SlideShare a Scribd company logo
1 of 12
Phase 1 Report of the Graduation Project
Preparation phase
EXPERIMENTAL MODELLING OF A TWO STAGE
ENCAPSULATED PCM THERMAL STORAGE
Master: Mechanical Engineering
Department: Mechanical Engineering
Research group: Energy Technology
Student: A.R. Sharma
Identity number : 0924981
Thesis supervisor: C.C.M. Rindt
Date: 22-01-2016
Contents
Chapter1: BACKGROUND............................................................................................................................................3
1.1 ENERGIEDAK .....................................................................................................................................................3
1.2 STORAGE REQUIREMENT...................................................................................................................................3
1.3 STORAGE OPTIONS............................................................................................................................................5
1.4 THERMOCLINE TWO STAGE PCMSTORAGE.........................................................................................................5
Chapter2: PROJECT GOAL............................................................................................................................................7
Chapter3: RESEARCH PLAN..........................................................................................................................................8
3.1 DESIGN .............................................................................................................................................................8
3.2 TEST RUN..........................................................................................................................................................9
3.3 PARAMETER VARIATION....................................................................................................................................9
3.4 PRELIMINARY SYSTEMANALYSIS........................................................................................................................9
Chapter4: PROJECT PLANNING....................................................................................................................................1
BIBLIOGRPHY..............................................................................................................................................................1
Chapter1: BACKGROUND
1.1 ENERGIEDAK
SolartechInternationalcurrentlyproducessolarpoweredheatingsystemsaimedtowardsawide varietyof
buildings:residential,commercial aswell asindustrial.The productisstandardizedandappliedonflatroofsasa
buildingintegratedthermalcollector.The thermal collectoris,essentially,anetworkof pipesrunningthrough
an insulatedbulkwithadarksurface.Thusthe surface,whenexposedtosunlight,achievesahightemperature.
The pipeslocatedadjacenttothe surface,collectthe heatinthe fluidrunningthroughthem.Thisthermal
collectorcan alsobe usedto rejectheaton summernights.
On itsown,the systemdescribedabove shallprovideclimaticcomfortfora verysmall fractionof the year.Thus,
incurrent installations,thissystemiscoupledwithundergroundsensible storage systems:ATES&BTES. In such
systems,twostorage regionsare createdunderground:hotwell/aquiferforwinteruse andcoldone forsummer
use.Predictably,these systemssufferfrom:
I. Highfootprint area
II. Highinstallationcosts
III. Lossesto ambience athighstorage temperatures
IV. Lots of governmentregulationsince itmayinterfere withwatersupplyorneighbouringstorages.
A lotof smallerdwellingsandhighrise buildingsare thenleftwithouta conventional storage option.Inthe
followingsectionswe will assessthe storage demandanddiscussthe optionswhichcantake the place of ATES
and BTES.
1.2 STORAGE REQUIREMENT
A roughestimationof the storage size requirementwasdone inordertodecide the size of the labsetup.Thisinvolved
calculatingthe supplyof heatfromthe energydakfor everyhourof an year andcombiningitwiththe heatconsumption
