Deep Learning
ABDULRAZAK ZAKIEH
Content
Introduction
◦ Neural Networks (revision)
◦ Deep Learning
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
◦ Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 2
Content
Introduction
◦ Neural Networks (revision)
◦ Deep Learning
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
◦ Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 3
Neural Networks (revision)
Y
output
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 4
Neural Networks (revision)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 5
Content
Introduction
◦ Neural Networks (revision)
◦ Deep Learning
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
◦ Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 6
Deep Learning
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 7
Deep Learning
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 8
Deep Learning
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 9
Deep Learning
AlexNet
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 10
Deep Learning
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 11
Deep Learning
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 12
256 * 256 RGB image
Overfit the data
does not capture the “natural” invariances we
expect in images (translation, scale)
Deep Learning
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 13
Content
Introduction
◦ Neural Networks (revision)
◦ Deep Learning
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 14
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 15
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 16
y = z * w
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 17
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 18
“learn” the right filters for the specified task
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 19
3D Convolution
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 20
It’s correlation
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 21
“zero pad” the input image
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 22
max-pooling operation
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 23
32 * 32 RGB
5 * 5 * 64 convolution
2 * 2 max pooling
3 * 3 * 128 convolution
2 * 2 max pooling
Fully-connected to 10-dimensional output
103
104
105
106
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 24
Applications
Convolutional Neural Networks (CNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 25
Applications
Using intermediate layers as features
Classify dogs/cats based upon 2000 images
(1000 of each class):
Approach 1: Convolution network from
scratch: 80%
Approach 2: Final-layer from VGG network ->
dense net: 90%
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 26
Content
Introduction
◦ Neural Networks (revision)
◦ Deep Learning
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
◦ Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 27
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 28
Predicting temporal data
Independent inputsPredict a sequence of outputs, given a sequence of inputs
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 29
Predicting temporal data
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 30
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 31
Training recurrent networks
“unroll” the RNN on some dataset, and
minimize the loss function
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 32
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 33
Initializing the first hidden layer?
The long of the sequence?
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 34
Trouble?
difficult to capture long-term dependencies
Content
Introduction
◦ Neural Networks (revision)
◦ Deep Learning
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
◦ Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 35
Long Short Term Memory (LSTM)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 36
Figure from
(Jozefowicz et al., 2015)
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 37
Applications
Char-RNN (RNN (using stacked LSTMs))
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 38
Applications
Char-RNN (RNN (using stacked LSTMs))
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 39
Applications
Char-RNN (RNN (using stacked LSTMs))
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 40
Sequence to sequence models
LSTM without outputs
on “input” sequence
autoregressive
LSTM on output sequence
Recurrent Neural Network (RNN)
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 41
Sequence to sequence models - application
Google’s
machine
translation
methods
Combining RNNs and CNNs
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 42
Combining RNNs and CNNs
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 43
Thanks for listening
ABDULRAZAK ZAKIEH (ABDLARZAK.ZK@GMAIL.COM) 44

Introduction to Deep learning