SlideShare a Scribd company logo
1 of 100
Download to read offline
1.	
  An&gen	
  Receptor	
  Signaling	
  with	
  
focus	
  on	
  TCR	
  signaling	
  &	
  the	
  
Immunological	
  Synapse	
  
	
  
BIOM	
  514,	
  Cell	
  Signaling	
  	
  
Apr.	
  1	
  &	
  6,	
  2016	
  
Aaron	
  Neumann,	
  Ph.D.	
  (Pathology)	
  
CRF327,	
  akneumann@salud.unm.edu	
  
Abbas, Lichtman & Pillai, 8th ed., chapters 7, 9 and parts of 4 & 12
OVERVIEW	
  OF	
  LECTURE	
  MATERIAL	
  
•  Lecture	
  1:	
  	
  An&gen	
  Receptor	
  Signaling	
  and	
  the	
  T	
  cell	
  
Immune	
  Synapse	
  
•  Lecture	
  2:	
  	
  Cytokine	
  Receptor,	
  Notch	
  and	
  Innate	
  
Immunoreceptor	
  Signaling.	
  Regula&on	
  of	
  signal	
  
dynamics	
  
•  Problem	
  Set:	
  Spillane	
  &	
  Tolar	
  
	
  
Basic	
  Concepts	
  in	
  Signal	
  Transduc&on	
  
Common events that govern signaling
• Signal	
  ini&a&on	
  
• Ligand	
  binding	
  to	
  membrane	
  receptors	
  leads	
  to	
  receptor	
  
conforma&onal	
  changes	
  and/or	
  aggrega&on,	
  resul&ng	
  in	
  	
  
phosphoryla&on	
  of	
  receptors	
  (or	
  associated	
  intracellular	
  signaling	
  
proteins)	
  	
  
• Signal	
  propaga&on	
  
• Recruitment	
  of	
  adaptor	
  proteins	
  to	
  phosphorylated	
  receptors	
  
ini&ates	
  signaling	
  cascades	
  that	
  take	
  the	
  signal	
  to	
  the	
  nucleus	
  
• Structural	
  mo&fs	
  allow	
  for	
  specificity	
  of	
  protein	
  interac&ons	
  
• Signal	
  termina&on	
  	
  
• Phosphatases	
  can	
  block	
  signaling	
  
• Proteins	
  are	
  degraded	
  (ubiqui&na&on)	
  
General principles of membrane receptor signaling
Types of receptors that regulate
immune cell signaling
Protein Phosphorylation
KINASE
PHOSPHATASE
Serine
Threonine
Tyrosine
Kinases: Transfer the terminal phosphate of ATP to the hydroxyl group of a
tyrosine residue in the substrate protein
Phosphatases: Remove phosphate moieties from tyrosine residues (dephosphorylation)
Phosphoryla&on	
  regulates	
  protein	
  ac&vity	
  and	
  
provides	
  a	
  binding	
  site	
  for	
  other	
  proteins.	
  	
  
Motifs Bind to Other Motifs in Proteins
3 examples
Src homology 3-domain (SH3)
Src homology 2-domain (SH2)
Regulatory domain Binds to:
Phospho-
tyrosine
P X X P Proline-rich
stretch
Pleckstrin homology domain (PH) PIP3	
   Phospho-
inositols
P X X X
These motifs become very important in building local assemblies of signaling
proteins on adaptor proteins.
How	
  do	
  mul)ple	
  protein/protein	
  interac)on	
  domains	
  improve	
  cell	
  signaling?	
  
The importance of protein domains/motifs for signaling.
Fig 6.3 Janeway © 2001 Garland
400 - 500 nm
1.0-1.5um
Illustration of the Problem
Confocal Observation Volume for
Fluorescence Correlation Measurements
of Cytosolic Signaling Protein Dynamics
To scale, a typical membrane associated protein
signaling domain would be about this size…pretty tiny.
The concentration of cytosolic signaling intermediaries
is typically such that there are only 1-3 molecules
in this volume!
Volume:
~1 fL
The probability of receptor-intermediary interaction is
quite low (takes ms to diffuse to receptor in this volume,
but binding/unbinding is on µs timescale.)
Adaptor proteins form signaling complexes that
promote and stabilize protein-protein and protein
lipid interactions.
Overview	
  of	
  ITAM	
  signaling	
  systems 	
  	
  
•  Ini&a&on:	
  Membrane	
  proximal	
  signaling	
  
events	
  
•  Output:	
  Transcrip&on	
  factor	
  ac&va&on	
  
•  Finally,	
  we	
  will	
  focus	
  in	
  detail	
  on	
  the	
  process	
  
of	
  T	
  cell	
  ac&va&on	
  via	
  the	
  TCR	
  to	
  inves&gate	
  
how	
  one	
  important	
  ITAM	
  signaling	
  system	
  
works.	
  
Antigen receptors
ITAM	
  
Immunoreceptor	
  Tyrosine-­‐based	
  AcAvaAng	
  MoAf	
  
	
  
YXXL/I(X)6-8YXXL/I
ITAM Sequence
Tyrosine
Leucine/
Isoleucine
*ITAMs do not have intrinsic kinase activity
*The phosphorylated ITAM motif recruits kinase
There are many more ITAM receptors…
Note that many of these non-TCR/BCR ITAM signaling systems use
FcRgamma chain or DAP12 as the signaling partner that actually provides the
ITAM motif.
A receptor/signaling chain complex must form.
What are the early, receptor proximal events in ITAM signaling generally?
ITAM/receptor complex Src family kinase
ITAM pTyr
ITAM Recruits active Syk/ZAP-70
Phosphorylate downstream adaptors and signaling proteins
ITAMs are phosphorylated by Src Family kinases
Including: Src, Yes, Lyn, Fyn, Blk, Lck
pTyr in C-term interacts
with SH2 domain, locking
protein in an inactive
conformation
(CskàpY505 on lck)
Dephosphorylation of this
Tyr (CD45, SHP-1) leads to
conformational change that
allows for unfolding &
kinase activity
Myristoylation:
promotes membrane localization
Regulatory tyrosine
• Phosphorylation of the ITAM domains
creates binding sites for
other protein domains called SH2 (Src
Homology 2 domain)
• This enables recruitment of signaling
proteins to activated receptors
– Signaling proteins are brought
near the kinases and can in turn be
activated
– Or binding to a phosphotyrosine
may activate the proteins by altering
protein conformation (allosteric
activation)
– Syk, ZAP-70
• Proteins can be phosphorylated on
three classes of amino acids:
– tyrosines (receptors), serine/
threonine (downstream), or histidine
These kinases are ESSENTIAL for
immune responses. ZAP-70 defects
lead to Severe Combined
Immunodeficiency (autosomal
recessive).
Syk KO mice die after birth of severe
haemorrhaging. B-lineage cells cannot
form (lack of signaling from pre-BCR
complex, no clonal expansion or
maturation of pre-B cells).
Syk & ZAP-70
are key kinases in
ITAM cascades
TWO
Src homology 2 domains
www.nimr.mrc.ac.uk/.../thirty2/kinases/
Mouse embryos that lack the
cytoplasmic tyrosine kinase Syk develop
lethal hemorrhages at midgestation
www.mpi-muenster.mpg.de/nvz/kiefer.shtml
Mocsai, et al. Nature Reviews Immunology 10, 387-402
SHP-1
Cbl
ITAM/Syk Signaling Engages Many Downstream Effectors
Mocsai, et al. Nature Reviews Immunology 10, 387-402
Syk’s many pTyr sites control its activity and interactions,
both on and off of the ITAM-containing receptor
Where is this all going?
Nuclear Translocation of Transcription Factors
Figure 9-14 Abbas © 2005 Elsevier
Figure 9-14 Abbas © 2005 Elsevier
NFkB and NFAT are
activated in the cytosol
and translocate into the
nucleus to begin
transcriptional
activation.
AP-1 is composed of fos
and jun. Jun is
activated in the cytosol
and translocates. Fos
must be transcribed by
Elk, which is
translocated.
Receptor ligation
ITAM
Syk/ZAP70
Cell Type
Specific
Program
NFAT
NFkB
AP-1
activation
We will examine TCR signaling as a model to understand what lies in the
middle and how this sensitive immunoreceptor system gets triggered.
input	

 output
TCR signaling
•  The biochemical signals that are triggered
in T cells by antigen recognition are
transduced not by the TCR itself but by
invariant proteins called CD3 and ζ which
are non-covalently linked to the antigen
receptor to form the TCR complex.
– Highly variable antigen receptor + invariant
signaling proteins
•  What advantages does this give?
Peptide binding pocket
Variable region /
Complementrarity-determining
region (CDR)
Disulfide bond
Positively charged amino acids:
Lysine in α chain
Lysine + arginine in β chain
• Interact with neg residues in
CD3 and ζ
TCR Structure
Antigen affinity (Kd): 10-5 to 10-7 M (i.e., OT-I TCR 5.9 uM; Immunity. 1999;10:227–37.)
Low affinity = need for adhesion molecules
TCR Structure
The TCR complex
• Facilitate signaling
• Provide secondary signals
• Adhesion molecules
Accessory molecules
See also Abbas Figure 7-9B
Coreceptors: bind MHC molecules and enhance TCR signaling
• CD4+ respond to Class II MHC: cytokine-production helper cells, extracellular microbes
• CD8+ respond to Class I MHC: CTLs, eradicate intracellularly infected cells
• Signal transduction via Lck:
Interaction of CD4/CD8 with MHC brings CD4/CD8-associated Lck close to TCR
the complex, which then phosphorylates the ITAMs of CD3 and ζ
• Close proximity of CD4/CD8-
associatedLck activated ITAMs
• CD3 associated Fyn may
activate ITAM : TCR binding to MHC
may transduce conformational change
to activate Fyn
• Zap-70 is related to Syk in the BCR
system
More details…
Signaling pathways triggered by TCR activation
CosAmulatory	
  receptors:	
  	
  	
  
recognize	
  molecules	
  on	
  APC	
  and	
  iniAate	
  second	
  signals	
  
• Receptor tails have structural
motifs that serve as docking sites
for adaptor molecules (such as
PI-3 kinase or Grb2) once
tyrosines are phosphorylated
• Functional consequences are
different for each receptor
**Can be activating or inhibitory
Example of Costimulatory receptor function:
After binding ligands for TLRs, Dendritic cells will express B7
•  TCR provides specificity
•  Coreceptors enhance signaling by bringing Lck in close
proximity of ITAMs
•  Costimulatory receptors initiate activating or inhibitory
signals and play a key role in the outcome of APC
interaction
Activation of T cells involves the integration of
signals from multiple receptors…
OrganizaAon	
  of	
  signaling	
  at	
  the	
  T-­‐APC	
  contact	
  
On	
  the	
  scales	
  that	
  are	
  accessible	
  within	
  the	
  limits	
  of	
  conven&onal	
  fluorescence	
  imaging,	
  
we	
  realize	
  that	
  the	
  T-­‐APC	
  contact	
  forms	
  an	
  organized	
  (but	
  very	
  dynamic!)	
  structure	
  
termed	
  the	
  “immunological	
  synapse”.	
  
Supramolecular	
  Ac&va&on	
  
Complex	
  (SMAC)	
  
	
  
Distal	
  (dSMAC)	
  
	
  
	
  
Peripheral	
  (pSMAC)	
  
	
  
	
  
Central	
  (cSMAC)	
  
	
  
Many	
  important	
  intermolecular	
  and	
  intercellular	
  events	
  happen	
  in	
  the	
  SMAC.	
  
We	
  will	
  start	
  at	
  the	
  molecular	
  level	
  and	
  build	
  our	
  way	
  up,	
  focusing	
  on	
  the	
  literature	
  on	
  T	
  cell	
  
immunological	
  synapses	
  from	
  the	
  past	
  decade.	
  
Huppa,	
  Davis.	
  Nature	
  Reviews	
  Immunology	
  3,	
  973-­‐983	
  (December	
  2003)	
  	
  
Molecular	
  &	
  Cellular	
  Interac&ons	
  
Relevant	
  to	
  TCR	
  Triggering	
  	
  
•  TCR-­‐CD3	
  complex	
  structure	
  
•  Models	
  of	
  TCR	
  ac&va&on	
  by	
  cognate	
  pMHC	
  
•  Biophysical	
  considera&ons	
  regarding	
  
forma&on	
  of	
  ac&va&ng	
  T-­‐APC	
  interfaces	
  
•  Why	
  it	
  all	
  maeers	
  
The TCR complex
Immunity	
  Volume	
  24,	
  Issue	
  2	
  2006	
  133	
  -­‐	
  139	
  
Michael	
  S.	
  	
  Kuhns	
  ,	
  Mark	
  M.	
  	
  Davis	
  ,	
  K.	
  Christopher	
  	
  Garcia	
  
If you had to experimentally demonstrate that
this is the correct TCR complex structure, how
would you do it?
Call, et al, Cell. 2002 Dec 27;111(7):967-79.
Kuhns	
  &	
  Davis,	
  Cell.	
  2008	
  Nov	
  14;	
  135(4):	
  594–596;	
  Xu,	
  et	
  al.	
  Cell.	
  2008	
  Nov	
  14;135(4):702-­‐13.	
  	
  
Basic	
  residues	
  (+)	
  in	
  the	
  zeta	
  and	
  epsilon	
  tails	
  promote	
  membrane	
  associa&on	
  in	
  inac&ve	
  
TCR-­‐CD3	
  complexes	
  by	
  binding	
  to	
  acidic	
  lipids	
  (e.g.,	
  phospha&dylserine).	
  Membrane	
  
associa&on	
  buries	
  the	
  ITAM	
  tyrosines	
  in	
  the	
  membrane	
  and	
  denies	
  kinase	
  access,	
  
preven&ng	
  ac&va&on	
  in	
  the	
  absence	
  of	
  pMHC.	
  
P.	
  Anton	
  van	
  der	
  Merwe	
  &	
  Omer	
  Dushek	
  
Nature	
  Reviews	
  Immunology	
  11,	
  47-­‐55	
  (January	
  2011)	
  
Ini&a&on	
  of	
  TCR	
  signaling	
  is	
  likely	
  to	
  require	
  mechanical	
  forces	
  or	
  reorganiza&on	
  of	
  the	
  
lipid	
  bilayer	
  to	
  relieve	
  the	
  associa&on	
  of	
  CD3	
  complex	
  ITAM	
  domains	
  with	
  the	
  
membrane.	
  
Mechanical	
  ac&va&on	
  
	
  
Note	
  that	
  in	
  this	
  example,	
  the	
  
force	
  is	
  applied	
  perpendicular	
  
to	
  the	
  membrane	
  (piston-­‐like	
  
mo&on).	
  More	
  recently	
  
tangen&al	
  force	
  models	
  have	
  
been	
  considered	
  (covered	
  
later).	
  
Lipid	
  reorganiza&on	
  
Ca2+	
  influx	
  may	
  also	
  be	
  involved	
  in	
  
amplifying	
  ITAM	
  signaling	
  by	
  locally	
  
compe&ng	
  the	
  electrosta&c	
  
interac&ons	
  between	
  CD3	
  tails	
  and	
  
membrane.	
  
Problem:	
  	
  
	
  
How	
  much	
  cognate	
  pMHC	
  does	
  it	
  take	
  to	
  sAmulate	
  a	
  T	
  cell,	
  parAcularly	
  if	
  the	
  pMHC	
  is	
  
rare?	
  
	
  
The	
  story	
  starts	
  in	
  Switzerland	
  in	
  the	
  mid	
  90s…	
  
The	
  Serial	
  Triggering	
  Model	
  
	
  
Observed	
  by	
  flow	
  cytometry:	
  	
  
•  Number	
  of	
  pMHC	
  on	
  an	
  APC	
  
•  Number	
  of	
  internalized	
  TCR	
  (assumed	
  internalized	
  =	
  	
  
ac&vated)	
  	
  
àCalculated	
  #	
  TCR	
  ac&vated	
  per	
  pMHC	
  present	
  
	
  
Determined:	
  Each	
  pMHC	
  must	
  ac&vate	
  and	
  cause	
  the	
  
internaliza&on	
  of	
  up	
  to	
  200	
  TCR.	
  
	
  
àThis	
  led	
  to	
  the	
  Serial	
  Triggering	
  model	
  where	
  one	
  pMHC	
  
could	
  serially	
  ligate	
  and	
  ac&vate	
  many	
  different	
  TCRs.	
  	
  	
  
	
  
Implies:	
  agonis&c	
  pMHC	
  needs	
  short	
  bound	
  life&me	
  to	
  engage	
  
many	
  TCRs	
  during	
  the	
  course	
  of	
  a	
  T-­‐APC	
  encounter.	
  	
  	
  
	
  
T	
  cells	
  scan	
  over	
  DCs	
  for	
  cognate	
  pMHC.	
  They	
  must	
  find	
  it	
  in	
  
<10min	
  (50%	
  of	
  contacts	
  last	
  <	
  ~2.5m)	
  if	
  they	
  are	
  going	
  to	
  stop	
  
and	
  be	
  ac&vated.	
  
	
  
Is	
  serial	
  triggering	
  realis8c	
  during	
  scanning	
  T-­‐APC	
  interac8ons?	
  	
  
	
  
Must	
  know:	
  
What	
  is	
  the	
  life8me	
  of	
  an	
  agonis8c	
  TCR-­‐MHC	
  interac8on?	
  
Celli,	
  et	
  al.	
  JEM	
  vol.	
  202	
  no.	
  9	
  1271-­‐1278	
  	
  
(Valituu	
  et	
  al.	
  Nature.	
  1995	
  May	
  11;375(6527):148-­‐51.)	
  
	
  
Dura&on	
  of	
  T-­‐APC	
  encounters	
  
With	
  
cognate	
  
pMHC	
  
Without	
  
cognate	
  
pMHC	
  
Stone,	
  et	
  al.	
  Immunology.	
  2009	
  Feb;	
  126(2):	
  165–176.	
  	
  
TCR-­‐pMHC	
  Bound	
  
life&me	
  t1/2	
  range	
  from	
  
less	
  than	
  1	
  s	
  to	
  ~30	
  s	
  
Solu&on	
  binding	
  data	
  for	
  various	
  TCR/pMHC	
  complexes	
  
The	
  TCR-­‐pMHC	
  with	
  fastest	
  kine&cs	
  could	
  account	
  for	
  serial	
  triggering	
  leading	
  the	
  T	
  
cell	
  to	
  stop,	
  but	
  many	
  agonis&c	
  pMHC	
  seem	
  too	
  slow.	
  
For	
  instance,	
  a	
  pMHC	
  with	
  20	
  s	
  bound	
  life&mes	
  could	
  visit	
  <30	
  TCR	
  during	
  a	
  T-­‐APC	
  
encounter,	
  not	
  hundreds.	
  	
  
Xie,	
  et	
  al.	
  Nature	
  Immunology	
  13,	
  674–680	
  (2012)	
  
Is	
  serial	
  triggering	
  really	
  necessary?	
  	
  
	
  
Photocrosslinkable	
  pMHC	
  were	
  aeached	
  covalently	
  to	
  TCR	
  
during	
  a	
  T-­‐APC	
  interac&on.	
  
àThey	
  can’t	
  dissociate,	
  so	
  if	
  serial	
  triggering	
  is	
  required,	
  
these	
  “pMHC	
  (XL)”	
  should	
  be	
  less	
  s&mulatory	
  than	
  their	
  
standard,	
  non-­‐crosslinked	
  counterparts,	
  “pMHC	
  (Std)”.	
  
	
  
Result:	
  pMHC	
  (XL)	
  is	
  more	
  s8mulatory	
  than	
  pMHC	
  (Std).	
  