profile of aheat pumpof 6kW capacityoperatingina typical Dutchhome.The data for the energydakwas gathered
fromthe installationonthe roof of VertigoinTU Eindhovenandwascombinedwiththe publicallyavailable weather
data. The data for the heatpump wassuppliedbyMartanvan Meurs of NRGTEQ BV (heatpumpmanufacturers).
For all the calculationswe have assumedaroof installationof 20m2
. We combine the weatherdatawiththe
correlationsdeducedfromthe testinstallationonvertigo.The heatiscollectedonlyif the calculatedoutlettemperature
fromthe collectoris1o
C higherthanthe inlettemperature.The inlettemperature isassumedtobe fixedat10o
C. Fora
storage that islarge enough,thisisa safe assumptionsince the PCMstorage will alwaysbe intransition:neverfully
frozenor fullymolten.
Nextwe calculate the dailyenergyconsumptionforasingle familydwellingthroughoutthe year.The energy
consumptionfromthe storage hastwo maincustomers:space heatingandtapwater heating.The tapwaterheating
requirementisconstantthroughoutthe year,whereasthe space heatingrequirementismodelledmonthwise.
The resultsof the aforementionedsimulationsof heatproductioninthe collectorandconsumptionbythe heatpump
are as follows:
Figure 1. Daily heatproduction at
the multi-energy panel and daily
heat consumption atthe heat
pump.
From figure 1 we can observe
that the average production
is8 to 9 timesthe
consumption.However,
summertime (days150to
300) experience ahigh
productionandlow
consumption,withthe
reverse beingtrue for
wintertime.Another
significantobservationisthe
day to dayvariationinheat
collectionbecause of cloud
covervariation.This
necessitatesthe use of
storage inorder to
meaningfullyutilize the heatcollectionfromthe energiedak.
Usingthe data above,we canestimate the size of storage requiredtosupplythe heatpumpcontinuously.Toachieve
thisgoal,we can test the performance of eachstorage.The parameterchosentoevaluate aparticularsize of storage is
“supplyfraction”,whichgivesthe fractionof time the storage isable toprovide the heatpumpsystem, the restof the
time itis emptyandisthus unable toprovide heat.Since wintertime performance ismuchmore sensitive,we have
expressedthe supplyfractionintotal,winterandJanuarysupplyfractions. WinterencompassesmonthsfromOctober
to April.Followingare the results:
Figure 2. Supply fraction of storage of
different capacities annually,in winter and in
January.The storage is modelled as
lossless.
From the above calculationswe have
foundthat the storage size requiredto
achieve unitsupplyfraction
(uninterruptedsupply) is294 kWh (or
about1 GJ). Thistranslatestoa vessel
size of about5000 Litres(assuming
meltingenthalpyof 200kJ/kgand the
volume fractionof 0.5 for PCMin
vessel). Thissizeistoobigfordomestic
applications.Butfromthe calculations
performedabove,anacceptable
compromise betweenvessel size and
supplyfractioncanbe achievedbasedonthe costof the vessel perunitvolume.
1.3 STORAGE OPTIONS
Thermal storage systemsare designedtostore variousquantitiesof heat,atdifferenttemperatures,fordifferingperiods
of time.Theyare usedtolevel outthe differencesbetweenthe heatsupplyandheatdemandof a system.These
differencesinsupplyanddemandmaybe hourly,diurnalorevenseasonal.The workingprinciple behindthese systems
can be broadlyclassifiedintothree categories:
I. Sensible Storage:Asthe name suggests,these systemsutilize the sensible heatingof the material tostore heat.
These systemshave averylowenergydensityasthe specificheatcapacityismuch lowerthanphase change and
chemical change enthalpies.But,theyenjoyextremelylow installationcostsperunitcapacityandare thus
widelyused.Thesesystemsinclude pitstorage,boreholestorage,aquiferstorage etc.
II. Phase change storage:Phase change materialsprovideavarietyof temperature-specificstorage options.These
materialsremainattheirmelting/freezingtemperaturesuntil the entire storage haschangeditsphase.The
phase change materialsthemselvescanbe incorporatedintothe storage viadifferentencapsulations:
