
Gas turbine Power-plant, NTPC Anta, Rajasthan
Gas turbine Power-plant, NTPC Anta, RajasthanGas turbine Power-plant, NTPC Anta, Rajasthan
Gas turbine Power-plant, NTPC Anta, RajasthanSaurabh Tiwari
 
GAS TURBINE POWER PLANT - SNIST
GAS TURBINE POWER PLANT - SNISTGAS TURBINE POWER PLANT - SNIST
GAS TURBINE POWER PLANT - SNISTS.Vijaya Bhaskar
 
Gas turbine plant
Gas turbine plantGas turbine plant
Gas turbine plantrajendrasm
 
STEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINESTEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINEDHAMMADIP KAMBLE
 
Training material for air preheater
Training material for air preheaterTraining material for air preheater
Training material for air preheaterHOANG VAN DUC
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercoolingNihal Senanayake
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPTA M
 
Stirling and erricsin cycle
Stirling and erricsin cycleStirling and erricsin cycle
Stirling and erricsin cycleAakash Zafar
 

What's hot (20)

Stirling cycle & its applications
Stirling cycle & its applicationsStirling cycle & its applications
Stirling cycle & its applications
 
Stirling engines
Stirling enginesStirling engines
Stirling engines
 
Stirling Engine
Stirling EngineStirling Engine
Stirling Engine
 
Gas turbine cycles
Gas turbine cyclesGas turbine cycles
Gas turbine cycles
 
Thermal Plant report (Mechanical)
Thermal Plant report (Mechanical)Thermal Plant report (Mechanical)
Thermal Plant report (Mechanical)
 
stirling cycle report
stirling cycle reportstirling cycle report
stirling cycle report
 
STIRILING ENGINE (Alpha Beta Gamma)
STIRILING ENGINE (Alpha Beta Gamma)STIRILING ENGINE (Alpha Beta Gamma)
STIRILING ENGINE (Alpha Beta Gamma)
 
Fabrication of prototype of stirling engine
Fabrication of prototype of stirling engineFabrication of prototype of stirling engine
Fabrication of prototype of stirling engine
 
Stirling engine case study
Stirling engine case studyStirling engine case study
Stirling engine case study
 
Gas turbine Power-plant, NTPC Anta, Rajasthan
Gas turbine Power-plant, NTPC Anta, RajasthanGas turbine Power-plant, NTPC Anta, Rajasthan
Gas turbine Power-plant, NTPC Anta, Rajasthan
 
GAS TURBINE POWER PLANT - SNIST
GAS TURBINE POWER PLANT - SNISTGAS TURBINE POWER PLANT - SNIST
GAS TURBINE POWER PLANT - SNIST
 
Chapter 4 Gas Turbine
Chapter 4 Gas TurbineChapter 4 Gas Turbine
Chapter 4 Gas Turbine
 
Gas turbine plant
Gas turbine plantGas turbine plant
Gas turbine plant
 
Seminar report on stirling engine
Seminar report on stirling engineSeminar report on stirling engine
Seminar report on stirling engine
 
Waste heat recovery
Waste heat recoveryWaste heat recovery
Waste heat recovery
 
STEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINESTEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINE
 
Training material for air preheater
Training material for air preheaterTraining material for air preheater
Training material for air preheater
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPT
 
Stirling and erricsin cycle
Stirling and erricsin cycleStirling and erricsin cycle
Stirling and erricsin cycle
 

Similar to STIRLING ENGINE (20)

Stirlingengine
StirlingengineStirlingengine
Stirlingengine
 
Acta 2016-1-08
Acta 2016-1-08Acta 2016-1-08
Acta 2016-1-08
 
Manikishore ppt
Manikishore pptManikishore ppt
Manikishore ppt
 
ME 6404 THERMAL ENGINEERING UNIT II
ME 6404 THERMAL ENGINEERING UNIT IIME 6404 THERMAL ENGINEERING UNIT II
ME 6404 THERMAL ENGINEERING UNIT II
 
project report_final
project report_finalproject report_final
project report_final
 