•  More	
  prolonged	
  Ca2+	
  flux	
  
•  Greater	
  IL-­‐2	
  secre&on	
  
	
  
	
  
While	
  serial	
  triggering	
  may	
  happen	
  to	
  some	
  extent,	
  it	
  does	
  
not	
  appear	
  to	
  be	
  so	
  essen&al	
  as	
  originally	
  thought.	
  
Are	
  there	
  any	
  thermodynamic	
  or	
  kineAc	
  parameters	
  derived	
  
from	
  soluAon	
  measurements	
  of	
  TCR-­‐pMHC	
  binding	
  that	
  
correlate	
  with	
  sAmulatory	
  potency?	
  
	
  
•  When	
  it	
  became	
  generally	
  feasible	
  to	
  measure	
  solu&on	
  binding	
  kine&cs	
  of	
  TCR-­‐
pMHC	
  with	
  commercially	
  available	
  SPR	
  instruments,	
  there	
  was	
  much	
  interest	
  
correla&ng	
  affinity,	
  kon	
  and	
  koff	
  of	
  pMHC	
  for	
  TCR	
  with	
  biological	
  ac&vity	
  
•  The	
  affinity	
  (in	
  solu&on	
  binding	
  measurements)	
  of	
  TCR	
  for	
  agonist	
  pMHC	
  is	
  
rela&vely	
  weak,	
  typically	
  in	
  the	
  Kd=1-­‐100uM	
  range.	
  
	
  
Mod.	
  From:	
  Stone,	
  et	
  al.	
  Immunology.	
  2009	
  Feb;	
  126(2):	
  165–176.	
  	
  
Bound	
  state	
  life&me	
  
There	
  were	
  correla&ons	
  between	
  
binding	
  affinity	
  and	
  kine&cs	
  in	
  some	
  
limited	
  systems	
  but	
  overall	
  there	
  was	
  no	
  
universally	
  strong	
  correla&on	
  between	
  
solu&on	
  binding	
  parameters	
  and	
  
ac&vity.	
  
Agonist,	
  weak	
  agonist	
  and	
  
antagonist	
  pMHC	
  can	
  have	
  very	
  
similar	
  solu&on	
  binding	
  affinity	
  and	
  
rate	
  constants	
  
More	
  recently,	
  single	
  molecule	
  imaging	
  invesAgaAon	
  has	
  pushed	
  
the	
  limit	
  of	
  resoluAon	
  to	
  allow	
  tesAng	
  triggering	
  capability	
  of	
  ever	
  
smaller	
  numbers	
  pMHC	
  
Manz,	
  et	
  al.	
  (groves	
  lab)	
  PNAS	
  May	
  31,	
  2011	
  vol.	
  108	
  no.	
  22	
  9089-­‐9094	
  	
  
Circles	
  and	
  triangles:	
  T	
  cells	
  with	
  
two	
  different	
  TCRs	
  
Titrated	
  bio&nylated	
  MCC-­‐pMHC	
  	
  
and	
  measured	
  number	
  pMHC	
  at	
  
synapse	
  (x	
  axis)	
  
Recorded	
  Ca2+	
  flux	
  in	
  T	
  cells	
  
Irvine,	
  et	
  al	
  (Davis	
  Lab)	
  Nature	
  419,	
  845-­‐849(24	
  October	
  2002)	
  
Ca2+	
  fluxes	
  can	
  be	
  triggered	
  by	
  
<10	
  cognate	
  pMHC	
  in	
  an	
  
immune	
  synapse	
  
Using	
  a	
  microfabricated	
  ar&ficial	
  bilayer	
  
that	
  constrained	
  the	
  number	
  of	
  pMHC	
  
that	
  TCRs	
  could	
  see	
  to	
  only	
  a	
  few,	
  Ca2+	
  
flux	
  in	
  the	
  T	
  cell	
  required	
  very	
  small	
  
numbers	
  of	
  pMHC	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  acAvate	
  signaling	
  in	
  response	
  to	
  very	
  
low	
  levels	
  of	
  pMHC?	
  
Pseudodimer	
  model:	
  dimers	
  of	
  congnate	
  and	
  non-­‐congate	
  pep&de	
  pMHC	
  promote	
  
signaling	
  
Molecular	
  MechanotransducAon:	
  pMHC	
  applies	
  a	
  torque	
  to	
  TCRαβ,	
  which	
  is	
  transmieed	
  
to	
  CD3εγ	
  and	
  CD3εδ	

Dwell	
  Time:	
  What	
  determines	
  if	
  a	
  pMHC-­‐TCR	
  interac&on	
  is	
  s&mulatory	
  is	
  how	
  long	
  the	
  
pMHC	
  “dwells”	
  near	
  a	
  single	
  TCR,	
  repe&&vely	
  binding	
  it.	

We’ll	
  look	
  at	
  three	
  mechanis&c	
  models	
  of	
  TCR	
  s&mula&on	
  arising	
  from	
  the	
  recent	
  literature.	
  
Note	
  that	
  these	
  models	
  are	
  not	
  mutually	
  exclusive	
  alterna&ves	
  but	
  may	
  be	
  looking	
  at	
  
different	
  aspects	
  of	
  the	
  same	
  process	
  as	
  different	
  research	
  groups	
  look	
  at	
  TCR	
  triggering	
  
from	
  diverse	
  backgrounds	
  and	
  perspec&ves.	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac8vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Pseudodimer	
  model:	
  dimers	
  of	
  cognate	
  and	
  non-­‐cognate	
  pep&de	
  pMHC	
  promote	
  
signaling	
  
P.	
  Anton	
  van	
  der	
  Merwe	
  &	
  Omer	
  Dushek	
  
Nature	
  Reviews	
  Immunology	
  11,	
  47-­‐55	
  (2011)	
  
CD4	
  contacts	
  an&genic	
  pMHC	
  
but	
  also	
  brings	
  lck	
  into	
  proximity	
  
to	
  TCR	
  interac&ng	
  with	
  
dimerized	
  “self”	
  pMHC,	
  
ac&va&ng	
  both	
  TCRs’	
  signaling	
  	
  
Cohran	
  et	
  al.	
  Immunity.	
  2000	
  Mar;12(3):241-­‐50.	
  
Soluble	
  single	
  chain	
  MHC	
  have	
  been	
  engineered	
  and	
  loaded	
  
with	
  defined	
  pep&des	
  that	
  are	
  chemically	
  x-­‐linked	
  to	
  the	
  MHC	
  
monomeric	
  
>=dimeric	
  
Monomeric	
  pMHC	
  bind	
  TCR	
  but	
  are	
  not	
  s&mulatory,	
  
but	
  >=dimer	
  pMHC	
  is	
  s&mulatory.	
  
à	
  Suggests	
  that	
  single	
  pMHC	
  are	
  not	
  s&mulatory	
  
and	
  you	
  have	
  to	
  at	
  least	
  present	
  a	
  dimer	
  of	
  pMHC	
  
(but	
  this	
  is	
  soluble	
  pMHC,	
  not	
  in	
  a	
  T-­‐APC	
  contact)	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac8vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Pseudodimer	
  model:	
  dimers	
  of	
  cognate	
  and	
  non-­‐cognate	
  pep&de	
  pMHC	
  promote	
  
signaling	
  
PepAdes	
  to	
  be	
  presented	
  to	
  5C.C7	
  (MCC	
  reacAve)	
  T	
  cells	
  
Krogsgaard	
  et	
  al.	
  Nature	
  434,	
  238-­‐243(10	
  March	
  2005)	
  
Standard	
  agonis&c	
  pep&de	
  
Single	
  AA	
  subs&tu&ons	
  (altered	
  K5)	
  
ER	
  chaperone	
  that	
  binds	
  this	
  MHC	
  prior	
  to	
  an&gen	
  pep&de	
  loading	
  
Self	
  pep&des	
  that	
  bind	
  this	
  MHC	
  
(Ca2+	
  flux)	
  
dimeric	
  pMHC	
  
•  K5	
  monomer	
  is	
  not	
  s&mulatory,	
  but	
  K5-­‐K5	
  is.	
  
•  Some	
  of	
  the	
  altered	
  K5	
  and	
  self	
  pMHC	
  (those	
  
that	
  are	
  recruited	
  to	
  T-­‐APC	
  contacts)	
  can	
  
support	
  signaling	
  from	
  heterodimers	
  with	
  K5.	
  
•  These	
  self	
  pMHC	
  are	
  not	
  agonis&c	
  when	
  
homodimerized.	
  
•  Some	
  altered	
  K5	
  and	
  self	
  pMHC	
  can’t	
  support	
  
signaling	
  with	
  K5	
  (i.e.,	
  b2m).	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac8vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Molecular	
  MechanotransducAon:	
  pMHC	
  applies	
  a	
  torque	
  to	
  TCRab,	
  which	
  is	
  transmieed	
  
to	
  CD3εγ	
  and	
  CD3εδ	

N-­‐glycans	
  
top	
  
side	
  FG	
  loop	
  	
  
of	
  b	
  chain	
  
TCRab	
  rises	
  above	
  shorter,	
  more	
  rigid	
  CD3	
  dimers	
  
FG	
  loop	
  of	
  TCRβ	
  C	
  domain	
  is	
  important	
  for	
  TCR	
  
ac&va&on,	
  is	
  well	
  structured	
  and	
  approaches	
  CD3εγ	
  	
  
Op&cal	
  traps	
  are	
  used	
  to	
  apply	
  
force	
  through	
  bead-­‐bound	
  
ligands	
  to	
  the	
  TCR.	
  Forces	
  
applied	
  are	
  in	
  the	
  10s	
  of	
  pN	
  
range,	
  typical	
  of	
  the	
  forces	
  
applied	
  at	
  cell-­‐cell	
  and	
  cell-­‐
substrate	
  interfaces	
  
Kim	
  et	
  al.	
  Front.	
  Immunol.,	
  18	
  April	
  2012	
  |	
  doi:	
  
10.3389/fimmu.2012.00076	
  	
  
Wang	
  et	
  al.	
  Immunol	
  Rev.	
  2012	
  Nov;	
  250(1):	
  102–119.	
  	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac&vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Molecular	
  MechanotransducAon:	
  pMHC	
  applies	
  a	
  torque	
  to	
  TCRab,	
  which	
  is	
  transmieed	
  
to	
  CD3εγ	
  and	
  CD3εδ	

Tangen&al	
  force	
  applied	
  through	
  a	
  trapped	
  ligand-­‐bead,	
  measured	
  Ca2+	
  flux	
  	
  
17A2=Non-­‐agonis8c	
  an8-­‐CD3	
  
With	
  force	
  
Without	
  	
  force	
  
Ligand	
  on	
  bead:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  non-­‐agonis&c	
  mAb	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pMHC	
  
Kim	
  et	
  al.	
  J	
  Biol	
  Chem.	
  2009	
  Nov	
  6;284(45):31028-­‐37.	
  
For	
  mAb	
  and	
  pMHC,	
  you	
  only	
  see	
  
Ca2+	
  signal	
  if	
  you	
  pull	
  tangen&ally	
  
on	
  the	
  bead-­‐ligand	
  
Model:	
  	
  
•  TCR-­‐pMHC	
  bonds	
  form	
  
•  T	
  cell	
  translates	
  rela&ve	
  to	
  APC	
  
•  Tangen&al	
  force	
  on	
  TCR	
  complex	
  via	
  pMHC	
  
(yellow)	
  
•  TCR	
  Cβ	
  (blue)	
  pivots	
  on	
  its	
  TM	
  domain	
  
•  FG	
  loop	
  (magenta)	
  pushes	
  down	
  on	
  CD3	
  
dimers	
  
•  Presumably	
  causes	
  changes	
  in	
  CD3	
  tails	
  that	
  
promote	
  their	
  ac&va&on	
  
Ca2+	
  
flux	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac8vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Dwell	
  Time:	
  What	
  determines	
  if	
  a	
  pMHC-­‐TCR	
  interac&on	
  is	
  s&mulatory	
  is	
  how	
  long	
  the	
  
pMHC	
  “dwells”	
  near	
  a	
  single	
  TCR,	
  repe&&vely	
  binding	
  it.	

•  This	
  concept	
  is	
  different	
  from	
  serial	
  triggering	
  (one	
  pMHC	
  binds	
  and	
  ac&vates	
  many	
  different	
  TCR	
  
in	
  series).	
  
•  Dwell	
  &me	
  considers	
  the	
  &me	
  that	
  a	
  pMHC	
  spends	
  bound	
  to	
  a	
  single	
  TCR,	
  dissociates,	
  but	
  then	
  
rebinds	
  that	
  TCR	
  before	
  diffusing	
  away.	
  	
  
•  In	
  this	
  model,	
  a	
  strongly	
  agonis&c	
  pMHC	
  would	
  be	
  able	
  to	
  dwell	
  for	
  a	
  long	
  &me,	
  thus	
  integra&ng	
  a	
  
lot	
  of	
  signaling	
  through	
  the	
  bound	
  TCR.	
  
	
  
Dwell	
  &me	
  depends	
  on:	
  	
  
•  TCR/pMHC	
  binding	
  kine&cs	
  (determines	
  half-­‐life	
  of	
  bound	
  complex)	
  	
  
AND	
  	
  
•  Diffusion	
  of	
  TCR	
  and	
  MHC	
  in	
  the	
  membrane	
  (determines	
  how	
  likely	
  it	
  is	
  that	
  TCR	
  and	
  MHC	
  will	
  
move	
  too	
  far	
  apart	
  to	
  bind	
  before	
  rebinding	
  can	
  occur)	
  
Govern	
  &	
  Chakraborty.	
  Immunity.	
  2010	
  Feb	
  26;32(2):141-­‐2.	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac8vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Dwell	
  Time:	
  What	
  determines	
  if	
  a	
  pMHC-­‐TCR	
  interac&on	
  is	
  s&mulatory	
  is	
  how	
  long	
  the	
  
pMHC	
  “dwells”	
  near	
  a	
  single	
  TCR,	
  repe&&vely	
  binding	
  it.	

•  In	
  solu&on,	
  you	
  would	
  never	
  see	
  TCR	
  dwelling	
  on	
  pMHC	
  because	
  solu&on	
  diffusion	
  is	
  
much	
  too	
  fast.	
  Typically	
  approx	
  tens	
  to	
  100	
  um2/s	
  for	
  proteins.	
  
•  In	
  a	
  membrane,	
  transmembrane	
  protein	
  diffusion	
  is	
  much	
  slower	
  (and	
  constrained	
  to	
  
the	
  2D	
  bilayer).	
  	
  Typical	
  protein	
  diffusion	
  in	
  membranes	
  is	
  ~0.1	
  um^2/s.	
  
	
   Known:	
  kon	
  and	
  diffusion	
  coefficients	
  
Based	
  on	
  a	
  model	
  of	
  binding+diffusion	
  in	
  a	
  
membrane,	
  calculated	
  a	
  predicted	
  average	
  
number	
  of	
  rebindings.	
  
	
  
Note	
  that	
  the	
  predicted	
  number	
  of	
  
rebindings	
  is	
  rela&vely	
  small	
  
	
  
Govern	
  et	
  al	
  used	
  two	
  different	
  TCRs	
  and	
  a	
  
variety	
  of	
  pMHC	
  with	
  known	
  affini&es	
  and	
  
binding	
  rate	
  constants	
  for	
  those	
  TCRs	
  as	
  well	
  as	
  
known	
  ability	
  to	
  s&mulate	
  T	
  cell	
  prolifera&on	
  
and	
  cytokine	
  produc&on.	
  
Govern	
  et	
  al.	
  Proc	
  Natl	
  Acad	
  Sci	
  U	
  S	
  A.	
  2010	
  May	
  11;107(19):8724-­‐9.	
  
How	
  does	
  the	
  TCR	
  know	
  to	
  ac8vate	
  signaling	
  in	
  response	
  to	
  very	
  low	
  levels	
  of	
  pMHC?	
  
Dwell	
  Time:	
  What	
  determines	
  if	
  a	
  pMHC-­‐TCR	
  interac&on	
  is	
  s&mulatory	
  is	
  how	
  long	
  the	
  
pMHC	
  “dwells”	
  near	
  a	
  single	
  TCR,	
  repe&&vely	
  binding	
  it.	

Govern	
  et	
  al.	
  Proc	
  Natl	
  Acad	
  Sci	
  U	
  S	
  A.	
  2010	
  May	
  11;107(19):8724-­‐9.	
  
They	
  knew	
  the	
  kon	
  and	
  diffusion	
  coefficients	
  of	
  the	
  TCR	
  and	
  pMHC	
  used.	
  	
  	
  
From	
  this	
  they	
  could	
  use	
  a	
  model	
  of	
  binding/diffusion	
  in	
  a	
  2D	
  membrane	
  to	
  calculate	
  the	
  
dwell	
  &me	
  of	
  each	
  pMHC/TCR	
  (	
  “ta”).	
  
ta	
  for	
  TCR/pMHCs	
  was	
  the	
  best	
  predictor	
  of	
  T	
  cell	
  prolifera)ve	
  response.	
  
EC50	
  (uM)	
  
For	
  prolifera&on	
  
pMHC	
  agonis&c	
  
strength:	
  
	
  
Strongest	
  
Moderate	
  
weakest	
  
Dwell	
  &me	
  theory	
  of	
  TCR-­‐pMHC	
  
interac&ons	
  
•  Depends	
  on	
  
– Forward	
  kine&c	
  rate	
  constant	
  for	
  binding	
  	
  
– Diffusion	
  of	
  TCR	
  and	
  pMHC	
  
Dwell	
  Time	
  Modeling:	
  Goals	
  
•  How	
  does	
  the	
  membrane	
  diffusion	
  environment	
  
influence	
  TCR-­‐pMHC	
  interac&on	
  dynamics?	
  
–  Does	
  changing	
  D	
  (diffusion	
  coefficient)	
  from	
  solu&on	
  
values	
  (100	
  um^2/s)	
  to	
  membrane	
  values	
  (0.1	
  um^2/
s)	
  impact	
  molecular	
  dwell	
  &mes	
  
•  How	
  does	
  changing	
  the	
  forward	
  rate	
  constant	
  for	
  
binding	
  influence	
  TCR-­‐pMHC	
  interac&on	
  
dynamics?	
  
–  Does	
  changing	
  pON	
  (probability	
  of	
  binding	
  in	
  one	
  
model	
  step)	
  from	
  lowàmoderateàhigh	
  values	
  
impact	
  molecular	
  dwell	
  &mes	
  
How	
  the	
  
model	
  
sets	
  up	
  
and	
  runs	
  
Ini&alize	
  
and	
  
execute	
  
model	
  
Control	
  
how	
  
binding	
  
and	
  
diffusion	
  
works	
  
Quan&ta&ve	
  outputs	
  
about	
  binding	
  
Size	
  and	
  &me	
  
informa&on	
  about	
  
model	
  you’ve	
  run	
  
Free	
  TCR	
  (red	
  circle)	
  
Bound	
  TCR	
  (yellow	
  circle)	
  
Free	
  pMHC	
  
(green	
  
square)	
  
Agent	
  based	
  model	
  of	
  TCR	
  and	
  pMHC	
  
binding	
  in	
  apposed	
  membranes	
  
Run	
  the	
  Netlogo	
  model	
  of	
  TCR-­‐pMHC	
  interac&on	
  with	
  
•  D=0.1,	
  100	
  um^2/s	
  
•  Low,	
  moderate	
  and	
  high	
  probability	
  of	
  binding	
  
RESULTS	
  
Triplicate	
  runs	
  
pOFF=0.01	
  in	
  all	
  
250s	
  dura&on,	
  10ms	
  &me	
  resolu&on	
  
10nm	
  binding	
  radius	
  
100	
  TCRs	
  and	
  pMHCs	
  in	
  ~15	
  um^2	
  membrane	
  
D	
  
Diffusion	
  Coefficient	
  (um^2/s)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Membrane	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Solu&on	
  
Now	
  that	
  we’ve	
  considered	
  the	
  state	
  of	
  knowledge	
  regarding	
  
molecular	
  TCR-­‐pMHC	
  interacAons,	
  let’s	
  think	
  about	
  the	
  cell-­‐cell	
  
interface	
  environment	
  in	
  which	
  these	
  interacAons	
  occur…	
  
	
  
What	
  are	
  some	
  important	
  features	
  of	
  this	
  environment	
  that	
  bear	
  on	
  signaling	
  processes?	
  