a. Microencapsulation:Inthis method,pcmiscontainedinaplasticcapsulesof sizes1to 30 µm. These
capsulesare theneitherincorporatedintobuildingmaterials(Kosny,2013) to act as passive storagesor
suspendedinfluidstoformslurriesforactive storage systems(Delgado,2012).
b. Macroencapsulation:MacroencapsulationreferstoPCMsencapsulatedinanytype of containersuchas
tubes,spheresorpanelswhichcanbe incorporatedintobuildingmaterialsorserve asheatexchangers
by themselves(Kalnaes,2015).In thispaper we will focusonspherical encapsulationsimmersedinheat
transferfluid(HTF).
III. Thermochemical storage
Thermochemical storage utilizesthe reversiblechemical reactionstostore the heatforlongperiodsof time.A simple
diagramaticexplanationisasfollows:
Figure 3. Schematic explanation of thermochemical storage. The two blocks of different
colours represent different chemicals. (Zondag, 2009)
Normally,the chemicalsusedforsuchstoragesare hygroscopicinnature,
i.e.theycan absorbhuge quantitiesof water.Thusheatisusedtorelease
waterfrom these materialsandwhentheyare exposedtomoisture again,
theyabsorbwaterintotheirlattice inan exothermicreaction.There is
extensive researchbeingcarriedonbyECN and TNO on salt-hydratesand
zeolitestocreate seasonal storage (Zondag,2009). The storage densityfor
these materialsare several timeshigherthanthose forphase change
materials.
These materialsare still underresearchandhave nocommercial
availability.
1.4 THERMOCLINE TWO STAGE PCM STORAGE
Of the optionsstatedabove,sphericallyencapsulatedPCMstorage wasselecteddue toreasonsof easyavailability(from
Global E systemsB.V.) andthe extensive researchavailable forsuchsystems.
Thermocline storagesare widelyusedinconjunctionwithCSPpowerplantsandwithdomesticsolarheaters.Insuch
systemsthe hot- andcold-temperatureregionsare separatedbyatemperature gradientor“thermocline”.A
thermocline PCMstorage hasPCMs of differentmeltingtemperaturesinthe same tankasshowninfigure 4. Such
storagesare alsocalledmulti-stage PCMstorages(Aldoss,2014).
Figure 4. Schematic diagram ofa thermocline PCM (or
multi stage PCM) storage during winter time.PCM-A has
a higher melting temperature than PCM-B, thereby
creating a thermocline.
The advantage of a thermocline systemsare three-
fold:
1. Higherchargingand dischargingrates:Asper
Aldoss(2014), boththe charging anddischarging
ratesof multi-stage storagesare higherforupto 3
stages,afterwhichgainsare minimal.
2. Lowerreturnwatertemperature:Due tolow
meltingPCMplacedat outlet,returnwater
temperature tothe heatsource islower.This
increasesthe heatcollectionrate fromthe heat
source.
3. Higherstabilityof thermocline:Since the
encapsulatedPCMisnotdisplacedwiththe
movementof HTF,the thermocline achievedis
much more stable thanina sensiblestorage.
Besidesthe advantagesstatedabove,the inclusion
of a PCMwithlow meltingtemperature alsoopens
up the possibilityof usingitasa cold
storage for summerseason. Figure 4
representsthe wintertime scheme of
the storage.Whereasfigure 5 depicts
the usage of the storage inthe summer
time where itisdividedintotwoparts,
heatstorage and coldstorage usingthe
same two PCMs.The heatstorage
servesthe tapwater heatingdemand
and ischargedduringthe day.The cold
storage servesthe space cooling
demandandis chargedduringthe night
usingthe same Energie dak.
Figure 5. Schematic diagram ofa thermocline PCM (or multi stage PCM) storage during winter
time.PCM-A has a higher melting temperature than PCM-B, thereby creating a thermocline.
Chapter2: PROJECT GOAL
The goal of thisprojectis to achieve the highestpossible supplyfraction from the energy storage at the lowest
possible electrical inputfor a two stage encapsulatedPCM storage. Thistranslatesinto twoseparate goalsforthe
entire project:firstlyestablishthe correlationsbetweenthe parametersandattributes1
of the thermal storage in
questions;secondlyconductasystemanalysistosuggestthe optimal designforthe two-stage storage.The breakdown
of these goalsintoaresearchprocessisdiscussedinthe nextsection.