Ltd design and construction
Ltd design and constructionLtd design and construction
Ltd design and construction
 
Gas turbine engine
Gas turbine engineGas turbine engine
Gas turbine engine
 
Bme notes
Bme notesBme notes
Bme notes
 
IC Engine Final lab report
IC Engine Final lab reportIC Engine Final lab report
IC Engine Final lab report
 
Stirling engine
Stirling engineStirling engine
Stirling engine
 
Basics of Internal Combustion Engines by Indranil Mandal
Basics of Internal Combustion Engines by Indranil MandalBasics of Internal Combustion Engines by Indranil Mandal
Basics of Internal Combustion Engines by Indranil Mandal
 
Atkinson siminar
Atkinson siminarAtkinson siminar
Atkinson siminar
 
Six Stroke Engine
Six Stroke EngineSix Stroke Engine
Six Stroke Engine
 
Polution less engine
Polution less enginePolution less engine
Polution less engine
 
1
11
1
 
Ambrish
AmbrishAmbrish
Ambrish
 
It's showtime
It's showtimeIt's showtime
It's showtime
 
Six stroke engine using gasoline and r 123
Six stroke engine using gasoline and r 123Six stroke engine using gasoline and r 123
Six stroke engine using gasoline and r 123
 
Stirling seminar
Stirling seminarStirling seminar
Stirling seminar
 
Stirling seminar
Stirling seminarStirling seminar
Stirling seminar
 

Recently uploaded

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Recently uploaded (20)