Achieving	
  close	
  
cellular	
  apposiAon	
  
Micro/nanoscale	
  
organizaAon	
  of	
  signaling	
  
components	
  
Mechanics	
  of	
  the	
  
Immune	
  Synapse	
  
Achieving	
  close	
  cellular	
  apposiAon.	
  	
  	
  
What	
  are	
  the	
  challenges?	
  
Huppa,	
  Davis.	
  Nature	
  Reviews	
  Immunology	
  3,	
  973-­‐983	
  (December	
  2003)	
  	
  
Molecular	
  InteracAons	
  at	
  the	
  
T-­‐APC	
  immunological	
  synapse	
  
This	
  figure	
  helps	
  to	
  summarize	
  cell	
  
biological	
  informa&on,	
  and	
  to	
  be	
  fair,	
  that	
  
was	
  all	
  it	
  was	
  intended	
  to	
  do	
  in	
  the	
  review	
  
cited	
  below.	
  
	
  
But	
  from	
  the	
  standpoint	
  of	
  physical	
  
interac&on	
  between	
  two	
  cells,	
  it	
  has	
  some	
  
major	
  omissions	
  and	
  inaccurate	
  
representa&ons.	
  
	
  
What	
  aspects	
  of	
  the	
  immune	
  cell	
  interface	
  
are	
  not	
  represented	
  or	
  not	
  accurately	
  
represented	
  here?	
  
Achieving	
  close	
  cellular	
  apposiAon.	
  	
  What	
  are	
  the	
  challenges?	
  
Casasnovas	
  et	
  al.	
  Proc	
  Natl	
  Acad	
  
Sci	
  U	
  S	
  A.	
  1998;95(8):4134-­‐9.	
  
Yin	
  et	
  al.	
  Proc	
  Natl	
  Acad	
  Sci	
  U	
  S	
  
A.	
  2012	
  Apr	
  3;109(14):5405-­‐10.	
  
LFA-­‐1	
  
ICAM-­‐1	
  
dimer	
  
There	
  is	
  no	
  glycocalyx	
  
illustrated	
  on	
  either	
  cell,	
  but	
  
this	
  is	
  an	
  important	
  repulsive	
  
barrier	
  that	
  resists	
  apposing	
  
two	
  cells	
  closer	
  than	
  
~100nm.	
  
40	
  nm	
  
T-­‐APC	
  adhesion	
  via	
  
LFA-­‐1/ICAM-­‐1	
  is	
  
important	
  for	
  
stabilizing	
  the	
  cell-­‐cell	
  
interface,	
  but	
  this	
  
would	
  space	
  the	
  cell	
  
membranes	
  ~40nm	
  
apart	
  
The	
  TCR-­‐pMHC	
  complex	
  
is	
  only	
  ~15nm,	
  so	
  
engagement	
  of	
  TCR	
  will	
  
require	
  membranes	
  to	
  be	
  
pushed	
  into	
  ~15nm	
  
separa&on.	
  
Achieving	
  close	
  cellular	
  apposiAon.	
  	
  What	
  is	
  the	
  solu8on?	
  
T	
  cell	
  invadopod	
  like	
  protrusions	
  (ILP)	
  
Sage	
  et	
  al.	
  J	
  Immunol.	
  2012	
  Apr	
  15;188(8):3686-­‐99.	
  	
  
Top:	
  T	
  cells	
  siung	
  on	
  an	
  Ag-­‐pulsed	
  APC	
  probe	
  the	
  APC	
  with	
  ILPs	
  even	
  
before	
  Ca2+	
  flux.	
  Red	
  arrows	
  show	
  sites	
  where	
  membrane	
  targeted	
  
fluorescent	
  protein	
  in	
  the	
  T	
  cell	
  is	
  pushed	
  into	
  the	
  APC	
  membrane.	
  	
  
	
  
Le€:	
  TEM	
  image	
  shows	
  the	
  interdigita&on	
  of	
  the	
  synapse	
  between	
  APC	
  
and	
  T	
  cell,	
  including	
  sites	
  of	
  apparent	
  T	
  cell	
  ILP	
  ac&vity	
  (red	
  arrows).	
  
ILPs	
  are	
  ac&n	
  dependent	
  and	
  are	
  thought	
  to	
  push	
  
the	
  T	
  cell	
  and	
  APC	
  membranes	
  close	
  enough	
  to	
  
engage	
  TCR-­‐pMHC	
  binding.	
  
Achieving	
  close	
  cellular	
  apposiAon.	
  	
  What	
  is	
  the	
  solu8on?	
  
Kine&c	
  segrega&on.	
  	
  
Sequen8al	
  engagement	
  of	
  different	
  sized	
  receptors	
  accompanied	
  by	
  reorganiza8on	
  of	
  
their	
  membrane	
  distribu8ons.	
  
ICAM-­‐1	
  LFA-­‐1	
  
T	
  
APC	
  
TCR	
  
pMHC	
  
	
  	
  	
  	
  CD45	
  	
  	
  	
  	
  	
  	
  
James,	
  vale.	
  Nature.	
  2012	
  Jul	
  5;487(7405):64-­‐9.	
  
ICAM-­‐1	
  
LFA-­‐1	
  
T	
  
APC	
  
TCR	
  
pMHC	
  
	
  	
  	
  	
  CD45	
  	
  	
  	
  	
  	
  	
  
During	
  ini&al	
  T-­‐APC	
  adhesion,	
  large	
  
ICAM-­‐1/LFA-­‐1	
  interac&ons	
  predominate.	
  	
  
	
  
TCR	
  can’t	
  be	
  engaged	
  at	
  this	
  distance.	
  
Large	
  nega&ve	
  regulatory	
  phosphatases	
  
are	
  allowed	
  in	
  the	
  contact.	
  	
  
ILPs	
  form	
  small	
  close	
  contacts	
  
where	
  TCR-­‐pMHC	
  can	
  engage.	
  
Adhesive	
  interac&ons	
  between	
  
CD2	
  and	
  CD58	
  can	
  stabilize	
  
these	
  close	
  contacts	
  (CD2/
CD58	
  is	
  about	
  the	
  same	
  
intermembrane	
  length	
  as	
  TCR/
MHC).	
  
As	
  close	
  contacts	
  grow,	
  the	
  energy	
  
cost	
  of	
  bending	
  membranes	
  is	
  
balanced	
  by	
  mul&ple	
  binding	
  
interac&ons	
  to	
  stabilize	
  and	
  
enlarge	
  areas	
  of	
  TCR	
  engagement.	
  
Large	
  ectodomain	
  proteins	
  are	
  
excluded	
  (e.g.,	
  CD45)	
  
Micro/nanoscale	
  organizaAon	
  of	
  signaling.	
  
Recruitment	
  of	
  LAT	
  to	
  ac&vated	
  TCR	
  complexes	
  is	
  a	
  key	
  early	
  event	
  in	
  TCR	
  signaling.	
  
How	
  do	
  we	
  prevent	
  LAT	
  from	
  prematurely	
  assembling	
  at	
  TCR	
  complexes?	
  
Methods: fluorescence super resolution imaging and TEM with gold beads on membrane sheets and
whole cells.
Both methods are in good agreement, so I’m showing just the TEM immunogold.
•  TCR complex has been shown to form nanoclusters in resting T cells.
•  Lat forms similarly sized clusters.
•  The size of both clusters is in the 40-300nm range.
•  Estimated 5-20 TCR per cluster
Small	
  
CD3ζ	

Large	
  
Lat	
  
Non-­‐ac&vated	
  T	
  cell	
  membrane	
   ac&vated	
  T	
  cell	
  membrane	
  
Lillemeier,	
  et	
  al.	
  Nat	
  Immunol.	
  2010	
  Jan;11(1):90-­‐6.	
  	
  
Micro/nanoscale	
  organizaAon	
  of	
  signaling.	
  
Top:	
  Ripley’s	
  func&ons	
  and	
  their	
  deriva&ves	
  are	
  a	
  way	
  to	
  
show	
  that	
  objects	
  (i.e.,	
  small	
  and	
  large	
  immunogold	
  beads)	
  
are	
  clustered	
  on	
  certain	
  length	
  scales.	
  	
  
•  The	
  peak	
  of	
  the	
  Ripley’s	
  L(r)-­‐r	
  curve	
  is	
  the	
  length	
  scale	
  
of	
  greatest	
  clustering.	
  
•  Ac&va&on	
  on	
  cognate	
  pMHC	
  surfaces	
  increases	
  the	
  
amount	
  and	
  length	
  scale	
  of	
  clustering	
  for	
  CD3	
  and	
  Lat.	
  
	
  
Boeom:	
  Bivariate	
  Ripley’s	
  sta&s&cs	
  show	
  the	
  probability	
  
that	
  CD3	
  and	
  Lat	
  are	
  clustered	
  together	
  at	
  different	
  length	
  
scales.	
  
•  The	
  shaded	
  areas	
  represent	
  the	
  regions	
  of	
  the	
  plot	
  
where	
  the	
  observed	
  distribu&on	
  of	
  CD3	
  and	
  Lat	
  are	
  not	
  
dis&nguishable	
  from	
  random	
  with	
  99%	
  confidence.	
  	
  
•  If	
  the	
  lines	
  go	
  outside	
  of	
  these	
  regions,	
  then	
  the	
  paeern	
  
colocaliza&on	
  of	
  CD3	
  and	
  Lat	
  shows	
  evidence	
  of	
  
clustering	
  (above	
  the	
  shaded	
  area)	
  or	
  segrega&on	
  
(below	
  the	
  shaded	
  area).	
  	
  
•  On	
  a	
  non-­‐ac&va&ng	
  surface,	
  Lat	
  clusters	
  are	
  segregated	
  
from	
  CD3.	
  
•  On	
  an	
  ac&va&ng	
  surface,	
  they	
  become	
  co-­‐aggregated	
  
Micro/nanoscale	
  organizaAon	
  of	
  signaling.	
  
Complimentary	
  evidence	
  of	
  Lat	
  and	
  TCR	
  complex	
  co-­‐
aggrega&on	
  a€er	
  ac&va&on	
  came	
  from	
  fluorescence	
  
cross-­‐correla&on	
  spectroscopy	
  (FCCS)	
  measurements.	
  	
  
	
  
Orange	
  lines	
  show	
  the	
  likelihood	
  of	
  observing	
  co-­‐
diffusion	
  of	
  Lat	
  and	
  CD3ζ	
  in	
  living	
  cell	
  membranes.	
  
	
  
•  CD3/Lat	
  co-­‐diffusion	
  is	
  not	
  seen	
  in	
  T	
  cells	
  on	
  a	
  non-­‐
ac&va&ng	
  ar&ficial	
  membrane.	
  
•  Placing	
  agonis&c	
  ligand	
  on	
  the	
  bilayer	
  markedly	
  
increases	
  the	
  co-­‐diffusion	
  of	
  TCR	
  complex	
  and	
  Lat.	
  
Therefore,	
  several	
  lines	
  of	
  evidence	
  show	
  that:	
  	
  
	
  
1.  TCR	
  and	
  the	
  key	
  signaling	
  adaptor	
  Lat	
  are	
  preclustered	
  in	
  	
  T	
  cell	
  membranes	
  on	
  tens	
  
to	
  hundreds	
  of	
  nanometers	
  scales	
  .	
  	
  
2.  Prior	
  to	
  s&mula&on,	
  Lat	
  and	
  TCR	
  complex	
  are	
  segregated	
  from	
  one	
  another	
  in	
  
separate	
  nanostructures.	
  	
  
3.  When	
  a	
  cognate	
  pMHC	
  is	
  seen,	
  Lat	
  becomes	
  co-­‐aggregated	
  with	
  TCR	
  nanoclusters.	
  	
  
Mechanics	
  of	
  the	
  immune	
  synapse.	
  
So,	
  TCR	
  organizes	
  into	
  clusters	
  when	
  ac&vated.	
  
What	
  happens	
  to	
  TCR	
  clusters	
  in	
  the	
  immunological	
  synapse?	
  
cSMAC	
  
pSMAC	
  
dSMAC	
  
TCR	
  
TCR	
  
The	
  cSMAC	
  is	
  rich	
  in	
  TCR,	
  while	
  CD45	
  and	
  other	
  nega&ve	
  
regulatory	
  phosphatases	
  tend	
  to	
  be	
  in	
  the	
  dSMAC.	
  
This	
  ini&ally	
  led	
  to	
  the	
  idea	
  that	
  TCR	
  signaling	
  was	
  occurring	
  in	
  
the	
  cSMAC.	
  
CD45	
  	
  
Subsequent	
  imaging	
  work	
  at	
  high	
  spa&al	
  and	
  temporal	
  
resolu&on	
  clarified	
  that	
  signaling	
  from	
  the	
  TCR	
  actually	
  
happens	
  as	
  ac&vated	
  TCR	
  forms	
  into	
  microclusters,	
  largely	
  in	
  
the	
  pSMAC,	
  during	
  the	
  ini&al	
  spreading	
  phase	
  of	
  synapse	
  
forma&on.	
  	
  In	
  this	
  phase	
  TCR	
  is	
  sampling	
  for	
  an&gen	
  and	
  
forming	
  microclusters.	
  
These	
  TCR	
  microclusters	
  then	
  move	
  laterally	
  into	
  the	
  cSMAC.	
  	
  
This	
  happens	
  when	
  the	
  synapse	
  stops	
  spreading	
  and	
  develops	
  
a	
  strongly	
  contrac&le	
  pSMAC.	
  	
  In	
  this	
  phase,	
  TCR	
  is	
  signaling,	
  
causing	
  the	
  cell	
  to	
  stop	
  and	
  integrate	
  signal	
  and	
  eventually	
  
being	
  downregulated.	
  
We	
  will	
  consider:	
  
How	
  do	
  TCR	
  microclusters	
  move?	
  
What	
  actually	
  happens	
  in	
  the	
  pSMAC?	
  
How	
  do	
  TCR	
  microclusters	
  move?	
  
An	
  actomyosin	
  flow	
  
develops	
  in	
  the	
  pSMAC.	
  
This	
  is	
  similar	
  to	
  the	
  
“tractor”	
  that	
  forms	
  at	
  
the	
  leading	
  edge	
  of	
  
migra&ng	
  cells	
  and	
  moves	
  
them	
  forward.	
  
F-­‐ac&n	
  forms	
  into	
  
bundles	
  at	
  the	
  edge	
  of	
  
the	
  synapse	
  and	
  myosin	
  
IIA	
  mediated	
  contrac&on	
  
causes	
  the	
  F-­‐ac&n	
  to	
  
contract	
  inward	
  toward	
  
the	
  cSMAC.	
  
Recruitment	
  of	
  GEFs	
  to	
  the	
  synapse	
  is	
  important	
  for	
  upregula&ng	
  Rac	
  and	
  Cdc42	
  GTPase	
  
dependent	
  ac&n	
  nuclea&on	
  (e.g.,	
  via	
  Arp2/3	
  complex).	
  	
  Rho	
  GTPase	
  regulates	
  myosin	
  IIA	
  
mediated	
  contrac&on	
  in	
  the	
  pSMAC.	
  
Babich	
  et	
  al.	
  2012	
  //	
  JCB	
  vol.	
  197	
  no.	
  6	
  775-­‐787	
  	
  
Kumari	
  et	
  al.	
  Biochim	
  Biophys	
  Acta	
  2014	
  Feb;1838(2):546-­‐56.	
  
Mechanics	
  of	
  the	
  immune	
  synapse.	
  
How	
  do	
  TCR	
  microclusters	
  move?	
  
Ar&ficial	
  membranes	
  have	
  been	
  made	
  with	
  underlying	
  
metal	
  barriers.	
  	
  
When	
  transmembrane	
  proteins	
  (i.e.,	
  TCR	
  complex)	
  
encounter	
  the	
  barrier,	
  they	
  must	
  go	
  around,	
  not	
  
through.	
  	
  
	
  
Examples	
  of	
  TCR	
  microcluster	
  trajectories	
  as	
  they	
  move	
  
toward	
  the	
  cSMAC	
  and	
  encounter	
  barriers	
  show	
  that	
  
the	
  TCR	
  gets	
  hung	
  up	
  on	
  the	
  barriers	
  and	
  must	
  slide	
  
along	
  the	
  barriers	
  to	
  con&nue	
  centripetal	
  mo&on.	
  
	
  
In	
  contrast,	
  actomyosin	
  mo&on	
  is	
  beneath	
  the	
  
membrane	
  and	
  thus	
  not	
  effected	
  by	
  the	
  barriers.	
  	
  Ac&n	
  
flows	
  past	
  the	
  barriers.	
  
	
  
This	
  suggests	
  “fric&onal	
  coupling”	
  of	
  the	
  actomyosin	
  
flow	
  to	
  the	
  TCR	
  complex	
  as	
  a	
  mechanism	
  of	
  TCR	
  cluster	
  
mobility.	
  
The	
  exact	
  mechanism	
  of	
  coupling	
  is	
  currently	
  unknown.	
  
Mechanics	
  of	
  the	
  immune	
  synapse.	
  
Demond	
  et	
  al.	
  Biophys	
  J.	
  2008	
  Apr	
  15;94(8):3286-­‐92.	
  	
  
Do	
  moving	
  TCR	
  clusters	
  transduce	
  force	
  as	
  part	
  of	
  their	
  signaling?	
  
Mechanics	
  of	
  the	
  immune	
  synapse.	
  
TCR-­‐pMHCs	
  being	
  dragged	
  from	
  pSMAC	
  to	
  cSMAC	
  by	
  actomyosin	
  flow	
  will	
  experience	
  force	
  
in	
  the	
  piconewton	
  range.	
  
T	
  cells	
  respond	
  with	
  greater	
  TCR	
  signaling	
  when	
  presented	
  with	
  an&-­‐CD3	
  on	
  s&ff	
  surfaces	
  
rela&ve	
  to	
  so€er	
  surfaces,	
  which	
  may	
  relate	
  to	
  the	
  amount	
  of	
  force	
  experienced	
  by	
  the	
  TCR.	
  
Huppa,	
  etal.	
  Nature.	
  2010	
  Feb	
  18;463(7283):963-­‐7.	
  
Time	
  (sec)	
  of	
  TCR-­‐agonist	
  pMHC	
  interacAon	
  
Huppa	
  et	
  al	
  used	
  a	
  FRET	
  probe	
  between	
  a	
  pMHC	
  and	
  an&-­‐
TCR	
  monovalent	
  an&body.	
  FRET	
  signal	
  was	
  only	
  observed	
  
when	
  the	
  TCR-­‐pMHC	
  complex	
  was	
  bound,	
  allowing	
  
measurements	
  of	
  TCR-­‐pMHC	
  binding	
  &mes.	
  
Found	
  that	
  synap&c	
  TCR-­‐pMHC	
  binding	
  &mes	
  are	
  3-­‐12	
  &mes	
  
shorter	
  than	
  the	
  solu&on	
  value.	
  	
  
F-­‐ac&n	
  inhibitors	
  (prevents	
  actomyosin	
  transport	
  of	
  TCR	
  
clusters)	
  increased	
  TCR-­‐pMHC	
  binding	
  &mes.	
  	