Accordingto A.Felix Regin (2008) variablesthatdeterminethe performanceof apacked bedthermal energystorage
unitcan be dividedintothreegroupsasfollows:
1. Those connectedwiththe bedconstructionlike size,shape andpackingof the material elements,bedlength
and the geometricconfigurationof the container.
2. Those describingthe characteristicsof the flowinglike fluidpropertiesandthe massvelocity.
3. Those associatedwiththe transientresponse of the bedmaterial like initialthermal state of the bed,the inlet
temperature of the fluid,the physical andthermal propertiesof the bedmaterial andconvective heattransfer
coefficient.
To sum up,the aforementionedvariableswillbe variedinanexperimental setupinordertominimize the electric
consumptionandmaximizethe supplyfractionof the energystorage,giventhe average Dutchweatherconditionsand
the average Dutch single familyhouseholdthermal consumption. A brief summaryof the processwhichwill be
employedtoachieve the goal isdescribedasfollows:
Figure 6. Brief overview of the process which will be employed to achieve the goal stated above.
1 “Parameters” will bevaried to observe their impacton “attributes” of the storage, example in figure 6.
Chapter3: RESEARCH PLAN
The goal of achievingthe highestpossible supplyfraction from the energystorage at the lowestpossible electrical
input for a two stage encapsulatedPCM storage has to be carriedout inseveral stages.Since mostof the important
data for achievingthe goal hasto be collectedexperimentally,the firststepistodesignthe storage andassemble it.
Several testruns,thenhave tocarriedon the saidsetupto ensure the accuracy of instruments,establishingthe material
properties(of PCMsandHTF) and verifyingresultswiththose achievedbyprevioussuchstudies.The main
experimentationcanthenbe carriedoutin whichthe parametersof the energystorage will be variedtoyieldthe
importantoperatingattributesof the storage.Fromthe results,the correlationswill be derivedbetweenthe variables
and the operatingattributes.Thesecorrelationswill be usedtorunbasicsystemanalysismodelstofindoutthe supply
fractionsandelectricconsumptionof the storage underdifferentweatherandoperatingconditions toyieldthe design
of the storage best suitedfor a single familyDutch dwelling. The stepsdescribedabove are detailedasfollows:
3.1 DESIGN
The designof the experimental setupmustfulfillall the objectivesof the experiments.Thismeansthatthe setupmust
be able to vary and monitorall the parametersplannedtobe variedandmonitorall the attributestobe measured.
N.A.M.Amin (2012) providesanexampleof sphericallyencapsulatedPCMsetupforexperimentation.A verysimilar
setupis
suggestedas
follows:
Figure 6. Schematic
diagram of the
experimental setup
proposed in line
with the one
described in N.A.M.
Amin (2012).
The parameterswhichwill be manipulatedinsuchasetupare the massflow rate,charging/dischargingtemperature
and the PCMmeltingtemperature(capsulescanbe replacedusingthe removable cover).The parametersmeasuredby
the setupare the pressure dropacrossthe storage,the massflow rate and temperaturesatthe inlet,outletandat4
cross sectionsinthe storage.Whetherthe sensorscanbe insertedinside the capsuleswillbe determinedaccordingthe
capsule andsensordesign.The diffusorhose at the top distributesthe HTFflow acrossthe cross section.The coldand
the hot HTF circuitneednotbe separate if the same tankcan be maintainedatextremelycoldandhottemperatures.
3.2 TEST RUN
The experimental setupneedstobe rigorouslytested before actual experimentationcanbegin.Tothisend,there have
to be several trial runswithPCMcapsulesof same meltingpoint(since the resultsforsingle-stagespherically
encapsulatedPCMare widelyavailable).The charging/dischargingratesandthe temperature profilesof the storage
shouldmatchthose statedinliterature if the equipmentisworkingperfectly.The capsulesof differentcapsuleshasto
be each testedseparatelyforitsexactfreezingtemperature(since there canbe undercooling) and meltingtemperature
range.Besidesthese tests,the measuringequipmentmustbe testedforanyerrorsinreadingand recording.Once the