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 

STIRLING ENGINE

  • 1. VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELGAUM A TECHNICAL SEMINAR REPORT ON NIGHT VISION TECHNOLOGY IN AUTOMOBILES Submitted in partial fulfilment of the requirements of the degree of Bachelor of Engineering in Mechanical Engineering For the academic year 2017-2018 By AFTAB ALAM H.K.B.K.C.E,Bangalore Department of Mechanical Engineering H.K.B.K College of Engineering S.No:22/1,Near Manyata Tech park, Bangalore-560045
  • 2. Stirling Engine Department of Mechanical Engineering 1 CHAPTER 1 INTRODUCTION The Stirling Engine was invented by Robert Stirling. This device was born as a competence to the vapour machine, since a Stirling Engine works with smaller pressures than the device created by Watt and it did not require a qualified train engineer. At the end of with the development of the internal combustion engine and the appearance of electric engines, the machine of this study was forgotten. Now a day the technology that involves the invention of Robert Stirling is in completely development because of the fact that now very useful applications are available. This document travels in the history of this curious device looking for reasons of this incredible development in this called high technology with its different applications and doing an analysis from the point of view of the economy. This project explains the principle function of the engine with a deep investigation. And we show how the Sterling Engine in combination with renewable energy sources. Fig.1.1: Sketch of Robert Stirling of his invent
  • 3. Stirling Engine Department of Mechanical Engineering 2 CHAPTER 2 HISTORY The Stirling Engine is one of the hot air engines. It was invented by Robert Stirling (1790-1878) and his brother James. His father was interesting in engine and he inherited it. He became a minister of the church at Scotland in 1816. At this period, he found the steam engines are dangerous for the workers. He decided to improve the design of an existing air engine. He hope it wound be safer alternative. After one year, he invented a regenerator. He called the “Economiser” and the engine improves the efficiency. This is the earliest Stirling Engine. It is put out 100 W to 4 kW. But the internal combustion engine substituted for it quickly. The Ericsson invented the solar energy in 1864 and did some improvements for after several years. Robert’s brother, James Stirling, also played an important role in the development of Stirling engines. Fig.2.1: Earliest Stirling engine
  • 4. Stirling Engine Department of Mechanical Engineering 3 Robert Stirling gets a patent for the economizer with an air engine incorporating it in 1817. Fig.2.2: Stirling Engine’s principle of operation Stirling engine of the second generation began in 1937.The Philips of Holland used new materials and technology to ascend a very high level. The knowledge about the heat transfer and fluid physical, which is a great significance to improving of the structure and raised the stability. Throughout World War II and by the late 1940s, Philips’ subsidiary Johan de Witt does this work continued. And they did the Type 10, incorporated into a generator set as originally planned The set progressed through three prototypes (102A, B, and C), with the production version, rated at 200 watts electrical output from a bore and stroke of 55x27mm, being designated MP1002CA. In 1951, the price of Stirling engine is too high for the market. It made used of radios at that time. Though the MP1002CA may have been a dead end, it represents the blooming of the modern age of Stirling Engine development. In addition to which the advent of transistor radios with their much lower power requirements meant that the market for the set was fast disappearing. Though the MP1002CA may have been a dead end, it represents the start of the modern age of Stirling engine development.
  • 5. Stirling Engine Department of Mechanical Engineering 4 CHAPTER 3 Presentation of Stirling Engines 3.1 Stirling thermodynamic cycle The Stirling engine cycle is a closed cycle and it contains, most commonly a fixed mass of gas called the "working fluid" (air, hydrogen or helium). The principle is that of thermal expansion and contraction of this fluid due to differential. a temperature So the ideal Stirling cycle consists of four thermodynamics distinct processes acting on the working fluid: two constant-temperature processes and two constant- volume processes. The gasses used inside a Stirling engine never leave the engine. There are no exhaust valves that vent high-pressure gasses, as in a gasoline or diesel engine, and there are no explosions taking place. Another useful characteristic of the Stirling engine is that if supplied with mechanical power, it can function as a heat pump (reversibility of the Stirling cycle). Understanding how a Stirling engine works is not a simple matter. It is not overly intuitive. Let’s explain the device through the presentation of the different engines configuration. 