  
	
  
Suggested	
  that	
  the	
  force	
  applied	
  to	
  TCRs	
  in	
  the	
  synapse	
  as	
  
they	
  are	
  dragged	
  by	
  actomyosin	
  flow	
  can	
  shorten	
  their	
  half	
  
&me	
  of	
  binding	
  to	
  pMHC.	
  
What	
  is	
  the	
  mechanical	
  nature	
  of	
  the	
  TCR-­‐agonist	
  pMHC	
  bond?	
  
Mechanics	
  of	
  the	
  immune	
  synapse.	
  
Depoil	
  and	
  dus&n.	
  Trends	
  Immunol.	
  2014	
  Nov	
  17;35(12):597-­‐603.	
  
Liu	
  et	
  al.	
  Cell.	
  2014	
  Apr	
  10;157(2):357-­‐68.	
  
OT1	
  
Types	
  of	
  bonds	
  
•  Slip	
  bonds	
  are	
  linearly	
  more	
  likely	
  to	
  
break	
  (shorter	
  life&me)	
  with	
  increasing	
  
force.	
  
•  Catch-­‐slip	
  bonds	
  become	
  stronger	
  
(longer	
  life&me)	
  with	
  increasing	
  force,	
  
but	
  only	
  up	
  to	
  their	
  rupture	
  force	
  (then	
  
they	
  become	
  slip	
  bonds).	
  
	
  
Biomolecular	
  Force	
  Probe	
  (BFP)	
  
•  A	
  rigid	
  bead	
  is	
  coated	
  with	
  a	
  low	
  density	
  
of	
  pMHC	
  such	
  that	
  only	
  a	
  single	
  pMHC	
  
will	
  contact	
  a	
  T	
  cell	
  when	
  the	
  bead	
  
touches	
  it.	
  
•  The	
  bead	
  is	
  aeached	
  to	
  an	
  RBC.	
  
•  The	
  RBC/bead	
  is	
  repeatedly	
  brought	
  up	
  
to	
  the	
  T	
  cell	
  membrane,	
  then	
  retracted.	
  	
  
•  The	
  force	
  applied	
  to	
  the	
  TCR	
  can	
  be	
  
calculated	
  from	
  the	
  RBCs	
  membrane	
  
deforma&on	
  during	
  retrac&on.	
  
What	
  is	
  the	
  mechanical	
  nature	
  of	
  the	
  TCR-­‐agonist	
  pMHC	
  bond?	
  
Mechanics	
  of	
  the	
  immune	
  synapse.	
  
Liu	
  et	
  al.	
  Cell.	
  2014	
  Apr	
  10;157(2):357-­‐68.	
  
Antagonist	
  pMHC	
  
Agonis&c	
  pMHC	
  
Agonist	
  
pMHC	
  
strength	
  
Le€:	
  Agonis&c	
  pMHC	
  consistently	
  display	
  catch-­‐slip	
  bonding	
  with	
  TCR.	
  The	
  rupture	
  
force	
  is	
  correlated	
  with	
  the	
  agonis&c	
  “strength”	
  of	
  the	
  pep&de.	
  
Right:	
  Antagonis&c	
  pep&des	
  form	
  slip	
  bonds	
  with	
  TCR.	
  
	
  
T	
  cells	
  integrate	
  the	
  total	
  &me	
  single	
  TCRs	
  are	
  subjected	
  to	
  catch	
  bonded	
  pulling	
  force	
  
(10	
  pN,	
  OVA	
  pep&de).	
  Strong	
  T	
  cell	
  Ca2+	
  fluxes	
  require	
  integra&on	
  of	
  10	
  s	
  of	
  catch	
  
bonded	
  &me	
  per	
  minute	
  of	
  total	
  BFP	
  s&mula&on.	
  
Why	
  does	
  it	
  all	
  ma]er?	
  
Mechanis&c	
  Underpinning	
  for	
  T	
  cell	
  Sensi&vity	
  
These	
  studies	
  help	
  us	
  to	
  understand	
  the	
  physical	
  parameters	
  that	
  define	
  whether	
  a	
  
pMHC	
  will	
  be	
  s&mulatory	
  or	
  not.	
  They	
  also	
  help	
  us	
  to	
  understand	
  the	
  exquisite	
  
sensi&vity	
  of	
  T	
  cells	
  for	
  low	
  densi&es	
  of	
  agonist	
  pMHC.	
  	
  	
  
	
  
Sensi&vity	
  is	
  important	
  because	
  professional	
  APCs	
  like	
  DCs	
  might	
  not	
  express	
  large	
  
densi&es	
  of	
  a	
  par&cular	
  cognate	
  pMHC	
  for	
  a	
  T	
  cell.	
  	
  	
  
Also,	
  a	
  scanning	
  T	
  cell/APC	
  interac&on	
  in	
  the	
  lymph	
  node	
  is	
  rather	
  short	
  lived	
  
(~minutes),	
  so	
  the	
  T	
  cell	
  needs	
  to	
  be	
  able	
  to	
  signal	
  and	
  stop	
  migra&ng	
  if	
  even	
  a	
  small	
  
amount	
  of	
  cognate	
  pMHC	
  is	
  found.	
  
	
  
Possible	
  Mechanism	
  of	
  Quan&ta&ve	
  T	
  cell	
  Help	
  for	
  B	
  cell	
  Matura&on.	
  
Review	
  re:	
  role	
  of	
  IS	
  in	
  T	
  cell	
  help	
  for	
  B	
  cells-­‐-­‐Dus&n.	
  Mol	
  Cell.	
  2014	
  Apr	
  24;54(2):255-­‐62.	
  
B	
   T	
  Ag	
  
Y	
  Y	
  
AnAgen	
  
gathering	
  
Efficiency	
  α	
  
BCR	
  affinity	
  
AnAgen	
  
presentaAon	
  
#	
  pMHC	
  α	
  	
  
BCR	
  affinity	
  
TCR	
  signals,	
  	
  
acAvaAon	
  
#	
  CD40L	
  α	
  	
  
#	
  pMHC	
  seen	
  
T	
   B	
  
T	
  cell	
  help	
  
#	
  CD40L	
  α	
  	
  
B	
  cell	
  prolif	
  
A	
  2014	
  ar&cle	
  suggested	
  that	
  exocytosis	
  of	
  TCR	
  in	
  the	
  cSMAC	
  may	
  
contribute	
  to	
  long-­‐term	
  regula&on	
  of	
  B	
  cell	
  responses	
  to	
  T	
  cell	
  
help	
  las&ng	
  beyond	
  the	
  &me	
  frame	
  of	
  direct	
  T-­‐B	
  interac&ons.	
  
Possible	
  Mechanism	
  of	
  Quan&ta&ve	
  T	
  cell	
  Help	
  for	
  B	
  cell	
  Matura&on.	
  
Choudhuri	
  et	
  al.	
  Nature.	
  2014	
  Mar	
  6;507(7490):118-­‐23.	
  
TCR	
  F-­‐acAn	
  
3um	
  
TCR	
  int.	
  overlay	
  TEM	
  
500nm	
  
Vesicles	
  	
  T	
  cell	
  PM	
  
Fluorescence-­‐TEM	
  correla&ve	
  study:	
  
TCR	
  intensity	
  is	
  found	
  where	
  cSMAC	
  
microvesicles	
  are	
  seen	
  	
  
Tg	
  TCR	
  T	
  cell	
  on	
  ar&ficial	
  membrane	
  with	
  cognate	
  
pMHC	
  and	
  ICAM-­‐1.	
  Microvesicles	
  are	
  present	
  
outside	
  the	
  T	
  cell	
  near	
  the	
  cSMAC	
  loca&on.	
  
Microvesicles	
  are	
  produced	
  by	
  ESCRT-­‐dependent	
  
exocytosis	
  (similar	
  to	
  HIV	
  budding).	
  
B	
  cells	
  expressing	
  cognate	
  pMHC	
  internalize	
  Tg	
  TCR	
  at	
  immunological	
  
synapses	
  and	
  ac&vated	
  PLCg	
  is	
  found	
  in	
  proximity	
  B	
  cell	
  captured	
  TCR.	
  
Purified	
  microvesicles	
  display	
  
total	
  TCR	
  in	
  propor&on	
  to	
  
the	
  density	
  of	
  cognate	
  pMHC	
  
used	
  to	
  ac&vate	
  the	
  T	
  cell.	
  
Germinal	
  Center	
  
Light	
  Zone	
   Dark	
  Zone	
  
T	
   B	
  
Hypothe)cal	
  Model	
  
2.	
  Cytokine	
  Receptor,	
  Notch	
  and	
  
Innate	
  Immunoreceptor	
  Signaling.	
  
Regula&on	
  of	
  signal	
  dynamics	
  
	
  
BIOM	
  514,	
  Cell	
  Signaling	
  	
  
Apr.	
  3,	
  2015	
  
Aaron	
  Neumann,	
  Ph.D.	
  (Pathology)	
  
CRF327,	
  akneumann@salud.unm.edu	
  
Abbas (7th ed.) Chapter 7,9, parts of 11
OVERVIEW	
  
•  Cytokine	
  Receptors—Jak/STAT	
  signaling	
  
•  Notch	
  Signaling	
  
•  NFkB—a	
  central	
  immune	
  response	
  transcrip&on	
  
factor	
  
•  Innate	
  Immunoreceptor	
  Signaling:	
  Fc	
  Receptors,	
  Toll	
  
like	
  Receptors,	
  C	
  type	
  lec&n	
  receptors	
  
•  ITIM	
  antagonism	
  of	
  ITAM	
  signaling	
  
•  Dynamical	
  considera&ons	
  in	
  signaling	
  
	
  
	
  
Cytokine receptors
JAK/STAT Pathway
Type I and II cytokine receptors
• Cytoplasmic tail contains tyrosine
• Jak is attached to receptor tail
• Clustering of receptors leads to Jak-
mediated phosphorylation of the
receptor tail
• STAT can now bind and be activated
• STATs dimerize (homo- or
heterodimerization) and translocate to
the nucleus where they stimulate
transcription, changing gene expression
• Cellular response is different depending
on the combination of receptor, Jak and
STAT activated
Radtke,	
  Immunity	
  Volume	
  32,	
  Issue	
  1	
  2010	
  14	
  -­‐	
  27	
  
Notch signaling impacts lymphocyte development and activation
How	
  Notch	
  signaling	
  works:	
  
1.  Export	
  of	
  Notch	
  to	
  the	
  plasma	
  
membrane	
  
•  Furin-­‐like	
  protease	
  cleavage	
  
•  Glycosyla&on	
  by	
  the	
  fringe	
  
glycosyltransferases	
  
2.  Binding	
  ligand	
  on	
  opposing	
  cell	
  
membrane	
  
•  Jagged	
  
•  Delta	
  like	
  ligands	
  (Dll)	
  
3.  Cleavage	
  at	
  the	
  plasma	
  membrane	
  
•  ADAM	
  (A	
  Disintegrin	
  And	
  
Metalloprotease)	
  
•  γ-­‐secretase	
  
4.  Release	
  of	
  Notch	
  intracellular	
  domain	
  
into	
  the	
  cytoplasm	
  
5.  Nuclear	
  Transloca&on	
  
6.  Binds	
  to	
  CSL	
  transcrip&on	
  factor	
  and	
  
recruits	
  coac&vatoràgene	
  transcrip&on	
  
7.  Proteosomal	
  degrada&on	
  
1
2
3
4
5
6
7
Radtke,	
  Immunity	
  Volume	
  32,	
  Issue	
  1	
  2010	
  14	
  -­‐	
  27	
  
Notch signaling impacts lymphocyte development and activation
Notch1	
  signaling	
  in	
  T	
  cell	
  development	
  
•  Maintains	
  a	
  stem	
  cell	
  popula&on	
  (HSC)	
  
that	
  seeds	
  the	
  thymus	
  
•  Suppresses	
  B	
  lineage	
  development	
  in	
  DN	
  
stage	
  
•  Supports	
  prolifera&on	
  at	
  the	
  DN4àDP	
  
transi&on	
  due	
  to	
  Notch	
  signaling	
  that	
  
supports	
  prolifera&on	
  and	
  survival.	
  
	
  
Notch	
  in	
  peripheral	
  T	
  cells	
  
•  Expression	
  increases	
  and	
  Notch	
  
intracellular	
  domain	
  is	
  seen	
  a€er	
  TCR	
  
ac&va&on	
  
•  Occurs	
  even	
  without	
  APC	
  sources	
  of	
  
Notch	
  ligand	
  
•  T	
  cells	
  don’t	
  seem	
  to	
  express	
  much	
  
Notch	
  ligand	
  
How	
  is	
  Notch	
  ac8va8on	
  happening??	
  
•  Jagged-­‐Notch	
  may	
  drive	
  Th2	
  
differen&a&on	
  
Radtke,	
  Immunity	
  Volume	
  32,	
  Issue	
  1	
  2010	
  14	
  -­‐	
  27	
  
Notch signaling impacts lymphocyte development and activation
Impact	
  of	
  Notch	
  Signaling:	
  
	
  
Regulates	
  lineage	
  commitment	
  during	
  
development	
  through	
  transcrip&on	
  factor	
  
ac&va&on	
  	
  
	
  
Drives	
  signaling	
  that	
  Promotes	
  
•  Prolifera&on	
  
•  Metabolism	
  	
  
•  Survival	
  
	
  
Using	
  pathways	
  that	
  influence	
  
•  Apoptosis	
  (p53,	
  PI3K/Akt)	
  
•  Cell	
  Cycling	
  (p27Kip1)	
  
•  Metabolism	
  (mTOR)	
  
NF-κB Pathway
TNR/IL-1R/TLR
The history of Toll-like receptors — redefining innate immunity
Luke A. J. O'Neill,
Douglas Golenbock
& Andrew G. Bowie
Nature Reviews Immunology 13, 453–460 (2013) doi:10.1038/nri3446
TLRs & signaling
(Abbas Ch4)
MyD88, TRIF
ê
TRAFs
ê
Trxn factor
(NFkB, IRFs)
Nature Reviews | Immunology
Dectin 2
ITAM
HDM allergens
Malassezia sp.
CARD9
BCL-10 MALT1
IKK
IKK IKK
I B
p50p65
P
Proteasome
Nucleus
Cytoplasm
Fungal
hyphae
FcR
P
P
SYK
P
P
SYK
Mincle
Myeloid DC
Cysteinyl
leukotrienes
?
?
_ _+ _ _ +
p50p65
Tnf and Il6
FcRγ results in NF-κB activation10,58
, although a role
for the SYK-CARD9–BCL-10–MALT1 complex has
not yet been confirmed. Thus, dectin 2 triggering alone
might induce an adaptive immune response, which is
supported by data showing that dectin 2 recognition of
fungal hyphae from C. albicans, Trichophyton rubrum
and Microsporum audouinii leads to TLR-independent
production of the pro-inflammatory cytokines TNF and
IL-6 (REF. 10). Furthermore, dectin 2 recognition of house
dust mite allergens activates SYK through FcRγ to gen-
erate cysteinyl leukotrienes, an important mediator of
allergic inflammation in the lungs58
. Notably, recogni-
tion of Histoplasma capsulatum β-glucans by dectin 1
also leads to the production of leukotrienes59
, suggesting
that a common SYK-dependent pathway is involved in
leukotriene synthesis after CLR triggering.
The related CLR mincle also pairs with FcRγ and
induces gene transcription through the SYK–CARD9–
BCL-10–MALT1 complex12
. In macrophages, recogni-
tion of dead cells by mincle through the endogenous
ligand SAP130 (SIN3A-associated protein, 130 kDa)
mediates CXC-chemokine ligand 2 (CXCL2) and TNF
production in a SYK- and CARD9-dependent manner,
which induces neutrophils to migrate into damaged tis-
sues12
. Mincle also interacts with α-mannosyl PAMPs
expressed by the pathogenic fungus Malassezia spp. and
induces gene transcription and TNF production without
the involvement of TLRs, further suggesting that mincle,
similarly to dectin 2, couples FcRγ-signalling to NF-κB
activation18
. The similarities of mincle downstream sig-
nalling with the dectin 1 pathway suggest that both CLRs
couple SYK activation to NF-κB activation through the
CARD9–BCL-10–MALT1 complex.
In contrast to dectin 2 and mincle, BDCA2 does not
induce TLR-independent cytokine production even
though it also pairs with FcRγ. The unusual signal-
ling pathway induced by BDCA2 might be because it is
expressed only by pDCs, whereas dectin 2 and mincle
are expressed by myeloid-derived antigen presenting
cells (TABLE 1). A recent study has shown that lymphoid
and myeloid cells have differential requirements for
CARD proteins in BCL-10-mediated NF-κB activation32
,
which might explain why dectin 2 and mincle couple
FcRγ-signalling to NF-κB activation and BDCA2 does
Figure 4 | Signalling by dectin 2 and mincle leads to
cytokine expression. BothDC-associatedC-typelectin2
(dectin2)andmacrophage-inducibleC-typelectin(mincle)
pairwiththesignallingadaptormoleculeFcreceptor
γ-chain(FcRγ) throughthepresenceofapositivelycharged
aminoacidresidueintheirtransmembraneregions.The
phosphorylationoftheimmunoreceptortyrosine-based
activationmotifs(ITAMs)ofFcRγ followingC-typelectin
receptor(CLR)activationservestorecruitspleentyrosine
kinase(SYK)andinducessignallingpathwaysthatmodulate
cytokineexpression.Dectin2bindstopathogen-associated
molecularpatterns(PAMPs)expressedbyfungalhyphae,
andminclebindstoα-mannosylPAMPsonMalasseziaspp.
fungi.BothsignallingpathwaysleadtoToll-likereceptor
(TLR)-independentproductionofcytokinessuchastumour
necrosisfactor(TNF)andinterleukin-6(IL-6);dectin2
triggeringisknowntoresultinnuclearfactor-κB(NF-κB)
p50–p65activation,andmincletriggeringinducesaCARD9
(caspaserecruitmentdomainfamily,member9)-dependent
signallingpathway.Similaritieswiththedectin1signalling
REVIEWS
P
Nature Reviews | Immunology
Dectin 1
P P
SYKRas
PP
RAF1
CARD9
BCL-10 MALT1
IKK
IKK
IKK
NIK
IKK
I B
p50p65
RELB
RELBp100
p52
RELB
RELB
p52
RELBp65
P
RELBp65
P
RELBp65
P
Proteasome
p50p65
P Ser276
p50p65
P
p65
PCBP
Ac
Ac
Nucleus
Cytoplasm
p50p65
P
Ac
Ac
Il6 and Il10
p50
p50
p50REL
p50REL
REL
p65
P
Ac
Ac
Il12b
Il1b
Ccl17 and Ccl22
p50p65
P
Ac
Ac
Il12a
Il23p19
Fungia b
?
Or
Inactive NF- B
p50REL
Figure 3 | Dectin 1 signalling through SYK and RAF1 directs NF-κB-mediated cytokine expression. a | The binding
of fungi to DC-associated C-type lectin 1 (dectin 1) induces phosphorylation of the YxxL (in which x denotes any amino
acid) motif in its cytoplasmic domain. Spleen tyrosine kinase (SYK) is recruited to the two phosphorylated receptors, which
leads to the formation of a complex involving CARD9 (caspase recruitment domain family, member 9), B cell lymphoma 10
(BCL-10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1); this induces the activation of
the IκB kinase (IKK) complex through an unknown pathway. IKKβ phosphorylates inhibitor of NF-κBα (IκBα), thereby
targeting it for proteasomal degradation. This results in the release of nuclear factor-κB (NF-κB; consisting of either
p65–p50 or REL–p50 dimers), which then translocates into the nucleus. SYK activation also leads to the activation of the
non-canonical NF-κB pathway that is mediated by NF-κB inducing kinase (NIK) and IKKα, which target p100 for proteolytic
processing to p52; this subsequently leads to nuclear translocation of RELB–p52 dimers. In a SYK-independent manner,
dectin 1 activation leads to the phosphorylation and activation of the serine/threonine protein kinase RAF1 by Ras
proteins, which leads to the phosphorylation of p65 at Ser276. Phosphorylated Ser276 serves as a binding site for the
histone acetyltransferases CREB-binding protein (CBP) or p300 (not depicted) to acetylate (Ac) p65 at different lysine
residues. Ser276-phosphorylated p65 also dimerizes with RELB to form inactive dimers that cannot bind DNA, and hence
attenuates the transcriptional activity of RELB. b | Binding of acetylated p65 to the Il10 (interleukin-10) enhancer and Il6
REVIEWS
PSYK
TLR9DNA
Endosome MYD88 MYD88
TLR9
DNA
Endo
BDCA2 DCIR
P P
P
BLNK
BTK PLC 2
?
Ca2+
mobilization
TLR pathway
SHP1
or SHP
Plasmacytoid DCa b
ITAM
FcR
P
P
ITIM
_ _+
Ifna, Ifnb,
Tnf and Il6
Ifna
Tnf
Cytoplasm
Nucleus
Similar to DC-SIGN, neither DCIR nor
been shown to induce immune respons
own, but instead modulate signalling
Figure 2 | Signalling by BDCA2, DCIR and M
protein (BDCA2) leads to the recruitment of sp
tyrosine-based activation motif (ITAM) of the p
theactivationofacomplexconsistingofBcell
which induces Ca2+
mobilization. The signalling
downregulation of Toll-like receptor 9 (TLR9)-in
(TNF) and interleukin-6 (IL-6) by plasmacytoid d
the recruitment of myeloid differentiation prim
TLR-induced cytokines. b | Activation of DC im
compartments, where TLR8 and TLR9 reside. T
(ITIM) recruits the phosphatases SH2-domain-c
the activation of an unidentified signalling pat
TNF production or TLR9-induced IFNα and TNF
c | Cross-linking of myeloid C-type lectin-like r
ITIM and the recruitment of SHP1 or SHP2. MIC
signal-regulated kinase (ERK). However, it is no
TLR4-induced IL-12 production. LPS, lipopolys
molecule; TRIF, TIR-domain-containing adapto
ITAM Signaling Pathways in the Innate Immune System: C-type Lectins
Nat	
  Rev	
  Immunol.	
  2009	
  Jul;9(7):465-­‐79.	
  	