testrun issuccessful,we cancontinue withthe actual experimentation.
3.3 PARAMETER VARIATION
There are several physical parameterswhichwill affectthe workingof the storage considerably,thusinfluencingthe two
majorattributesof the storage:its supplyfractionanditselectricconsumption.The detailsof the parametervariations
to be performedforthe twoare as follows:
a) Supplyfraction:
The supplyfraction,asdefinedinthe introduction,dependsona hostof otherattributesandparametersof the
storage.Since the lowermeltingPCMhas dual usage as heatand coldstorage,all the correlationswill be established
for summeraswell aswintermode.Followingisthe listof attributesandvariablesaffectingthe supplyfraction:
I. Chargingtemperature
II. Dischargingtemperature
III. Flowrate
IV. Initial state of the storage (measuredbytemperaturesensorsinsidethe capsules)
V. PCMmeltingtemperatures(orranges)
VI. PCMconfiguration(placementof low andhightemperature meltingPCMscanbe reversed,dispersed,etc.)
VII. Capsule size
The correlationsof the above witheachotherand withmeasurablessuchasreturnwatertemperature,will make it
possible forthe systemanalysismodeltopredictthe performance of the storage.
b) Electricconsumption
The electricconsumptionof the systemisadirectfunctionof the pressure dropandthe flow rate of the thermal
storage.The pressure dropisin turn,affectedbythe following:
I. The depthof the capsule bed
II. Capsule size
III. Flowrate
Thus,varyingthe above can yieldthe correlationswhichwill predictthe electrical consumptionof the thermal
storage (inconjunctionwiththe Energie dak).
3.4 PRELIMINARY SYSTEM ANALYSIS
The preliminarysystemanalysiswilllinkupthe correlationsyieldedbythe experimentationtoprovide amodel for
functioningof the energystorage undernumericallysimulatedreal conditions.There are three setsof dataon whichthis
model will work
I. Energysupplyfromthe Energie dak(whichisdependentonweatherdata)
II. Thermal energyconsumptionpatternsof asingle-familyhousehold
III. Physical parametersof the energystorage
All these togethershall yieldthe supplyfraction foraparticularsetof physical parametersfordifferenttimesof the
year.Thisshouldhelpgreatlyindesigningthe optimumstorage aswell assettingabase fordeepersystemanalysisand
maybe furtherexperimentationonthe setup.
The planningof thisprocessisin the nextsection.
Chapter4: PROJECT PLANNING
The projectis to be finishedinthe durationof 6to 8 monthsas perthe guidelinesof the Mechanical EngineeringDepartment atTU Eindhoven. There are several lead
timesinvolvedinthe procurementof components(especiallyPCMcapsuleswithaleadtime of 8-10 weeks) andassemblyof the setup.Thismaycause the projecttobe
organizedinanorder completelydifferentfromwhatisplannedasfollows:
BIBLIOGRPHY
A. Felix Regin,S.S.(2008). Heat transfercharacteristicsof thermal energystorage systemusingPCMcapsules:A review.
Renewableand SustainableEnergy Reviews.
N.A.M.Amin,F.B. (2012). Effectiveness-NTUcorrelationforlow temperature PCMencapsulatedinspheres. Applied
energy.
Aldoss,R.(2014). Comparisonbetweenthe single-PCMandmulti-PCMthermal energystorage design. Energy conversion
and management.
Concentrating SolarPowerThermalStorageSystemBasics.(2013, August).Retrievedfromenergy.gov:
http://energy.gov/eere/energybasics/articles/concentrating-solar-power-thermal-storage-system-basics
Delgado,L.M. (2012). Experimental analysisof amicroencapsulatedPCMslurryasthermal storage systemandas heat
transferfluidinlaminarflow. Applied thermalEngineering.
Kalnaes,J.(2015). Phase change materialsandproductsforbuildingapplications:A state-of-artreview andfuture
researchopportunities. Energy and Buildings,154.
Katiyar,M. (n.d.).consultation.
Kosny,S.F. (2013). CostAnalysisof Simple PhaseChangeMaterial-Enhanced Building Envelopesin Southern U.S.
Climates. The National RenewableEnergyLaboratory.
Zondag.(2009, June). Salthydratesasheaters.Retrievedfromecn.nl: https://www.ecn.nl/nl/nieuws/newsletter-
en/2009/june-2009/seasonal-storage/