3.2. Engine configurations Mechanical configurations of Stirling engines are classified into three important distinct types: Alpha, Beta and Gamma arrangements. These engines also feature a regenerator (invented by Robert Stirling). The regenerator is constructed by a material that conducts readily heat and has a high surface area (a mesh of closely spaced thin metal plates for example). When hot gas is transferred to the cool cylinder, it is first driven through the regenerator, where a portion of the heat is deposited. When the cool gas is transferred back, this heat is reclaimed. Thus the regenerator “pre heats” and “pre cools” the working gas, and so improve the efficiency. But many engines have no apparent regenerator like beta and gamma engines configurations with a “loose fitting” displacer, the surfaces of the displacer and its cylinder will cyclically exchange heat with the working fluid providing some regenerative effect. 3.2.1 Alpha Stirling Alpha engines have two separate power pistons in separate cylinders which are connected in series by a heater, a regenerator and a cooler. One is a “hot” piston and the other one a “cold piston”.
  • 6. Stirling Engine Department of Mechanical Engineering 5 Fig.3.1: Alpha engine’s configuration The hot piston cylinder is situated inside the high temperature heat exchanger and the cold piston cylinder is situated inside the low temperature heat exchanger. The generator is illustrated by the chamber containing the hatch lines. Transfer: At this point, the gas has expanded. Most of the gas is still in the hot cylinder. As the crankshaft continues to turn the next 90°, transferring the bulk of the gas to the cold piston cylinder. As it does so, it pushes most of the fluid through the heat exchanger and into the cold piston cylinder. Expansion: At this point, the most of the gas in the system is at the hot piston cylinder. The gas heats and expands, pushing the hot piston down, and flowing through the pipe into the cold cylinder, pushing it down as well.
  • 7. Stirling Engine Department of Mechanical Engineering 6 Fig.3.2: Example of a real cycle of an alpha engine 3.2.2 Beta Stirling The Beta configuration is the classic Stirling engine configuration and has enjoyed popularity from its inception until today. Stirling's original engine from his patent drawing of 1816 shows a Beta arrangement. Both Beta and Gamma engines use displacer-piston arrangements. The Beta engine has both the displacer and the piston in an in-line cylinder system. The Gamma engine uses separate cylinders. Fig.3.3: Beta engine’s configuration
  • 8. Stirling Engine Department of Mechanical Engineering 7 The purpose of the single power piston and displacer is to “displace” the working gas at constant volume, and shuttle it between the expansion and the compression spaces through the series arrangement cooler, regenerator, and heater. A beta stirling has a single power piston arranged within the same cylinder on the same shaft as a displacer piston. The displacer piston is a loose fit and does not extract any power from the expanding gas but only serves to shuttle the working gas from the hot heat exchanger to the cold heat exchanger. When the working gas is pushed to the hot end of the cylinder it expands and pushes the power piston. When it is pushed to the cold end of the cylinder it contracts and the momentum of the machine, usually enhanced by a flywheel, pushes the power piston the other way to compress the gas. Unlike the alpha type, the beta type avoids the technical problems of hot moving seals. Fig.3.4: Beta engine with momentum flywheel Expansion: At this point, most of the gas in the system is at the heated end of the cylinder. The gas heats and expands driving the power piston outward. Transfer: At this point, the gas has expanded. Most of the gas is still located in the hot end of the cylinder. Flywheel momentum carries the crankshaft the next quarter turn. As the crank goes round, the bulk of the gas is transferred around the displacer to the cool end of the cylinder, driving more fluid into the cooled end of the cylinder.
  • 9. Stirling Engine Department of Mechanical Engineering 8 Fig.3.5: Example of a real cycle of a beta engine 3.2.3 Gamma Stirling A gamma Stirling is simply a beta Stirling in which the power piston is mounted in a separate cylinder alongside the displacer piston cylinder, but is still connected to the same flywheel. The gas in the two cylinders can flow freely between them and remains a single body. This configuration produces a lower compression ratio but is mechanically simpler and often used in multi-cylinder Stirling engines. Gamma type engines have a displacer and power piston, similar to Beta machines, but in different cylinders. This allows a convenient complete separation between the heat exchangers associated with the displacer cylinder and the compression and expansion work space associated with the piston. Fig.3.6: Gamma engine’s configuration Further more during the expansion process some of the expansion must taken place in the compression space leading to a reduction of specific power. Gamma engines are therefore used when the advantages of having separate cylinders outweigh the specific power disadvantage. The advantage of this design is that it is mechanically simpler because of the convenience of two cylinders in which only the piston has to be sealed. The disadvantage