  
hemITAM
Classically involved in recognition of pathogen surface carbohydrates
FcRgamma coupled ITAM signaling.
In some cases, ITAM signaling antagonizes TLR
signaling.
Fc Receptors
Important Functions of Fc receptors
Mast Cell Signaling: the cornerstone of
allergic inflammation
Gilfillan, 2006
Nat. Rev. Immunol
The ITAM signaling pathway is similar
ITIM-containing Receptors
Recruit PHOSPHATASES
•  SHP1, SHP2 – SH2 containing tyrosine
phosphatases
• SHIP – SH2 containing inositol phosphatase
ITAM/ITIM crosstalk in B cells
Secreted IgG can form
complex with antigen
Crosslinks BCR and FcγRIIB
FcγRIIB recruits SHIP that
hydrolyses a phosphate on
PIP3 and terminates signaling
Proposed control mechanism
to stop antibody production
Signal Transduction Dynamics
The	
  linear	
  pathways	
  for	
  signal	
  transduc&on	
  presented	
  in	
  textbooks	
  can	
  be	
  misleading.	
  
•  Cross-­‐talk	
  amongst	
  signaling	
  pathways	
  influences	
  signal	
  outputs.	
  
•  Dynamical	
  nature	
  of	
  signal	
  varia&on	
  with	
  &me	
  is	
  important.	
  
	
  
For	
  instance,	
  human	
  immature	
  Dendri&c	
  Cells	
  exhibit	
  spontaneous	
  oscilla&ons	
  of	
  
intracellular	
  Ca2+	
  in	
  the	
  res&ng	
  state.	
  	
  These	
  are	
  lost	
  as	
  the	
  cell	
  matures.	
  
	
  
	
  
400
800
1200
1600
0 200 400 600
Ca2+
iIntensity(AU)
Time (sec)
DIC Fluo-4
+ ionophore
Signal Transduction Dynamics
Dolmetsch, et al. Nature 392, 933-936(30 April 1998)
•  T cells also exhibit Ca2+ oscillations and spikes during activation
•  Ca2+ clamp method can reproduce arbitrary oscillation amplitudes
and periods (left)
At low levels of Ca2+, oscillatory [Ca2+]i
increases the number of cells expressing
an NFAT reporter.
Signal Transduction Dynamics
Dolmetsch, et al. Nature 392, 933-936(30 April 1998)
These three transcription factors respond similarly to continuous Ca2+ amplitude,
but have different behavior depending upon oscillation frequency.
Thus, different transcriptional programs could be controlled by Ca2+ signal
dynamics.
Encoding oscillations is usually a matter of some negative feedback in the signaling
system operating with a delay. For instance, the IP3R releases store Ca2+, but is
also inhibited by the rise in cytosolic Ca2+.
How would the cell decode oscillatory signals?
Signal Transduction Dynamics
TF-A: high Ca2+ affinity, short half-life
TF-B: low Ca2+ affinity, long half-life
time
%maxsignal
Calcium, TF-A, TF-B
TF-A gets activated by very little Ca2+
and decays rapidly. Its signal will be
oscillatory unless the period of Ca2+
oscillation is shorter than the half life of
TF-A.
TF-B only gets activated by high levels of Ca2+ (at the peak of the oscillation),
but it degrades slowly. This causes its signal to be persistent.
With this system, you could have regimes where only TF-A or both were
activated and TF-A could be periodic or persistent. This would be controlled by
the amplitude and period of the oscillatory stimulus.
Extra	
  slides	
  on	
  BCR	
  signaling	
  (if	
  there	
  is	
  Ame)	
  
BCR signaling
•  Antigen binding domain is
a surface-expressed
immunoglobulin with the
same antigen specificity
that the B cell will secrete
•  Signaling occurs through
associated Igα and Igβ
ITAM containing proteins
•  Multi-subunit receptor with
variable antigen receptor
+ invariant signaling
molecules
Signaling through BCR
Nature Reviews Immunology 13, 475–486 (2013) doi:10.1038/nri3469
B	
  cell	
  Ac&va&on	
  at	
  APC	
  contacts	
  involves	
  microclusters	
  and	
  cytoskeletal	
  dynamics	
  
•  BCR	
  ac&va&on	
  and	
  
microcluster	
  forma&on	
  
•  B	
  cell	
  ac&n	
  mediated	
  
spreading	
  on	
  APC,	
  integrin	
  
ac&va&on	
  
•  Centripetal	
  mo&on	
  of	
  
microclusters	
  on	
  MT	
  
•  Lysosome	
  recritment	
  
•  Contact	
  site	
  contrac&on	
  
How	
  is	
  an&gen	
  acquired?	
  
•  Soluble	
  an&gens	
  may	
  diffuse	
  
into	
  secondary	
  lymphoid	
  
organs	
  and	
  be	
  acquired	
  from	
  
fluid	
  phase.	
  
•  APCs	
  like	
  subcapsular	
  macs	
  
and	
  follicular	
  DCs	
  present	
  
large	
  par&culate	
  an&gens	
  
How	
  do	
  B	
  cells	
  obtain	
  
an8gens	
  from	
  surfaces?	
  	
  
Nature Reviews Immunology 13, 475–486 (2013) doi:10.1038/nri3469
B cells polarize lysosomes toward an APC contact
MTOC Lysosome
Laser ablation of a
single lysosome does
not impact overall
lysosome polarization to
the synapse
Ablation of the MTOC
causes the lysosomes to
disperse.
What is the purpose of
this with respect to
antigen acquisition?
Macrophages contacting LDL aggregates also target lysosomes to extracellular
contact sites for the purpose of degradation and material extraction
Abigail S. Haka et al. Mol. Biol. Cell 2009;20:4932-4940
All LDL aggr.
Extracellular
LDL aggr.
Lyso contents
released
Acidification of extracellular
contacts with agLDL due to
lysosomal release
Mechanisms	
  of	
  intercellular	
  exchange	
  of	
  proteins	
  
FEBS Letters
Volume 583, Issue 11, pages 1792-1799, 14 MAR 2009 DOI: 10.1016/j.febslet.2009.03.014
http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2009.03.014/full#feb2s0014579309001872-fig2
B cells have also been proposed to
gather Ag from APC by
“trogocytosis”.
The B cell exerts force on the APC
membrane sufficient to rip out the
antigen and some accompanying
membrane.
Other mechanisms of protein
transfer are also known, though
their contribution to B cell Ag
gathering is less clear.

More Related Content

What's hot

Receptor basics
Receptor basicsReceptor basics
Receptor basicsFoziyaKhan
 
Transcription in eukaryotes
Transcription in eukaryotesTranscription in eukaryotes
Transcription in eukaryotesPraveen Garg
 
Cell signaling, cell biology
Cell signaling, cell biologyCell signaling, cell biology
Cell signaling, cell biologykcyaadav
 
Assignment on Cell signaling
Assignment on Cell signalingAssignment on Cell signaling
Assignment on Cell signalingDeepak Kumar
 
Nuclear export of mRNA
Nuclear export of mRNANuclear export of mRNA
Nuclear export of mRNAADITIBAGDI
 
Signal transduction mechanism
Signal transduction mechanismSignal transduction mechanism
Signal transduction mechanismKAUSHAL SAHU
 
biochemistry Regulation of gene expression
biochemistry Regulation of gene expressionbiochemistry Regulation of gene expression
biochemistry Regulation of gene expressionPrabesh Raj Jamkatel
 
Eukaryotic Gene Regulation
Eukaryotic Gene RegulationEukaryotic Gene Regulation
Eukaryotic Gene RegulationJolie Yu
 
Cell signaling
Cell signalingCell signaling
Cell signalingPavana K A
 
Ch11 lecture regulation of gene expression
Ch11 lecture regulation of gene expressionCh11 lecture regulation of gene expression
Ch11 lecture regulation of gene expressionTia Hohler
 
gene regulation sdk 2013
gene regulation sdk 2013gene regulation sdk 2013
gene regulation sdk 2013Dr-HAMDAN
 

What's hot (20)

Receptor basics
Receptor basicsReceptor basics
Receptor basics
 
Transcription in eukaryotes
Transcription in eukaryotesTranscription in eukaryotes
Transcription in eukaryotes
 
Cell signaling, cell biology
Cell signaling, cell biologyCell signaling, cell biology
Cell signaling, cell biology
 
Assignment on Cell signaling
Assignment on Cell signalingAssignment on Cell signaling
Assignment on Cell signaling
 
Eukaryotic transcription
Eukaryotic transcription Eukaryotic transcription
Eukaryotic transcription
 
Nuclear export of mRNA
Nuclear export of mRNANuclear export of mRNA
Nuclear export of mRNA
 
Signal transduction mechanism
Signal transduction mechanismSignal transduction mechanism
Signal transduction mechanism
 
biochemistry Regulation of gene expression
biochemistry Regulation of gene expressionbiochemistry Regulation of gene expression
biochemistry Regulation of gene expression
 
Cell communication
Cell communicationCell communication
Cell communication
 
Eukaryotic Gene Regulation
Eukaryotic Gene RegulationEukaryotic Gene Regulation
Eukaryotic Gene Regulation
 
Virus translation
Virus translationVirus translation
Virus translation
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 
Cell signalling
Cell signallingCell signalling
Cell signalling
 
Gene expression
Gene expressionGene expression
Gene expression
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 
Hoofdstuk 18 2008 deel 1
Hoofdstuk 18 2008 deel 1Hoofdstuk 18 2008 deel 1
Hoofdstuk 18 2008 deel 1
 
signal transduction
signal transductionsignal transduction
signal transduction
 
Ch11 lecture regulation of gene expression
Ch11 lecture regulation of gene expressionCh11 lecture regulation of gene expression
Ch11 lecture regulation of gene expression
 
Regulation of Gene expression
Regulation of Gene expression Regulation of Gene expression
Regulation of Gene expression
 
gene regulation sdk 2013
gene regulation sdk 2013gene regulation sdk 2013
gene regulation sdk 2013
 

Similar to TCR Signaling and the Immunological Synapse

Signal Transduction.ppsx
Signal Transduction.ppsxSignal Transduction.ppsx
Signal Transduction.ppsxAbreham Degu
 
Cell signaling
Cell signalingCell signaling
Cell signalingJayaBellad
 
Molecular interaction, Regulation and Signalling receptors and vesicles
Molecular interaction, Regulation and Signalling receptors and vesiclesMolecular interaction, Regulation and Signalling receptors and vesicles
Molecular interaction, Regulation and Signalling receptors and vesiclesAnantha Kumar
 
Kani chemical biology
Kani chemical biologyKani chemical biology
Kani chemical biologyLe Nghia
 
Cell signal lecture
Cell signal lectureCell signal lecture
Cell signal lecturesafaa eid
 
Signal transduction in plant defense responses
Signal transduction in plant defense responsesSignal transduction in plant defense responses
Signal transduction in plant defense responsesVINOD BARPA
 
11.02.14 - LCBG Journal Club
11.02.14 - LCBG Journal Club11.02.14 - LCBG Journal Club
11.02.14 - LCBG Journal ClubFarhoud Faraji
 
Signal transduction
Signal transductionSignal transduction
Signal transductionAyman Hany
 
phosphatases and kinase in cell signalling
 phosphatases and kinase in cell signalling  phosphatases and kinase in cell signalling
phosphatases and kinase in cell signalling Peyman Ghoraishizadeh
 
Enzyme linked receptors (1)
Enzyme linked receptors (1)Enzyme linked receptors (1)
Enzyme linked receptors (1)Sahar Musarrat
 
Transcription and translation
Transcription and translationTranscription and translation
Transcription and translationBlaschke's Class
 

Similar to TCR Signaling and the Immunological Synapse (20)

Immune receptors
Immune receptorsImmune receptors
Immune receptors
 
Signal Transduction.ppsx
Signal Transduction.ppsxSignal Transduction.ppsx
Signal Transduction.ppsx
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 
Introduction to Cell signalling
Introduction to Cell signallingIntroduction to Cell signalling
Introduction to Cell signalling
 
Molecular interaction, Regulation and Signalling receptors and vesicles
Molecular interaction, Regulation and Signalling receptors and vesiclesMolecular interaction, Regulation and Signalling receptors and vesicles
Molecular interaction, Regulation and Signalling receptors and vesicles
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 
Kani chemical biology
Kani chemical biologyKani chemical biology
Kani chemical biology
 
Cell signal lecture
Cell signal lectureCell signal lecture
Cell signal lecture
 
Cell signalling
Cell signalling Cell signalling
Cell signalling
 
Signal transduction in plant defense responses
Signal transduction in plant defense responsesSignal transduction in plant defense responses
Signal transduction in plant defense responses
 
Cell signaling
Cell signaling Cell signaling
Cell signaling
 
CELL SIGNALING
CELL SIGNALINGCELL SIGNALING
CELL SIGNALING
 
Immunological synapse
Immunological synapseImmunological synapse
Immunological synapse
 
11.02.14 - LCBG Journal Club
11.02.14 - LCBG Journal Club11.02.14 - LCBG Journal Club
11.02.14 - LCBG Journal Club
 
Signal transduction
Signal transductionSignal transduction
Signal transduction
 
phosphatases and kinase in cell signalling
 phosphatases and kinase in cell signalling  phosphatases and kinase in cell signalling
phosphatases and kinase in cell signalling
 
Enzyme linked receptors (1)
Enzyme linked receptors (1)Enzyme linked receptors (1)
Enzyme linked receptors (1)
 
Signal transduction sm
Signal transduction smSignal transduction sm
Signal transduction sm
 
Transcription and translation
Transcription and translationTranscription and translation
Transcription and translation
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 

Recently uploaded

Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 

Recently uploaded (20)

Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 

TCR Signaling and the Immunological Synapse

  • 1. 1.  An&gen  Receptor  Signaling  with   focus  on  TCR  signaling  &  the   Immunological  Synapse     BIOM  514,  Cell  Signaling     Apr.  1  &  6,  2016   Aaron  Neumann,  Ph.D.  (Pathology)   CRF327,  akneumann@salud.unm.edu   Abbas, Lichtman & Pillai, 8th ed., chapters 7, 9 and parts of 4 & 12
  • 2. OVERVIEW  OF  LECTURE  MATERIAL   •  Lecture  1:    An&gen  Receptor  Signaling  and  the  T  cell   Immune  Synapse   •  Lecture  2:    Cytokine  Receptor,  Notch  and  Innate   Immunoreceptor  Signaling.  Regula&on  of  signal   dynamics   •  Problem  Set:  Spillane  &  Tolar    
  • 3. Basic  Concepts  in  Signal  Transduc&on  
  • 4. Common events that govern signaling
  • 5. • Signal  ini&a&on   • Ligand  binding  to  membrane  receptors  leads  to  receptor   conforma&onal  changes  and/or  aggrega&on,  resul&ng  in     phosphoryla&on  of  receptors  (or  associated  intracellular  signaling   proteins)     • Signal  propaga&on   • Recruitment  of  adaptor  proteins  to  phosphorylated  receptors   ini&ates  signaling  cascades  that  take  the  signal  to  the  nucleus   • Structural  mo&fs  allow  for  specificity  of  protein  interac&ons   • Signal  termina&on     • Phosphatases  can  block  signaling   • Proteins  are  degraded  (ubiqui&na&on)   General principles of membrane receptor signaling
  • 6. Types of receptors that regulate immune cell signaling
  • 7. Protein Phosphorylation KINASE PHOSPHATASE Serine Threonine Tyrosine Kinases: Transfer the terminal phosphate of ATP to the hydroxyl group of a tyrosine residue in the substrate protein Phosphatases: Remove phosphate moieties from tyrosine residues (dephosphorylation) Phosphoryla&on  regulates  protein  ac&vity  and   provides  a  binding  site  for  other  proteins.    
  • 8. Motifs Bind to Other Motifs in Proteins 3 examples Src homology 3-domain (SH3) Src homology 2-domain (SH2) Regulatory domain Binds to: Phospho- tyrosine P X X P Proline-rich stretch Pleckstrin homology domain (PH) PIP3   Phospho- inositols P X X X These motifs become very important in building local assemblies of signaling proteins on adaptor proteins. How  do  mul)ple  protein/protein  interac)on  domains  improve  cell  signaling?  
  • 9. The importance of protein domains/motifs for signaling. Fig 6.3 Janeway © 2001 Garland 400 - 500 nm 1.0-1.5um Illustration of the Problem Confocal Observation Volume for Fluorescence Correlation Measurements of Cytosolic Signaling Protein Dynamics To scale, a typical membrane associated protein signaling domain would be about this size…pretty tiny. The concentration of cytosolic signaling intermediaries is typically such that there are only 1-3 molecules in this volume! Volume: ~1 fL The probability of receptor-intermediary interaction is quite low (takes ms to diffuse to receptor in this volume, but binding/unbinding is on µs timescale.) Adaptor proteins form signaling complexes that promote and stabilize protein-protein and protein lipid interactions.
  • 10. Overview  of  ITAM  signaling  systems     •  Ini&a&on:  Membrane  proximal  signaling   events   •  Output:  Transcrip&on  factor  ac&va&on   •  Finally,  we  will  focus  in  detail  on  the  process   of  T  cell  ac&va&on  via  the  TCR  to  inves&gate   how  one  important  ITAM  signaling  system   works.  
  • 12. ITAM   Immunoreceptor  Tyrosine-­‐based  AcAvaAng  MoAf     YXXL/I(X)6-8YXXL/I ITAM Sequence Tyrosine Leucine/ Isoleucine *ITAMs do not have intrinsic kinase activity *The phosphorylated ITAM motif recruits kinase
  • 13. There are many more ITAM receptors… Note that many of these non-TCR/BCR ITAM signaling systems use FcRgamma chain or DAP12 as the signaling partner that actually provides the ITAM motif. A receptor/signaling chain complex must form.
  • 14. What are the early, receptor proximal events in ITAM signaling generally? ITAM/receptor complex Src family kinase ITAM pTyr ITAM Recruits active Syk/ZAP-70 Phosphorylate downstream adaptors and signaling proteins
  • 15. ITAMs are phosphorylated by Src Family kinases Including: Src, Yes, Lyn, Fyn, Blk, Lck pTyr in C-term interacts with SH2 domain, locking protein in an inactive conformation (CskàpY505 on lck) Dephosphorylation of this Tyr (CD45, SHP-1) leads to conformational change that allows for unfolding & kinase activity Myristoylation: promotes membrane localization Regulatory tyrosine
  • 16. • Phosphorylation of the ITAM domains creates binding sites for other protein domains called SH2 (Src Homology 2 domain) • This enables recruitment of signaling proteins to activated receptors – Signaling proteins are brought near the kinases and can in turn be activated – Or binding to a phosphotyrosine may activate the proteins by altering protein conformation (allosteric activation) – Syk, ZAP-70 • Proteins can be phosphorylated on three classes of amino acids: – tyrosines (receptors), serine/ threonine (downstream), or histidine
  • 17. These kinases are ESSENTIAL for immune responses. ZAP-70 defects lead to Severe Combined Immunodeficiency (autosomal recessive). Syk KO mice die after birth of severe haemorrhaging. B-lineage cells cannot form (lack of signaling from pre-BCR complex, no clonal expansion or maturation of pre-B cells). Syk & ZAP-70 are key kinases in ITAM cascades TWO Src homology 2 domains www.nimr.mrc.ac.uk/.../thirty2/kinases/ Mouse embryos that lack the cytoplasmic tyrosine kinase Syk develop lethal hemorrhages at midgestation www.mpi-muenster.mpg.de/nvz/kiefer.shtml
  • 18. Mocsai, et al. Nature Reviews Immunology 10, 387-402 SHP-1 Cbl ITAM/Syk Signaling Engages Many Downstream Effectors
  • 19. Mocsai, et al. Nature Reviews Immunology 10, 387-402 Syk’s many pTyr sites control its activity and interactions, both on and off of the ITAM-containing receptor
  • 20. Where is this all going? Nuclear Translocation of Transcription Factors Figure 9-14 Abbas © 2005 Elsevier
  • 21. Figure 9-14 Abbas © 2005 Elsevier NFkB and NFAT are activated in the cytosol and translocate into the nucleus to begin transcriptional activation. AP-1 is composed of fos and jun. Jun is activated in the cytosol and translocates. Fos must be transcribed by Elk, which is translocated.
  • 22. Receptor ligation ITAM Syk/ZAP70 Cell Type Specific Program NFAT NFkB AP-1 activation We will examine TCR signaling as a model to understand what lies in the middle and how this sensitive immunoreceptor system gets triggered. input output
  • 23. TCR signaling •  The biochemical signals that are triggered in T cells by antigen recognition are transduced not by the TCR itself but by invariant proteins called CD3 and ζ which are non-covalently linked to the antigen receptor to form the TCR complex. – Highly variable antigen receptor + invariant signaling proteins •  What advantages does this give?
  • 24. Peptide binding pocket Variable region / Complementrarity-determining region (CDR) Disulfide bond Positively charged amino acids: Lysine in α chain Lysine + arginine in β chain • Interact with neg residues in CD3 and ζ TCR Structure
  • 25. Antigen affinity (Kd): 10-5 to 10-7 M (i.e., OT-I TCR 5.9 uM; Immunity. 1999;10:227–37.) Low affinity = need for adhesion molecules TCR Structure
  • 27. • Facilitate signaling • Provide secondary signals • Adhesion molecules Accessory molecules See also Abbas Figure 7-9B
  • 28. Coreceptors: bind MHC molecules and enhance TCR signaling • CD4+ respond to Class II MHC: cytokine-production helper cells, extracellular microbes • CD8+ respond to Class I MHC: CTLs, eradicate intracellularly infected cells • Signal transduction via Lck: Interaction of CD4/CD8 with MHC brings CD4/CD8-associated Lck close to TCR the complex, which then phosphorylates the ITAMs of CD3 and ζ
  • 29. • Close proximity of CD4/CD8- associatedLck activated ITAMs • CD3 associated Fyn may activate ITAM : TCR binding to MHC may transduce conformational change to activate Fyn • Zap-70 is related to Syk in the BCR system More details…
  • 30. Signaling pathways triggered by TCR activation
  • 31. CosAmulatory  receptors:       recognize  molecules  on  APC  and  iniAate  second  signals   • Receptor tails have structural motifs that serve as docking sites for adaptor molecules (such as PI-3 kinase or Grb2) once tyrosines are phosphorylated • Functional consequences are different for each receptor **Can be activating or inhibitory
  • 32. Example of Costimulatory receptor function: After binding ligands for TLRs, Dendritic cells will express B7
  • 33. •  TCR provides specificity •  Coreceptors enhance signaling by bringing Lck in close proximity of ITAMs •  Costimulatory receptors initiate activating or inhibitory signals and play a key role in the outcome of APC interaction Activation of T cells involves the integration of signals from multiple receptors…
  • 34. OrganizaAon  of  signaling  at  the  T-­‐APC  contact   On  the  scales  that  are  accessible  within  the  limits  of  conven&onal  fluorescence  imaging,   we  realize  that  the  T-­‐APC  contact  forms  an  organized  (but  very  dynamic!)  structure   termed  the  “immunological  synapse”.   Supramolecular  Ac&va&on   Complex  (SMAC)     Distal  (dSMAC)       Peripheral  (pSMAC)       Central  (cSMAC)     Many  important  intermolecular  and  intercellular  events  happen  in  the  SMAC.   We  will  start  at  the  molecular  level  and  build  our  way  up,  focusing  on  the  literature  on  T  cell   immunological  synapses  from  the  past  decade.   Huppa,  Davis.  Nature  Reviews  Immunology  3,  973-­‐983  (December  2003)    
  • 35. Molecular  &  Cellular  Interac&ons   Relevant  to  TCR  Triggering     •  TCR-­‐CD3  complex  structure   •  Models  of  TCR  ac&va&on  by  cognate  pMHC   •  Biophysical  considera&ons  regarding   forma&on  of  ac&va&ng  T-­‐APC  interfaces   •  Why  it  all  maeers  
  • 36. The TCR complex Immunity  Volume  24,  Issue  2  2006  133  -­‐  139   Michael  S.    Kuhns  ,  Mark  M.    Davis  ,  K.  Christopher    Garcia   If you had to experimentally demonstrate that this is the correct TCR complex structure, how would you do it? Call, et al, Cell. 2002 Dec 27;111(7):967-79.
  • 37. Kuhns  &  Davis,  Cell.  2008  Nov  14;  135(4):  594–596;  Xu,  et  al.  Cell.  2008  Nov  14;135(4):702-­‐13.     Basic  residues  (+)  in  the  zeta  and  epsilon  tails  promote  membrane  associa&on  in  inac&ve   TCR-­‐CD3  complexes  by  binding  to  acidic  lipids  (e.g.,  phospha&dylserine).  Membrane   associa&on  buries  the  ITAM  tyrosines  in  the  membrane  and  denies  kinase  access,   preven&ng  ac&va&on  in  the  absence  of  pMHC.  
  • 38. P.  Anton  van  der  Merwe  &  Omer  Dushek   Nature  Reviews  Immunology  11,  47-­‐55  (January  2011)   Ini&a&on  of  TCR  signaling  is  likely  to  require  mechanical  forces  or  reorganiza&on  of  the   lipid  bilayer  to  relieve  the  associa&on  of  CD3  complex  ITAM  domains  with  the   membrane.   Mechanical  ac&va&on     Note  that  in  this  example,  the   force  is  applied  perpendicular   to  the  membrane  (piston-­‐like   mo&on).  More  recently   tangen&al  force  models  have   been  considered  (covered   later).   Lipid  reorganiza&on   Ca2+  influx  may  also  be  involved  in   amplifying  ITAM  signaling  by  locally   compe&ng  the  electrosta&c   interac&ons  between  CD3  tails  and   membrane.  
  • 39. Problem:       How  much  cognate  pMHC  does  it  take  to  sAmulate  a  T  cell,  parAcularly  if  the  pMHC  is   rare?     The  story  starts  in  Switzerland  in  the  mid  90s…  
  • 40. The  Serial  Triggering  Model     Observed  by  flow  cytometry:     •  Number  of  pMHC  on  an  APC   •  Number  of  internalized  TCR  (assumed  internalized  =     ac&vated)     àCalculated  #  TCR  ac&vated  per  pMHC  present     Determined:  Each  pMHC  must  ac&vate  and  cause  the   internaliza&on  of  up  to  200  TCR.     àThis  led  to  the  Serial  Triggering  model  where  one  pMHC   could  serially  ligate  and  ac&vate  many  different  TCRs.         Implies:  agonis&c  pMHC  needs  short  bound  life&me  to  engage   many  TCRs  during  the  course  of  a  T-­‐APC  encounter.         T  cells  scan  over  DCs  for  cognate  pMHC.  They  must  find  it  in   <10min  (50%  of  contacts  last  <  ~2.5m)  if  they  are  going  to  stop   and  be  ac&vated.     Is  serial  triggering  realis8c  during  scanning  T-­‐APC  interac8ons?       Must  know:   What  is  the  life8me  of  an  agonis8c  TCR-­‐MHC  interac8on?   Celli,  et  al.  JEM  vol.  202  no.  9  1271-­‐1278     (Valituu  et  al.  Nature.  1995  May  11;375(6527):148-­‐51.)     Dura&on  of  T-­‐APC  encounters   With   cognate   pMHC   Without   cognate   pMHC  
  • 41. Stone,  et  al.  Immunology.  2009  Feb;  126(2):  165–176.     TCR-­‐pMHC  Bound   life&me  t1/2  range  from   less  than  1  s  to  ~30  s   Solu&on  binding  data  for  various  TCR/pMHC  complexes   The  TCR-­‐pMHC  with  fastest  kine&cs  could  account  for  serial  triggering  leading  the  T   cell  to  stop,  but  many  agonis&c  pMHC  seem  too  slow.   For  instance,  a  pMHC  with  20  s  bound  life&mes  could  visit  <30  TCR  during  a  T-­‐APC   encounter,  not  hundreds.    
  • 42. Xie,  et  al.  Nature  Immunology  13,  674–680  (2012)   Is  serial  triggering  really  necessary?       Photocrosslinkable  pMHC  were  aeached  covalently  to  TCR   during  a  T-­‐APC  interac&on.   àThey  can’t  dissociate,  so  if  serial  triggering  is  required,   these  “pMHC  (XL)”  should  be  less  s&mulatory  than  their   standard,  non-­‐crosslinked  counterparts,  “pMHC  (Std)”.     Result:  pMHC  (XL)  is  more  s8mulatory  than  pMHC  (Std).   •  More  prolonged  Ca2+  flux   •  Greater  IL-­‐2  secre&on       While  serial  triggering  may  happen  to  some  extent,  it  does   not  appear  to  be  so  essen&al  as  originally  thought.  
  • 43. Are  there  any  thermodynamic  or  kineAc  parameters  derived   from  soluAon  measurements  of  TCR-­‐pMHC  binding  that   correlate  with  sAmulatory  potency?     •  When  it  became  generally  feasible  to  measure  solu&on  binding  kine&cs  of  TCR-­‐ pMHC  with  commercially  available  SPR  instruments,  there  was  much  interest   correla&ng  affinity,  kon  and  koff  of  pMHC  for  TCR  with  biological  ac&vity   •  The  affinity  (in  solu&on  binding  measurements)  of  TCR  for  agonist  pMHC  is   rela&vely  weak,  typically  in  the  Kd=1-­‐100uM  range.     Mod.  From:  Stone,  et  al.  Immunology.  2009  Feb;  126(2):  165–176.     Bound  state  life&me   There  were  correla&ons  between   binding  affinity  and  kine&cs  in  some   limited  systems  but  overall  there  was  no   universally  strong  correla&on  between   solu&on  binding  parameters  and   ac&vity.   Agonist,  weak  agonist  and   antagonist  pMHC  can  have  very   similar  solu&on  binding  affinity  and   rate  constants  
  • 44. More  recently,  single  molecule  imaging  invesAgaAon  has  pushed   the  limit  of  resoluAon  to  allow  tesAng  triggering  capability  of  ever   smaller  numbers  pMHC   Manz,  et  al.  (groves  lab)  PNAS  May  31,  2011  vol.  108  no.  22  9089-­‐9094     Circles  and  triangles:  T  cells  with   two  different  TCRs   Titrated  bio&nylated  MCC-­‐pMHC     and  measured  number  pMHC  at   synapse  (x  axis)   Recorded  Ca2+  flux  in  T  cells   Irvine,  et  al  (Davis  Lab)  Nature  419,  845-­‐849(24  October  2002)   Ca2+  fluxes  can  be  triggered  by   <10  cognate  pMHC  in  an   immune  synapse   Using  a  microfabricated  ar&ficial  bilayer   that  constrained  the  number  of  pMHC   that  TCRs  could  see  to  only  a  few,  Ca2+   flux  in  the  T  cell  required  very  small   numbers  of  pMHC  
  • 45. How  does  the  TCR  know  to  acAvate  signaling  in  response  to  very   low  levels  of  pMHC?   Pseudodimer  model:  dimers  of  congnate  and  non-­‐congate  pep&de  pMHC  promote   signaling   Molecular  MechanotransducAon:  pMHC  applies  a  torque  to  TCRαβ,  which  is  transmieed   to  CD3εγ  and  CD3εδ Dwell  Time:  What  determines  if  a  pMHC-­‐TCR  interac&on  is  s&mulatory  is  how  long  the   pMHC  “dwells”  near  a  single  TCR,  repe&&vely  binding  it. We’ll  look  at  three  mechanis&c  models  of  TCR  s&mula&on  arising  from  the  recent  literature.   Note  that  these  models  are  not  mutually  exclusive  alterna&ves  but  may  be  looking  at   different  aspects  of  the  same  process  as  different  research  groups  look  at  TCR  triggering   from  diverse  backgrounds  and  perspec&ves.  
  • 46. How  does  the  TCR  know  to  ac8vate  signaling  in  response  to  very  low  levels  of  pMHC?   Pseudodimer  model:  dimers  of  cognate  and  non-­‐cognate  pep&de  pMHC  promote   signaling   P.  Anton  van  der  Merwe  &  Omer  Dushek   Nature  Reviews  Immunology  11,  47-­‐55  (2011)   CD4  contacts  an&genic  pMHC   but  also  brings  lck  into  proximity   to  TCR  interac&ng  with   dimerized  “self”  pMHC,   ac&va&ng  both  TCRs’  signaling     Cohran  et  al.  Immunity.  2000  Mar;12(3):241-­‐50.   Soluble  single  chain  MHC  have  been  engineered  and  loaded   with  defined  pep&des  that  are  chemically  x-­‐linked  to  the  MHC   monomeric   >=dimeric   Monomeric  pMHC  bind  TCR  but  are  not  s&mulatory,   but  >=dimer  pMHC  is  s&mulatory.   à  Suggests  that  single  pMHC  are  not  s&mulatory   and  you  have  to  at  least  present  a  dimer  of  pMHC   (but  this  is  soluble  pMHC,  not  in  a  T-­‐APC  contact)  
  • 47. How  does  the  TCR  know  to  ac8vate  signaling  in  response  to  very  low  levels  of  pMHC?   Pseudodimer  model:  dimers  of  cognate  and  non-­‐cognate  pep&de  pMHC  promote   signaling   PepAdes  to  be  presented  to  5C.C7  (MCC  reacAve)  T  cells   Krogsgaard  et  al.  Nature  434,  238-­‐243(10  March  2005)   Standard  agonis&c  pep&de   Single  AA  subs&tu&ons  (altered  K5)   ER  chaperone  that  binds  this  MHC  prior  to  an&gen  pep&de  loading   Self  pep&des  that  bind  this  MHC   (Ca2+  flux)   dimeric  pMHC   •  K5  monomer  is  not  s&mulatory,  but  K5-­‐K5  is.   •  Some  of  the  altered  K5  and  self  pMHC  (those   that  are  recruited  to  T-­‐APC  contacts)  can   support  signaling  from  heterodimers  with  K5.   •  These  self  pMHC  are  not  agonis&c  when   homodimerized.   •  Some  altered  K5  and  self  pMHC  can’t  support   signaling  with  K5  (i.e.,  b2m).  
  • 48. How  does  the  TCR  know  to  ac8vate  signaling  in  response  to  very  low  levels  of  pMHC?   Molecular  MechanotransducAon:  pMHC  applies  a  torque  to  TCRab,  which  is  transmieed   to  CD3εγ  and  CD3εδ N-­‐glycans   top   side  FG  loop     of  b  chain   TCRab  rises  above  shorter,  more  rigid  CD3  dimers   FG  loop  of  TCRβ  C  domain  is  important  for  TCR   ac&va&on,  is  well  structured  and  approaches  CD3εγ     Op&cal  traps  are  used  to  apply   force  through  bead-­‐bound   ligands  to  the  TCR.  Forces   applied  are  in  the  10s  of  pN   range,  typical  of  the  forces   applied  at  cell-­‐cell  and  cell-­‐ substrate  interfaces   Kim  et  al.  Front.  Immunol.,  18  April  2012  |  doi:   10.3389/fimmu.2012.00076     Wang  et  al.  Immunol  Rev.  2012  Nov;  250(1):  102–119.    
  • 49. How  does  the  TCR  know  to  ac&vate  signaling  in  response  to  very  low  levels  of  pMHC?   Molecular  MechanotransducAon:  pMHC  applies  a  torque  to  TCRab,  which  is  transmieed   to  CD3εγ  and  CD3εδ Tangen&al  force  applied  through  a  trapped  ligand-­‐bead,  measured  Ca2+  flux     17A2=Non-­‐agonis8c  an8-­‐CD3   With  force   Without    force   Ligand  on  bead:                                  non-­‐agonis&c  mAb                              pMHC   Kim  et  al.  J  Biol  Chem.  2009  Nov  6;284(45):31028-­‐37.   For  mAb  and  pMHC,  you  only  see   Ca2+  signal  if  you  pull  tangen&ally   on  the  bead-­‐ligand   Model:     •  TCR-­‐pMHC  bonds  form   •  T  cell  translates  rela&ve  to  APC   •  Tangen&al  force  on  TCR  complex  via  pMHC   (yellow)   •  TCR  Cβ  (blue)  pivots  on  its  TM  domain   •  FG  loop  (magenta)  pushes  down  on  CD3   dimers   •  Presumably  causes  changes  in  CD3  tails  that   promote  their  ac&va&on   Ca2+   flux  
  • 50. How  does  the  TCR  know  to  ac8vate  signaling  in  response  to  very  low  levels  of  pMHC?   Dwell  Time:  What  determines  if  a  pMHC-­‐TCR  interac&on  is  s&mulatory  is  how  long  the   pMHC  “dwells”  near  a  single  TCR,  repe&&vely  binding  it. •  This  concept  is  different  from  serial  triggering  (one  pMHC  binds  and  ac&vates  many  different  TCR   in  series).   •  Dwell  &me  considers  the  &me  that  a  pMHC  spends  bound  to  a  single  TCR,  dissociates,  but  then   rebinds  that  TCR  before  diffusing  away.     •  In  this  model,  a  strongly  agonis&c  pMHC  would  be  able  to  dwell  for  a  long  &me,  thus  integra&ng  a   lot  of  signaling  through  the  bound  TCR.     Dwell  &me  depends  on:     •  TCR/pMHC  binding  kine&cs  (determines  half-­‐life  of  bound  complex)     AND     •  Diffusion  of  TCR  and  MHC  in  the  membrane  (determines  how  likely  it  is  that  TCR  and  MHC  will   move  too  far  apart  to  bind  before  rebinding  can  occur)   Govern  &  Chakraborty.  Immunity.  2010  Feb  26;32(2):141-­‐2.  
  • 51. How  does  the  TCR  know  to  ac8vate  signaling  in  response  to  very  low  levels  of  pMHC?   Dwell  Time:  What  determines  if  a  pMHC-­‐TCR  interac&on  is  s&mulatory  is  how  long  the   pMHC  “dwells”  near  a  single  TCR,  repe&&vely  binding  it. •  In  solu&on,  you  would  never  see  TCR  dwelling  on  pMHC  because  solu&on  diffusion  is   much  too  fast.  Typically  approx  tens  to  100  um2/s  for  proteins.   •  In  a  membrane,  transmembrane  protein  diffusion  is  much  slower  (and  constrained  to   the  2D  bilayer).    Typical  protein  diffusion  in  membranes  is  ~0.1  um^2/s.     Known:  kon  and  diffusion  coefficients   Based  on  a  model  of  binding+diffusion  in  a   membrane,  calculated  a  predicted  average   number  of  rebindings.     Note  that  the  predicted  number  of   rebindings  is  rela&vely  small     Govern  et  al  used  two  different  TCRs  and  a   variety  of  pMHC  with  known  affini&es  and   binding  rate  constants  for  those  TCRs  as  well  as   known  ability  to  s&mulate  T  cell  prolifera&on   and  cytokine  produc&on.   Govern  et  al.  Proc  Natl  Acad  Sci  U  S  A.  2010  May  11;107(19):8724-­‐9.  
  • 52. How  does  the  TCR  know  to  ac8vate  signaling  in  response  to  very  low  levels  of  pMHC?   Dwell  Time:  What  determines  if  a  pMHC-­‐TCR  interac&on  is  s&mulatory  is  how  long  the   pMHC  “dwells”  near  a  single  TCR,  repe&&vely  binding  it. Govern  et  al.  Proc  Natl  Acad  Sci  U  S  A.  2010  May  11;107(19):8724-­‐9.   They  knew  the  kon  and  diffusion  coefficients  of  the  TCR  and  pMHC  used.       From  this  they  could  use  a  model  of  binding/diffusion  in  a  2D  membrane  to  calculate  the   dwell  &me  of  each  pMHC/TCR  (  “ta”).   ta  for  TCR/pMHCs  was  the  best  predictor  of  T  cell  prolifera)ve  response.   EC50  (uM)   For  prolifera&on   pMHC  agonis&c   strength:     Strongest   Moderate   weakest  
  • 53. Dwell  &me  theory  of  TCR-­‐pMHC   interac&ons   •  Depends  on   – Forward  kine&c  rate  constant  for  binding     – Diffusion  of  TCR  and  pMHC  
  • 54. Dwell  Time  Modeling:  Goals   •  How  does  the  membrane  diffusion  environment   influence  TCR-­‐pMHC  interac&on  dynamics?   –  Does  changing  D  (diffusion  coefficient)  from  solu&on   values  (100  um^2/s)  to  membrane  values  (0.1  um^2/ s)  impact  molecular  dwell  &mes   •  How  does  changing  the  forward  rate  constant  for   binding  influence  TCR-­‐pMHC  interac&on   dynamics?   –  Does  changing  pON  (probability  of  binding  in  one   model  step)  from  lowàmoderateàhigh  values   impact  molecular  dwell  &mes  
  • 55. How  the   model   sets  up   and  runs   Ini&alize   and   execute   model   Control   how   binding   and   diffusion   works   Quan&ta&ve  outputs   about  binding   Size  and  &me   informa&on  about   model  you’ve  run   Free  TCR  (red  circle)   Bound  TCR  (yellow  circle)   Free  pMHC   (green   square)   Agent  based  model  of  TCR  and  pMHC   binding  in  apposed  membranes  
  • 56. Run  the  Netlogo  model  of  TCR-­‐pMHC  interac&on  with   •  D=0.1,  100  um^2/s   •  Low,  moderate  and  high  probability  of  binding   RESULTS  
  • 57. Triplicate  runs   pOFF=0.01  in  all   250s  dura&on,  10ms  &me  resolu&on   10nm  binding  radius   100  TCRs  and  pMHCs  in  ~15  um^2  membrane   D   Diffusion  Coefficient  (um^2/s)                                                Membrane                                                  Solu&on  
  • 58. Now  that  we’ve  considered  the  state  of  knowledge  regarding   molecular  TCR-­‐pMHC  interacAons,  let’s  think  about  the  cell-­‐cell   interface  environment  in  which  these  interacAons  occur…     What  are  some  important  features  of  this  environment  that  bear  on  signaling  processes?   Achieving  close   cellular  apposiAon   Micro/nanoscale   organizaAon  of  signaling   components   Mechanics  of  the   Immune  Synapse  
  • 59. Achieving  close  cellular  apposiAon.       What  are  the  challenges?   Huppa,  Davis.  Nature  Reviews  Immunology  3,  973-­‐983  (December  2003)     Molecular  InteracAons  at  the   T-­‐APC  immunological  synapse   This  figure  helps  to  summarize  cell   biological  informa&on,  and  to  be  fair,  that   was  all  it  was  intended  to  do  in  the  review   cited  below.     But  from  the  standpoint  of  physical   interac&on  between  two  cells,  it  has  some   major  omissions  and  inaccurate   representa&ons.     What  aspects  of  the  immune  cell  interface   are  not  represented  or  not  accurately   represented  here?  
  • 60. Achieving  close  cellular  apposiAon.    What  are  the  challenges?   Casasnovas  et  al.  Proc  Natl  Acad   Sci  U  S  A.  1998;95(8):4134-­‐9.   Yin  et  al.  Proc  Natl  Acad  Sci  U  S   A.  2012  Apr  3;109(14):5405-­‐10.   LFA-­‐1   ICAM-­‐1   dimer   There  is  no  glycocalyx   illustrated  on  either  cell,  but   this  is  an  important  repulsive   barrier  that  resists  apposing   two  cells  closer  than   ~100nm.   40  nm   T-­‐APC  adhesion  via   LFA-­‐1/ICAM-­‐1  is   important  for   stabilizing  the  cell-­‐cell   interface,  but  this   would  space  the  cell   membranes  ~40nm   apart   The  TCR-­‐pMHC  complex   is  only  ~15nm,  so   engagement  of  TCR  will   require  membranes  to  be   pushed  into  ~15nm   separa&on.  
  • 61. Achieving  close  cellular  apposiAon.    What  is  the  solu8on?   T  cell  invadopod  like  protrusions  (ILP)   Sage  et  al.  J  Immunol.  2012  Apr  15;188(8):3686-­‐99.     Top:  T  cells  siung  on  an  Ag-­‐pulsed  APC  probe  the  APC  with  ILPs  even   before  Ca2+  flux.  Red  arrows  show  sites  where  membrane  targeted   fluorescent  protein  in  the  T  cell  is  pushed  into  the  APC  membrane.       Le€:  TEM  image  shows  the  interdigita&on  of  the  synapse  between  APC   and  T  cell,  including  sites  of  apparent  T  cell  ILP  ac&vity  (red  arrows).   ILPs  are  ac&n  dependent  and  are  thought  to  push   the  T  cell  and  APC  membranes  close  enough  to   engage  TCR-­‐pMHC  binding.  
  • 62. Achieving  close  cellular  apposiAon.    What  is  the  solu8on?   Kine&c  segrega&on.     Sequen8al  engagement  of  different  sized  receptors  accompanied  by  reorganiza8on  of   their  membrane  distribu8ons.   ICAM-­‐1  LFA-­‐1   T   APC   TCR   pMHC          CD45               James,  vale.  Nature.  2012  Jul  5;487(7405):64-­‐9.   ICAM-­‐1   LFA-­‐1   T   APC   TCR   pMHC          CD45               During  ini&al  T-­‐APC  adhesion,  large   ICAM-­‐1/LFA-­‐1  interac&ons  predominate.       TCR  can’t  be  engaged  at  this  distance.   Large  nega&ve  regulatory  phosphatases   are  allowed  in  the  contact.     ILPs  form  small  close  contacts   where  TCR-­‐pMHC  can  engage.   Adhesive  interac&ons  between   CD2  and  CD58  can  stabilize   these  close  contacts  (CD2/ CD58  is  about  the  same   intermembrane  length  as  TCR/ MHC).   As  close  contacts  grow,  the  energy   cost  of  bending  membranes  is   balanced  by  mul&ple  binding   interac&ons  to  stabilize  and   enlarge  areas  of  TCR  engagement.   Large  ectodomain  proteins  are   excluded  (e.g.,  CD45)  
  • 63. Micro/nanoscale  organizaAon  of  signaling.   Recruitment  of  LAT  to  ac&vated  TCR  complexes  is  a  key  early  event  in  TCR  signaling.   How  do  we  prevent  LAT  from  prematurely  assembling  at  TCR  complexes?   Methods: fluorescence super resolution imaging and TEM with gold beads on membrane sheets and whole cells. Both methods are in good agreement, so I’m showing just the TEM immunogold. •  TCR complex has been shown to form nanoclusters in resting T cells. •  Lat forms similarly sized clusters. •  The size of both clusters is in the 40-300nm range. •  Estimated 5-20 TCR per cluster Small   CD3ζ Large   Lat   Non-­‐ac&vated  T  cell  membrane   ac&vated  T  cell  membrane   Lillemeier,  et  al.  Nat  Immunol.  2010  Jan;11(1):90-­‐6.    
  • 64. Micro/nanoscale  organizaAon  of  signaling.   Top:  Ripley’s  func&ons  and  their  deriva&ves  are  a  way  to   show  that  objects  (i.e.,  small  and  large  immunogold  beads)   are  clustered  on  certain  length  scales.     •  The  peak  of  the  Ripley’s  L(r)-­‐r  curve  is  the  length  scale   of  greatest  clustering.   •  Ac&va&on  on  cognate  pMHC  surfaces  increases  the   amount  and  length  scale  of  clustering  for  CD3  and  Lat.     Boeom:  Bivariate  Ripley’s  sta&s&cs  show  the  probability   that  CD3  and  Lat  are  clustered  together  at  different  length   scales.   •  The  shaded  areas  represent  the  regions  of  the  plot   where  the  observed  distribu&on  of  CD3  and  Lat  are  not   dis&nguishable  from  random  with  99%  confidence.     •  If  the  lines  go  outside  of  these  regions,  then  the  paeern   colocaliza&on  of  CD3  and  Lat  shows  evidence  of   clustering  (above  the  shaded  area)  or  segrega&on   (below  the  shaded  area).     •  On  a  non-­‐ac&va&ng  surface,  Lat  clusters  are  segregated   from  CD3.   •  On  an  ac&va&ng  surface,  they  become  co-­‐aggregated  
  • 65. Micro/nanoscale  organizaAon  of  signaling.   Complimentary  evidence  of  Lat  and  TCR  complex  co-­‐ aggrega&on  a€er  ac&va&on  came  from  fluorescence   cross-­‐correla&on  spectroscopy  (FCCS)  measurements.       Orange  lines  show  the  likelihood  of  observing  co-­‐ diffusion  of  Lat  and  CD3ζ  in  living  cell  membranes.     •  CD3/Lat  co-­‐diffusion  is  not  seen  in  T  cells  on  a  non-­‐ ac&va&ng  ar&ficial  membrane.   •  Placing  agonis&c  ligand  on  the  bilayer  markedly   increases  the  co-­‐diffusion  of  TCR  complex  and  Lat.   Therefore,  several  lines  of  evidence  show  that:       1.  TCR  and  the  key  signaling  adaptor  Lat  are  preclustered  in    T  cell  membranes  on  tens   to  hundreds  of  nanometers  scales  .     2.  Prior  to  s&mula&on,  Lat  and  TCR  complex  are  segregated  from  one  another  in   separate  nanostructures.     3.  When  a  cognate  pMHC  is  seen,  Lat  becomes  co-­‐aggregated  with  TCR  nanoclusters.    
  • 66. Mechanics  of  the  immune  synapse.   So,  TCR  organizes  into  clusters  when  ac&vated.   What  happens  to  TCR  clusters  in  the  immunological  synapse?   cSMAC   pSMAC   dSMAC   TCR   TCR   The  cSMAC  is  rich  in  TCR,  while  CD45  and  other  nega&ve   regulatory  phosphatases  tend  to  be  in  the  dSMAC.   This  ini&ally  led  to  the  idea  that  TCR  signaling  was  occurring  in   the  cSMAC.   CD45     Subsequent  imaging  work  at  high  spa&al  and  temporal   resolu&on  clarified  that  signaling  from  the  TCR  actually   happens  as  ac&vated  TCR  forms  into  microclusters,  largely  in   the  pSMAC,  during  the  ini&al  spreading  phase  of  synapse   forma&on.    In  this  phase  TCR  is  sampling  for  an&gen  and   forming  microclusters.   These  TCR  microclusters  then  move  laterally  into  the  cSMAC.     This  happens  when  the  synapse  stops  spreading  and  develops   a  strongly  contrac&le  pSMAC.    In  this  phase,  TCR  is  signaling,   causing  the  cell  to  stop  and  integrate  signal  and  eventually   being  downregulated.   We  will  consider:   How  do  TCR  microclusters  move?   What  actually  happens  in  the  pSMAC?  
  • 67. How  do  TCR  microclusters  move?   An  actomyosin  flow   develops  in  the  pSMAC.   This  is  similar  to  the   “tractor”  that  forms  at   the  leading  edge  of   migra&ng  cells  and  moves   them  forward.   F-­‐ac&n  forms  into   bundles  at  the  edge  of   the  synapse  and  myosin   IIA  mediated  contrac&on   causes  the  F-­‐ac&n  to   contract  inward  toward   the  cSMAC.   Recruitment  of  GEFs  to  the  synapse  is  important  for  upregula&ng  Rac  and  Cdc42  GTPase   dependent  ac&n  nuclea&on  (e.g.,  via  Arp2/3  complex).    Rho  GTPase  regulates  myosin  IIA   mediated  contrac&on  in  the  pSMAC.   Babich  et  al.  2012  //  JCB  vol.  197  no.  6  775-­‐787     Kumari  et  al.  Biochim  Biophys  Acta  2014  Feb;1838(2):546-­‐56.   Mechanics  of  the  immune  synapse.  
  • 68. How  do  TCR  microclusters  move?   Ar&ficial  membranes  have  been  made  with  underlying   metal  barriers.     When  transmembrane  proteins  (i.e.,  TCR  complex)   encounter  the  barrier,  they  must  go  around,  not   through.       Examples  of  TCR  microcluster  trajectories  as  they  move   toward  the  cSMAC  and  encounter  barriers  show  that   the  TCR  gets  hung  up  on  the  barriers  and  must  slide   along  the  barriers  to  con&nue  centripetal  mo&on.     In  contrast,  actomyosin  mo&on  is  beneath  the   membrane  and  thus  not  effected  by  the  barriers.    Ac&n   flows  past  the  barriers.     This  suggests  “fric&onal  coupling”  of  the  actomyosin   flow  to  the  TCR  complex  as  a  mechanism  of  TCR  cluster   mobility.   The  exact  mechanism  of  coupling  is  currently  unknown.   Mechanics  of  the  immune  synapse.   Demond  et  al.  Biophys  J.  2008  Apr  15;94(8):3286-­‐92.    
  • 69. Do  moving  TCR  clusters  transduce  force  as  part  of  their  signaling?   Mechanics  of  the  immune  synapse.   TCR-­‐pMHCs  being  dragged  from  pSMAC  to  cSMAC  by  actomyosin  flow  will  experience  force   in  the  piconewton  range.   T  cells  respond  with  greater  TCR  signaling  when  presented  with  an&-­‐CD3  on  s&ff  surfaces   rela&ve  to  so€er  surfaces,  which  may  relate  to  the  amount  of  force  experienced  by  the  TCR.   Huppa,  etal.  Nature.  2010  Feb  18;463(7283):963-­‐7.   Time  (sec)  of  TCR-­‐agonist  pMHC  interacAon   Huppa  et  al  used  a  FRET  probe  between  a  pMHC  and  an&-­‐ TCR  monovalent  an&body.  FRET  signal  was  only  observed   when  the  TCR-­‐pMHC  complex  was  bound,  allowing   measurements  of  TCR-­‐pMHC  binding  &mes.   Found  that  synap&c  TCR-­‐pMHC  binding  &mes  are  3-­‐12  &mes   shorter  than  the  solu&on  value.     F-­‐ac&n  inhibitors  (prevents  actomyosin  transport  of  TCR   clusters)  increased  TCR-­‐pMHC  binding  &mes.       Suggested  that  the  force  applied  to  TCRs  in  the  synapse  as   they  are  dragged  by  actomyosin  flow  can  shorten  their  half   &me  of  binding  to  pMHC.  
  • 70. What  is  the  mechanical  nature  of  the  TCR-­‐agonist  pMHC  bond?   Mechanics  of  the  immune  synapse.   Depoil  and  dus&n.  Trends  Immunol.  2014  Nov  17;35(12):597-­‐603.   Liu  et  al.  Cell.  2014  Apr  10;157(2):357-­‐68.   OT1   Types  of  bonds   •  Slip  bonds  are  linearly  more  likely  to   break  (shorter  life&me)  with  increasing   force.   •  Catch-­‐slip  bonds  become  stronger   (longer  life&me)  with  increasing  force,   but  only  up  to  their  rupture  force  (then   they  become  slip  bonds).     Biomolecular  Force  Probe  (BFP)   •  A  rigid  bead  is  coated  with  a  low  density   of  pMHC  such  that  only  a  single  pMHC   will  contact  a  T  cell  when  the  bead   touches  it.   •  The  bead  is  aeached  to  an  RBC.   •  The  RBC/bead  is  repeatedly  brought  up   to  the  T  cell  membrane,  then  retracted.     •  The  force  applied  to  the  TCR  can  be   calculated  from  the  RBCs  membrane   deforma&on  during  retrac&on.  