  • 10. Stirling Engine Department of Mechanical Engineering 9 is the lower compression ratio but the gamma configuration is the favorite for modelers and hobbyists 3.2.4 Other types Changes to the configuration of mechanical Stirling engines continue to interest engineers and inventors who create a lot of different version of the Stirling engine. There is also a large field of "free piston" Stirling cycles engines, including those with liquid pistons and those with diaphragms as pistons. For example, as an alternative to the mechanical Stirling engine is the fluidyne pump, which uses the Stirling cycle via a hydraulic piston. In its most basic form it contains a working gas, a liquid and two non-return valves. The work produced by the fluidyne goes into pumping the liquid.
  • 11. Stirling Engine Department of Mechanical Engineering 10 CHAPTER 4 Reasons to use a Stirling Engine There are several reasons to use a Stirling Engine: ➢ One reason is that for this kind of engine it’s almost impossible to explode. You don’t have to produce steam in a high pressure boiler. And inside the cylinder there are no explosions needed to run the pistons like in an Otto or Diesel engine. There are no ignitions, no carburetion because you only need one kind of gas and no valve train because there are no valves. This was a big advantage to the steam engines in the days when Stirling invented his engine because it was much less dangerous to work next to a Sterling Engine than to a common steam engine. ➢ Inside the pistons can be used air, helium, nitrogen or hydrogen and you don’t have to refill it because it uses always the same body of gas. Fig.4.1: Schematic Stirling Engine ➢ To produce heat you can use whatever you want: fuel, oil, gas, nuclear power and of course renewable energies like solar, biomass or geothermal heat. ➢ The external combustion process can be designed as a continuous process, so the most types of emissions can be reduced. ➢ If heat comes from a renewable energy source they produce no emissions.
  • 12. Stirling Engine Department of Mechanical Engineering 11 ➢ They run very silent and they don’t need any air supply. That’s why they are used a lot in submarines. E.g. in the Royal Swedish Navy. ➢ They can be constructed to run very quiet and practically without any vibration. ➢ They can run with a small temperature difference, e.g. with the heat of your hand or from a cup of hot coffee. They can be used as little engines for work which needs only low power. ➢ They can run for a very long time because the bearings and seals can be placed at the cool side of the engine → they need less lubricant and they don’t have to be checked very often ( longer period between the overhauls ). ➢ They are extremely flexible. The engine can run as a CHP (combined heat and power) because the heat which is produced to run it can easily be collected. Or in summers they can be used as coolers. Fig.4.2: Combined heat and power
  • 13. Stirling Engine Department of Mechanical Engineering 12 CHAPTER 5 Analyse from Economic point the Stirling engine is a kind of external combustion engine, and it can use a variety of fuels. It can be estimated that combustible gases are the best material, including gasoline, diesel, propane, sunshine and salad oil; even cow dung can be run on as fuels. A cup of coffee cannot become a cup of gasoline, but it can be also used as a Stirling engine driver. There is a famous experiment that a Stirling engine can easily run on a cup of coffee. The Stirling engine is a kind of piston engine. In the external heating sealed chamber, the expansion of gases inside the engine promotes the pistons work. After the expanded gases cooling down in the air- conditioned room, next process is taking on. As long as a certain value of the temperature difference exists, a Stirling Engine can be formed. Fig: 5.1: Stirling Engine working on a cup of coffee This experiment shows that only a very small power operation can carry out a Stirling engine, which contributes a lot to energy conservation. This characteristic especially shows out on economy point. The benefits obtained from the Stirling engine are definitely far beyond the costs. So once solar is used to produce energy for the Stirling engine, the cost would surely be cut down for quite a lot. As long as there is sunshine, the Stirling engine will run on and on. Of course it costs much to manufacture a Stirling engine, as it requires a high level of the materials and manufacturing processes. The expansion-side heat exchanger’s temperature is often very high, so the materials must stand the corrosive consequences of the heat. Typically these material requirements substantially increase the cost of the engine. The materials and assembly costs for a high temperature heat exchanger typically accounts for 40% of the total