  • 71. What  is  the  mechanical  nature  of  the  TCR-­‐agonist  pMHC  bond?   Mechanics  of  the  immune  synapse.   Liu  et  al.  Cell.  2014  Apr  10;157(2):357-­‐68.   Antagonist  pMHC   Agonis&c  pMHC   Agonist   pMHC   strength   Le€:  Agonis&c  pMHC  consistently  display  catch-­‐slip  bonding  with  TCR.  The  rupture   force  is  correlated  with  the  agonis&c  “strength”  of  the  pep&de.   Right:  Antagonis&c  pep&des  form  slip  bonds  with  TCR.     T  cells  integrate  the  total  &me  single  TCRs  are  subjected  to  catch  bonded  pulling  force   (10  pN,  OVA  pep&de).  Strong  T  cell  Ca2+  fluxes  require  integra&on  of  10  s  of  catch   bonded  &me  per  minute  of  total  BFP  s&mula&on.  
  • 72. Why  does  it  all  ma]er?   Mechanis&c  Underpinning  for  T  cell  Sensi&vity   These  studies  help  us  to  understand  the  physical  parameters  that  define  whether  a   pMHC  will  be  s&mulatory  or  not.  They  also  help  us  to  understand  the  exquisite   sensi&vity  of  T  cells  for  low  densi&es  of  agonist  pMHC.         Sensi&vity  is  important  because  professional  APCs  like  DCs  might  not  express  large   densi&es  of  a  par&cular  cognate  pMHC  for  a  T  cell.       Also,  a  scanning  T  cell/APC  interac&on  in  the  lymph  node  is  rather  short  lived   (~minutes),  so  the  T  cell  needs  to  be  able  to  signal  and  stop  migra&ng  if  even  a  small   amount  of  cognate  pMHC  is  found.     Possible  Mechanism  of  Quan&ta&ve  T  cell  Help  for  B  cell  Matura&on.   Review  re:  role  of  IS  in  T  cell  help  for  B  cells-­‐-­‐Dus&n.  Mol  Cell.  2014  Apr  24;54(2):255-­‐62.   B   T  Ag   Y  Y   AnAgen   gathering   Efficiency  α   BCR  affinity   AnAgen   presentaAon   #  pMHC  α     BCR  affinity   TCR  signals,     acAvaAon   #  CD40L  α     #  pMHC  seen   T   B   T  cell  help   #  CD40L  α     B  cell  prolif   A  2014  ar&cle  suggested  that  exocytosis  of  TCR  in  the  cSMAC  may   contribute  to  long-­‐term  regula&on  of  B  cell  responses  to  T  cell   help  las&ng  beyond  the  &me  frame  of  direct  T-­‐B  interac&ons.  
  • 73. Possible  Mechanism  of  Quan&ta&ve  T  cell  Help  for  B  cell  Matura&on.   Choudhuri  et  al.  Nature.  2014  Mar  6;507(7490):118-­‐23.   TCR  F-­‐acAn   3um   TCR  int.  overlay  TEM   500nm   Vesicles    T  cell  PM   Fluorescence-­‐TEM  correla&ve  study:   TCR  intensity  is  found  where  cSMAC   microvesicles  are  seen     Tg  TCR  T  cell  on  ar&ficial  membrane  with  cognate   pMHC  and  ICAM-­‐1.  Microvesicles  are  present   outside  the  T  cell  near  the  cSMAC  loca&on.   Microvesicles  are  produced  by  ESCRT-­‐dependent   exocytosis  (similar  to  HIV  budding).   B  cells  expressing  cognate  pMHC  internalize  Tg  TCR  at  immunological   synapses  and  ac&vated  PLCg  is  found  in  proximity  B  cell  captured  TCR.   Purified  microvesicles  display   total  TCR  in  propor&on  to   the  density  of  cognate  pMHC   used  to  ac&vate  the  T  cell.   Germinal  Center   Light  Zone   Dark  Zone   T   B   Hypothe)cal  Model  
  • 74. 2.  Cytokine  Receptor,  Notch  and   Innate  Immunoreceptor  Signaling.   Regula&on  of  signal  dynamics     BIOM  514,  Cell  Signaling     Apr.  3,  2015   Aaron  Neumann,  Ph.D.  (Pathology)   CRF327,  akneumann@salud.unm.edu   Abbas (7th ed.) Chapter 7,9, parts of 11
  • 75. OVERVIEW   •  Cytokine  Receptors—Jak/STAT  signaling   •  Notch  Signaling   •  NFkB—a  central  immune  response  transcrip&on   factor   •  Innate  Immunoreceptor  Signaling:  Fc  Receptors,  Toll   like  Receptors,  C  type  lec&n  receptors   •  ITIM  antagonism  of  ITAM  signaling   •  Dynamical  considera&ons  in  signaling      
  • 77. JAK/STAT Pathway Type I and II cytokine receptors • Cytoplasmic tail contains tyrosine • Jak is attached to receptor tail • Clustering of receptors leads to Jak- mediated phosphorylation of the receptor tail • STAT can now bind and be activated • STATs dimerize (homo- or heterodimerization) and translocate to the nucleus where they stimulate transcription, changing gene expression • Cellular response is different depending on the combination of receptor, Jak and STAT activated
  • 78. Radtke,  Immunity  Volume  32,  Issue  1  2010  14  -­‐  27   Notch signaling impacts lymphocyte development and activation How  Notch  signaling  works:   1.  Export  of  Notch  to  the  plasma   membrane   •  Furin-­‐like  protease  cleavage   •  Glycosyla&on  by  the  fringe   glycosyltransferases   2.  Binding  ligand  on  opposing  cell   membrane   •  Jagged   •  Delta  like  ligands  (Dll)   3.  Cleavage  at  the  plasma  membrane   •  ADAM  (A  Disintegrin  And   Metalloprotease)   •  γ-­‐secretase   4.  Release  of  Notch  intracellular  domain   into  the  cytoplasm   5.  Nuclear  Transloca&on   6.  Binds  to  CSL  transcrip&on  factor  and   recruits  coac&vatoràgene  transcrip&on   7.  Proteosomal  degrada&on   1 2 3 4 5 6 7
  • 79. Radtke,  Immunity  Volume  32,  Issue  1  2010  14  -­‐  27   Notch signaling impacts lymphocyte development and activation Notch1  signaling  in  T  cell  development   •  Maintains  a  stem  cell  popula&on  (HSC)   that  seeds  the  thymus   •  Suppresses  B  lineage  development  in  DN   stage   •  Supports  prolifera&on  at  the  DN4àDP   transi&on  due  to  Notch  signaling  that   supports  prolifera&on  and  survival.     Notch  in  peripheral  T  cells   •  Expression  increases  and  Notch   intracellular  domain  is  seen  a€er  TCR   ac&va&on   •  Occurs  even  without  APC  sources  of   Notch  ligand   •  T  cells  don’t  seem  to  express  much   Notch  ligand   How  is  Notch  ac8va8on  happening??   •  Jagged-­‐Notch  may  drive  Th2   differen&a&on  
  • 80. Radtke,  Immunity  Volume  32,  Issue  1  2010  14  -­‐  27   Notch signaling impacts lymphocyte development and activation Impact  of  Notch  Signaling:     Regulates  lineage  commitment  during   development  through  transcrip&on  factor   ac&va&on       Drives  signaling  that  Promotes   •  Prolifera&on   •  Metabolism     •  Survival     Using  pathways  that  influence   •  Apoptosis  (p53,  PI3K/Akt)   •  Cell  Cycling  (p27Kip1)   •  Metabolism  (mTOR)  
  • 82. The history of Toll-like receptors — redefining innate immunity Luke A. J. O'Neill, Douglas Golenbock & Andrew G. Bowie Nature Reviews Immunology 13, 453–460 (2013) doi:10.1038/nri3446 TLRs & signaling (Abbas Ch4) MyD88, TRIF ê TRAFs ê Trxn factor (NFkB, IRFs)
  • 83. Nature Reviews | Immunology Dectin 2 ITAM HDM allergens Malassezia sp. CARD9 BCL-10 MALT1 IKK IKK IKK I B p50p65 P Proteasome Nucleus Cytoplasm Fungal hyphae FcR P P SYK P P SYK Mincle Myeloid DC Cysteinyl leukotrienes ? ? _ _+ _ _ + p50p65 Tnf and Il6 FcRγ results in NF-κB activation10,58 , although a role for the SYK-CARD9–BCL-10–MALT1 complex has not yet been confirmed. Thus, dectin 2 triggering alone might induce an adaptive immune response, which is supported by data showing that dectin 2 recognition of fungal hyphae from C. albicans, Trichophyton rubrum and Microsporum audouinii leads to TLR-independent production of the pro-inflammatory cytokines TNF and IL-6 (REF. 10). Furthermore, dectin 2 recognition of house dust mite allergens activates SYK through FcRγ to gen- erate cysteinyl leukotrienes, an important mediator of allergic inflammation in the lungs58 . Notably, recogni- tion of Histoplasma capsulatum β-glucans by dectin 1 also leads to the production of leukotrienes59 , suggesting that a common SYK-dependent pathway is involved in leukotriene synthesis after CLR triggering. The related CLR mincle also pairs with FcRγ and induces gene transcription through the SYK–CARD9– BCL-10–MALT1 complex12 . In macrophages, recogni- tion of dead cells by mincle through the endogenous ligand SAP130 (SIN3A-associated protein, 130 kDa) mediates CXC-chemokine ligand 2 (CXCL2) and TNF production in a SYK- and CARD9-dependent manner, which induces neutrophils to migrate into damaged tis- sues12 . Mincle also interacts with α-mannosyl PAMPs expressed by the pathogenic fungus Malassezia spp. and induces gene transcription and TNF production without the involvement of TLRs, further suggesting that mincle, similarly to dectin 2, couples FcRγ-signalling to NF-κB activation18 . The similarities of mincle downstream sig- nalling with the dectin 1 pathway suggest that both CLRs couple SYK activation to NF-κB activation through the CARD9–BCL-10–MALT1 complex. In contrast to dectin 2 and mincle, BDCA2 does not induce TLR-independent cytokine production even though it also pairs with FcRγ. The unusual signal- ling pathway induced by BDCA2 might be because it is expressed only by pDCs, whereas dectin 2 and mincle are expressed by myeloid-derived antigen presenting cells (TABLE 1). A recent study has shown that lymphoid and myeloid cells have differential requirements for CARD proteins in BCL-10-mediated NF-κB activation32 , which might explain why dectin 2 and mincle couple FcRγ-signalling to NF-κB activation and BDCA2 does Figure 4 | Signalling by dectin 2 and mincle leads to cytokine expression. BothDC-associatedC-typelectin2 (dectin2)andmacrophage-inducibleC-typelectin(mincle) pairwiththesignallingadaptormoleculeFcreceptor γ-chain(FcRγ) throughthepresenceofapositivelycharged aminoacidresidueintheirtransmembraneregions.The phosphorylationoftheimmunoreceptortyrosine-based activationmotifs(ITAMs)ofFcRγ followingC-typelectin receptor(CLR)activationservestorecruitspleentyrosine kinase(SYK)andinducessignallingpathwaysthatmodulate cytokineexpression.Dectin2bindstopathogen-associated molecularpatterns(PAMPs)expressedbyfungalhyphae, andminclebindstoα-mannosylPAMPsonMalasseziaspp. fungi.BothsignallingpathwaysleadtoToll-likereceptor (TLR)-independentproductionofcytokinessuchastumour necrosisfactor(TNF)andinterleukin-6(IL-6);dectin2 triggeringisknowntoresultinnuclearfactor-κB(NF-κB) p50–p65activation,andmincletriggeringinducesaCARD9 (caspaserecruitmentdomainfamily,member9)-dependent signallingpathway.Similaritieswiththedectin1signalling REVIEWS P Nature Reviews | Immunology Dectin 1 P P SYKRas PP RAF1 CARD9 BCL-10 MALT1 IKK IKK IKK NIK IKK I B p50p65 RELB RELBp100 p52 RELB RELB p52 RELBp65 P RELBp65 P RELBp65 P Proteasome p50p65 P Ser276 p50p65 P p65 PCBP Ac Ac Nucleus Cytoplasm p50p65 P Ac Ac Il6 and Il10 p50 p50 p50REL p50REL REL p65 P Ac Ac Il12b Il1b Ccl17 and Ccl22 p50p65 P Ac Ac Il12a Il23p19 Fungia b ? Or Inactive NF- B p50REL Figure 3 | Dectin 1 signalling through SYK and RAF1 directs NF-κB-mediated cytokine expression. a | The binding of fungi to DC-associated C-type lectin 1 (dectin 1) induces phosphorylation of the YxxL (in which x denotes any amino acid) motif in its cytoplasmic domain. Spleen tyrosine kinase (SYK) is recruited to the two phosphorylated receptors, which leads to the formation of a complex involving CARD9 (caspase recruitment domain family, member 9), B cell lymphoma 10 (BCL-10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1); this induces the activation of the IκB kinase (IKK) complex through an unknown pathway. IKKβ phosphorylates inhibitor of NF-κBα (IκBα), thereby targeting it for proteasomal degradation. This results in the release of nuclear factor-κB (NF-κB; consisting of either p65–p50 or REL–p50 dimers), which then translocates into the nucleus. SYK activation also leads to the activation of the non-canonical NF-κB pathway that is mediated by NF-κB inducing kinase (NIK) and IKKα, which target p100 for proteolytic processing to p52; this subsequently leads to nuclear translocation of RELB–p52 dimers. In a SYK-independent manner, dectin 1 activation leads to the phosphorylation and activation of the serine/threonine protein kinase RAF1 by Ras proteins, which leads to the phosphorylation of p65 at Ser276. Phosphorylated Ser276 serves as a binding site for the histone acetyltransferases CREB-binding protein (CBP) or p300 (not depicted) to acetylate (Ac) p65 at different lysine residues. Ser276-phosphorylated p65 also dimerizes with RELB to form inactive dimers that cannot bind DNA, and hence attenuates the transcriptional activity of RELB. b | Binding of acetylated p65 to the Il10 (interleukin-10) enhancer and Il6 REVIEWS PSYK TLR9DNA Endosome MYD88 MYD88 TLR9 DNA Endo BDCA2 DCIR P P P BLNK BTK PLC 2 ? Ca2+ mobilization TLR pathway SHP1 or SHP Plasmacytoid DCa b ITAM FcR P P ITIM _ _+ Ifna, Ifnb, Tnf and Il6 Ifna Tnf Cytoplasm Nucleus Similar to DC-SIGN, neither DCIR nor been shown to induce immune respons own, but instead modulate signalling Figure 2 | Signalling by BDCA2, DCIR and M protein (BDCA2) leads to the recruitment of sp tyrosine-based activation motif (ITAM) of the p theactivationofacomplexconsistingofBcell which induces Ca2+ mobilization. The signalling downregulation of Toll-like receptor 9 (TLR9)-in (TNF) and interleukin-6 (IL-6) by plasmacytoid d the recruitment of myeloid differentiation prim TLR-induced cytokines. b | Activation of DC im compartments, where TLR8 and TLR9 reside. T (ITIM) recruits the phosphatases SH2-domain-c the activation of an unidentified signalling pat TNF production or TLR9-induced IFNα and TNF c | Cross-linking of myeloid C-type lectin-like r ITIM and the recruitment of SHP1 or SHP2. MIC signal-regulated kinase (ERK). However, it is no TLR4-induced IL-12 production. LPS, lipopolys molecule; TRIF, TIR-domain-containing adapto ITAM Signaling Pathways in the Innate Immune System: C-type Lectins Nat  Rev  Immunol.  2009  Jul;9(7):465-­‐79.     hemITAM Classically involved in recognition of pathogen surface carbohydrates FcRgamma coupled ITAM signaling. In some cases, ITAM signaling antagonizes TLR signaling.
  • 85. Important Functions of Fc receptors
  • 86. Mast Cell Signaling: the cornerstone of allergic inflammation Gilfillan, 2006 Nat. Rev. Immunol
  • 87. The ITAM signaling pathway is similar
  • 88. ITIM-containing Receptors Recruit PHOSPHATASES •  SHP1, SHP2 – SH2 containing tyrosine phosphatases • SHIP – SH2 containing inositol phosphatase
  • 89. ITAM/ITIM crosstalk in B cells Secreted IgG can form complex with antigen Crosslinks BCR and FcγRIIB FcγRIIB recruits SHIP that hydrolyses a phosphate on PIP3 and terminates signaling Proposed control mechanism to stop antibody production
  • 90. Signal Transduction Dynamics The  linear  pathways  for  signal  transduc&on  presented  in  textbooks  can  be  misleading.   •  Cross-­‐talk  amongst  signaling  pathways  influences  signal  outputs.   •  Dynamical  nature  of  signal  varia&on  with  &me  is  important.     For  instance,  human  immature  Dendri&c  Cells  exhibit  spontaneous  oscilla&ons  of   intracellular  Ca2+  in  the  res&ng  state.    These  are  lost  as  the  cell  matures.       400 800 1200 1600 0 200 400 600 Ca2+ iIntensity(AU) Time (sec) DIC Fluo-4 + ionophore
  • 91. Signal Transduction Dynamics Dolmetsch, et al. Nature 392, 933-936(30 April 1998) •  T cells also exhibit Ca2+ oscillations and spikes during activation •  Ca2+ clamp method can reproduce arbitrary oscillation amplitudes and periods (left) At low levels of Ca2+, oscillatory [Ca2+]i increases the number of cells expressing an NFAT reporter.
  • 92. Signal Transduction Dynamics Dolmetsch, et al. Nature 392, 933-936(30 April 1998) These three transcription factors respond similarly to continuous Ca2+ amplitude, but have different behavior depending upon oscillation frequency. Thus, different transcriptional programs could be controlled by Ca2+ signal dynamics. Encoding oscillations is usually a matter of some negative feedback in the signaling system operating with a delay. For instance, the IP3R releases store Ca2+, but is also inhibited by the rise in cytosolic Ca2+. How would the cell decode oscillatory signals?
  • 93. Signal Transduction Dynamics TF-A: high Ca2+ affinity, short half-life TF-B: low Ca2+ affinity, long half-life time %maxsignal Calcium, TF-A, TF-B TF-A gets activated by very little Ca2+ and decays rapidly. Its signal will be oscillatory unless the period of Ca2+ oscillation is shorter than the half life of TF-A. TF-B only gets activated by high levels of Ca2+ (at the peak of the oscillation), but it degrades slowly. This causes its signal to be persistent. With this system, you could have regimes where only TF-A or both were activated and TF-A could be periodic or persistent. This would be controlled by the amplitude and period of the oscillatory stimulus.
  • 94. Extra  slides  on  BCR  signaling  (if  there  is  Ame)  
  • 95. BCR signaling •  Antigen binding domain is a surface-expressed immunoglobulin with the same antigen specificity that the B cell will secrete •  Signaling occurs through associated Igα and Igβ ITAM containing proteins •  Multi-subunit receptor with variable antigen receptor + invariant signaling molecules
  • 97. Nature Reviews Immunology 13, 475–486 (2013) doi:10.1038/nri3469 B  cell  Ac&va&on  at  APC  contacts  involves  microclusters  and  cytoskeletal  dynamics   •  BCR  ac&va&on  and   microcluster  forma&on   •  B  cell  ac&n  mediated   spreading  on  APC,  integrin   ac&va&on   •  Centripetal  mo&on  of   microclusters  on  MT   •  Lysosome  recritment   •  Contact  site  contrac&on   How  is  an&gen  acquired?   •  Soluble  an&gens  may  diffuse   into  secondary  lymphoid   organs  and  be  acquired  from   fluid  phase.   •  APCs  like  subcapsular  macs   and  follicular  DCs  present   large  par&culate  an&gens   How  do  B  cells  obtain   an8gens  from  surfaces?    
  • 98. Nature Reviews Immunology 13, 475–486 (2013) doi:10.1038/nri3469 B cells polarize lysosomes toward an APC contact MTOC Lysosome Laser ablation of a single lysosome does not impact overall lysosome polarization to the synapse Ablation of the MTOC causes the lysosomes to disperse. What is the purpose of this with respect to antigen acquisition?
  • 99. Macrophages contacting LDL aggregates also target lysosomes to extracellular contact sites for the purpose of degradation and material extraction Abigail S. Haka et al. Mol. Biol. Cell 2009;20:4932-4940 All LDL aggr. Extracellular LDL aggr. Lyso contents released Acidification of extracellular contacts with agLDL due to lysosomal release
  • 100. Mechanisms  of  intercellular  exchange  of  proteins   FEBS Letters Volume 583, Issue 11, pages 1792-1799, 14 MAR 2009 DOI: 10.1016/j.febslet.2009.03.014 http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2009.03.014/full#feb2s0014579309001872-fig2 B cells have also been proposed to gather Ag from APC by “trogocytosis”. The B cell exerts force on the APC membrane sufficient to rip out the antigen and some accompanying membrane. Other mechanisms of protein transfer are also known, though their contribution to B cell Ag gathering is less clear.