  • 14. Stirling Engine Department of Mechanical Engineering 13 engine cost. But once the Stirling engine is made and put into a proper condition, quite a few costs would be paid for keeping it running. Some engines cause a lot of pollution, so much is cost for pollution control and government. On contrast, Stirling engine exhausts cleanly and avoid this type of matter. Development and utilization of solar will not pollute the environment, as solar is one of the cleanest energy. While the environmental pollution is becoming more and more serious today, this characteristic is extremely valuable. It saves the cost for a lot while making sustainable development. At the end of 18th century and the early 19th century, heat engine generally is steam engine. Its efficiency is very low, only 3% to 5%, that is, over 95% of the heat is not used. Stirling thermodynamic theory is aiming to improve the thermal efficiency. Stirling proposed that the Stirling cycle efficiency, under the ideal condition, may get the infinite enhancement. Certainly it cannot come to 100% due to the physical limitation, however the theory provide a direction for improving the thermal efficiency. In fact, now the efficiency of Stirling engine can come up to 80% or even more. So another part of cost is saved. Nowadays, more and more countries have recognized that a society with sustainable development should be able to meet the needs of the community without endangering future generations. Therefore, use clean energy as much as possible instead of the high carbon content of fossil energy is a principle which should be followed during energy construction. Vigorously develop new and renewable sources of energy utilization technology will be an important measure to reduce pollution. Energy problem is a worldwide one, and it is sooner or later to get into the transition- to-new-energy period. Because of its sustainability, renewably and efficiency, the Stirling engine is just the very one being consistent with the requirements of the times.
  • 15. Stirling Engine Department of Mechanical Engineering 14 CHAPTER 6 6.1 APPLICATIONS ➢ Cars In the ages of 1970s and 1980s several automobile companies like “General Motors” or “Ford” were researching about Stirling Engine. This device is good for a constant power setting, but it is a challenge for the stop and go of the automobile. A good car can change the power quickly. One possibility to obtain this important characteristic is design a power control mechanism that will turn up or down the burner. This is a slow method of changing power levels because is not enough to accelerate crossing an intersection. The best solution in spite of these difficulties in automobiles is hybrid electric cars where Stirling Engine could give enough power to make long trips where could get burn gasoline or diesel, depending on which fuel was cheaper. The batteries could give the instant acceleration that drivers are used to. This invention makes the car silent and clean running. On March 20, 2002 I delivered one of our KY-2000 Stirling engines to the Mechanical Engineering department at San Diego State University. ➢ Submarine “Kockums”, a Swedish defense contractor, produce Stirling Engines for the navy making the quietest submarines in the world. This high-technology is named air-independent propulsion (AIP). There are four submarines equipment with Stirling AIP. The models are HMS Näcken, which was launch in 1978 and after ten years 1988 became the first submarine equipped with AIP system, by means of a cut and lengthened by an intersection of a Stirling AIP section, which before the installation is equipped by two Stirling units, liquid oxygen (LOX) tanks and electrical equipment. Successful demonstration of AIP system during many routine patrols of HMS Näcken made that Gotland, another type of submarine, was the first submarine designed from the beginning to operate with AIP system. ➢ Aircrafts In relation about Stirling engines in aircraft, the communities near airports could benefit from the quiet engine. Unlike other types of aircrafts this kind of aircrafts increases the performance climbs to altitude.
  • 16. Stirling Engine Department of Mechanical Engineering 15 ➢ Heat and power System It is an innovative system developed to provide central heating, water heating and electricity. Usually this device is called “Micro Combined Heat and Power (CHP)” and produces much less carbon dioxide than other ways of providing heat and power. In fact, if the level of CHP was increased to the Government's target of 10,000 MW, the UK could be one third of the way to meeting its international commitments to reduce carbon dioxide emissions. ➢ Cryocooler If It is applied mechanical energy instead of cold and heat sources by means of external engine, It is possible reach temperatures like 10 K (-263°C) in machines of high technology. The first Stirling-cycle cryocooler was developed at Philips in the 1950s and commercialized in such places as liquid nitrogen production plants. This company is still active in the development and manufacturing Stirling cryocoolers and cryogenic cooling systems. A wide variety of smaller size Stirling cryocoolers are commercially available for tasks such as the cooling of sensors. Thermoacoustic refrigeration uses a Stirling cycle in a working gas which is created by high amplitude sound waves. ➢ Nuclear power Steam turbines of a nuclear plan can be replaced by Stirling engine thus reduce the radioactive by-products and be more efficient. Steam plants use liquid sodium as coolant in breeder reactors, water/sodium exchanger are required, which in some cases that temperature increase so much this coolant could reacts violently with water. ➢ Solar Energy Placed at the focus of a parabolic mirror a Stirling engine can convert solar energy to electricity with efficiency better than non-concentrated photovoltaic cells. In 2005 It is created a 1 kW Stirling generator with a solar concentrator, this was a herald of the coming of a revolutionary solar, nowadays It generates electricity much more efficiently and economically than Photovoltaic (PV) systems whit technology called concentrated solar power (CPS). Nowadays the company Infina Applications has development a 3 kW Solar Stirling Product.
  • 17. Stirling Engine Department of Mechanical Engineering 16 6.2 ADVANTAGES ➢ Stirling engines can run directly on any available heat source, not just one produced by combustion, so they can run on heat from solar, geothermal, biological, nuclear sources or waste heat from industrial processes. ➢ A continuous combustion process can be used to supply heat, so those emissions associated with the intermittent combustion processes of a reciprocating internal combustion engine can be reduced. ➢ Some types of Stirling engines have the bearings and seals on the cool side of the engine, where they require less lubricant and last longer than equivalents on other reciprocating engine types. ➢ The engine mechanisms are in some ways simpler than other reciprocating engine types. No valves are needed, and the burner system can be relatively simple. Crude Stirling engines can be made using common household materials. ➢ A Stirling engine uses a single-phase working fluid that maintains an internal pressure close to the design pressure, and thus for a properly designed system the risk of explosion is low. In comparison, a steam engine uses a two-phase gas/liquid working fluid, so a faulty overpressure relief valve can cause an explosion. ➢ In some cases, low operating pressure allows the use of lightweight cylinders. ➢ They can be built to run quietly and without an air supply, for air-independent propulsion use in submarines. ➢ They start easily (albeit slowly, after warmup) and run more efficiently in cold weather, in contrast to the internal combustion, which starts quickly in warm weather, but not in cold weather. ➢ A Stirling engine used for pumping water can be configured so that the water cools the compression space. This increases efficiency when pumping cold water. ➢ They are extremely flexible. They can be used as combined heat and power in the winter and as coolers in summer. ➢ Waste heat is easily harvested (compared to waste heat from an internal combustion engine), making Stirling engines useful for dual-output heat and power systems. ➢ In 1986 NASA built a Stirling automotive engine and installed it in a Chevrolet Celebrity. Fuel economy was improved 45% and emissions were greatly reduced. Acceleration (power response) was equivalent to the standard internal combustion engine.
  • 18. Stirling Engine Department of Mechanical Engineering 17 6.3 DISADVANTAGES ➢ Greater volume and greater weight. More voluminous and heavy. External combustion, which requires heat exchangers at both hot and cold points, makes the Stirling engine generally more bulky and heavier than a generic internal combustion engine with the same output power ➢ Higher economic cost of the engine High cost. Stirling engines require inlet and outlet heat exchangers, which contain the high- temperature working fluid, and must withstand the corrosive effects of the heat source and the atmosphere. This involves the use of materials that significantly address the machine ➢ The Stirling engine have a slower start Slower start. The inherent thermal inertia of an external combustion engine makes it slower to start. For this reason the Stirling engine is not suitable for applications that require fast starts or rapid changes in speed. ➢ More dangerous More dangerous. The mixture of air and lubricating combustible fluids inside the engine can produce explosive mixtures due to the oxygen contained in the air, a danger that is accentuated in high-pressure engines. The problem was solved using reducing (hydrogen) or neutral (helium, nitrogen) working gases or without the use of conventional lubricants.
  • 19. Stirling Engine Department of Mechanical Engineering 18 CONCLUSION Stirling engines qualify for “free energy” designation when they allow us to tap previously inaccessible sources of naturally occurring energy. Stirling cycle engines are very efficient for a given temperature difference between the heat source and the heat sink. Actually, steam engines (the Rankine cycle) fall into this category, too. But depending upon what kind of hardware and its maintenance you prefer, one or the other will be preferred. Steamers have fewer parts and higher power density. Other fluids, such as a variety of refrigerants, can be used instead of water. Stirlings avoid fluid containment problems, as they can run with air as the working fluid, and will have less maintenance issues. Stirling Engines are very flexible. There are a lot of different types of engines. They can be very small and run with only a small temperature difference, they are very quiet, for example to use them in submarines or they can be used as a CHP plant. Another good point is that they can be constructed in a way that they produce no emissions. That means, in combination with solar or geothermal heat, they can be used as a renewable energy source to produce electricity. As is showed above, the Stirling engine has strong economic practicality. Above all, the original cost is quite lower than for any other engines. Even a few calories can drive it and keep it running. The next point is that the auxiliary costs are low, because the Stirling engine costs little on environment protection. The fuels it uses can be clean, so it costs little to handle with pollution governance. What is more, the profit of the Stirling engine is far beyond the cost. And the high efficiency can bring the maximum utilization. And last but not least, the Stirling engine is consistent with the requirements of sustainable development. It is the main development way in the future, so the Stirling engine does not only meet the economic needs at present time, but also in the future. The Stirling engine is an interesting device like it is showed in this document with various applications and high development. Its advantages are really beneficial for the environment because it is possible produce electricity with the power of sun with high efficiency (theorically like the Carnot Cycle). It is a huge advantage to the economy because is possible to burn the cheapest fuel and it is working instead of the more expensive one. And this engine is comfortable for the people because is quiet and not noisy like an internal combustion engine. The real renewable energy is the solar application for this device because the other ways to produce the heat source are burning something. It is possible to decrease the emissions of CO2 or other toxic gases but not eliminate completely this problem for the earth and therefore
  • 20. Stirling Engine Department of Mechanical Engineering 19 for humans. This application could be one of the different ways to solve the problem of greenhouse gas emissions and to continue and also to develop our comfort. In all applications that was showed in this presentation the performance the devices are better, obviously increase the efficiency is good Depend of which kind of fuel is getting burn in process. The Stirling Engine is a machine of external combustion thus if it is burned fuel the emissions of CO2 is not solved. It is showed that the performance is better but in the point of view of environment the real problem continues existing. Find a heat source to make it works, this is the case of biomass fuels in connection with a Stirling engine are concentrated on transferring the heat from the combustion of the fuel into the working gas and in the same way the solar application. Because, as companies look increasingly to alternative power units, it is entirely possible that the Stirling engine will find its own niche in the marketplace, perhaps as part of a hybrid power plant, or through further development and optimization. No high-tech materials are needed. This competes with solar cells. Taking one with another, Stirling engine bring a tremendous revolution to human being. We think there is also a lot of potential in this area because modern industrialization should be sustained by regenerate power system. It is not a dead end but a new start.
  • 21. Stirling Engine Department of Mechanical Engineering 20 REFERENCES 1. Stirling Engines", G. Walker (1980), Clarenden Press, Oxford, page 1: "A Stirling engine is a mechanical device which operates on a *closed* regenerative thermodynamic cycle, with cyclic compression and expansion of the working fluid at different temperature levels. 2. W.R. Martini (1983), p.6 3. T. Finkelstein; A.J. Organ (2001), Chapters 2&3 4. "The Stirling Engine". mpoweruk.com. 5. Sleeve notes from A.J. Organ (2007) 6. C.M. Hargreaves (1991), Chapter 2.5 7. Graham Walker (1971) Lecture notes for Stirling engine symposium at Bath University. Page 1.1 "Nomenclature" 8. "Previous Survey Results – StirlingBuilder.com". stirlingbuilder.com. Archived from the original on 26 May 2014. 9. T. Finkelsteinl; A.J. Organ (2001), Chapter 2.2 10. English patent 4081 of 1816 Improvements for diminishing the consumption of fuel and in particular an engine capable of being applied to the moving (of) machinery on a principle entirely new. as reproduced in part in C.M. Hargreaves (1991), Appendix B, with full transcription of text in R. Sier (1995). 11. Excerpt from a paper presented by James Stirling in June 1845 to the Institution of Civil Engineers. As reproduced in R. Sier (1995), p.92.