More Related Content

What's hot

Solar water heating integrated with PCM as thermal
Solar water heating integrated with PCM as thermalSolar water heating integrated with PCM as thermal
Solar water heating integrated with PCM as thermalMohammed Hamza, M.Eng.
 
Submitted Presentation
Submitted PresentationSubmitted Presentation
Submitted PresentationTirth Upadhyay
 
Investigation of solar cooker with pcm heat storage
Investigation of solar cooker with pcm heat storageInvestigation of solar cooker with pcm heat storage
Investigation of solar cooker with pcm heat storageiaemedu
 
Thermal energy storage system
Thermal energy storage systemThermal energy storage system
Thermal energy storage systemAbhinav Bhaskar
 
Transient thermal analysis of phase change material
Transient thermal analysis of phase change materialTransient thermal analysis of phase change material
Transient thermal analysis of phase change materialeSAT Publishing House
 
Transient thermal analysis of phase change material based heat sinks
Transient thermal analysis of phase change material based heat sinksTransient thermal analysis of phase change material based heat sinks
Transient thermal analysis of phase change material based heat sinkseSAT Journals
 
Introduction to Phase Change Materials #PSBPcomfort
Introduction to Phase Change Materials #PSBPcomfortIntroduction to Phase Change Materials #PSBPcomfort
Introduction to Phase Change Materials #PSBPcomfortSu Butcher
 
Ash Cooler Heat Recovery Under Energy Conservation Scheme
Ash Cooler Heat Recovery Under Energy Conservation SchemeAsh Cooler Heat Recovery Under Energy Conservation Scheme
Ash Cooler Heat Recovery Under Energy Conservation SchemeIJAPEJOURNAL
 
Phase change materials in renewable energy
Phase change materials in renewable energyPhase change materials in renewable energy
Phase change materials in renewable energyTejwant Navalkar
 
PCM Thermal Energy Storage Systems; Ashrae 2004 Conference Paper
PCM Thermal Energy Storage Systems; Ashrae 2004 Conference PaperPCM Thermal Energy Storage Systems; Ashrae 2004 Conference Paper
PCM Thermal Energy Storage Systems; Ashrae 2004 Conference PaperZafer Ure
 
phase change materials by dhandabani,anna university,CEG,chennai.
phase change materials by dhandabani,anna university,CEG,chennai.phase change materials by dhandabani,anna university,CEG,chennai.
phase change materials by dhandabani,anna university,CEG,chennai.Dhanda Bani
 
Sensible heat energy storage technology using low cost locally available ther...
Sensible heat energy storage technology using low cost locally available ther...Sensible heat energy storage technology using low cost locally available ther...
Sensible heat energy storage technology using low cost locally available ther...Husain Mehdi
 
introduction to pcm
introduction to pcmintroduction to pcm
introduction to pcmJunaidBhat14
 
Direct steam generation from solar
Direct steam generation from solarDirect steam generation from solar
Direct steam generation from solarAkshay ss kumar
 

What's hot (20)

Solar water heating integrated with PCM as thermal
Solar water heating integrated with PCM as thermalSolar water heating integrated with PCM as thermal
Solar water heating integrated with PCM as thermal
 
Pcm ppt
Pcm ppt Pcm ppt
Pcm ppt
 
PLUSS - Phase Change Materials
PLUSS - Phase Change Materials PLUSS - Phase Change Materials
PLUSS - Phase Change Materials
 
Submitted Presentation
Submitted PresentationSubmitted Presentation
Submitted Presentation
 
Investigation of solar cooker with pcm heat storage
Investigation of solar cooker with pcm heat storageInvestigation of solar cooker with pcm heat storage
Investigation of solar cooker with pcm heat storage
 
Material Study pcm
Material Study pcmMaterial Study pcm
Material Study pcm
 
28-shaw_presentation.ashx
28-shaw_presentation.ashx28-shaw_presentation.ashx
28-shaw_presentation.ashx
 
Thermal energy storage system
Thermal energy storage systemThermal energy storage system
Thermal energy storage system
 
Transient thermal analysis of phase change material
Transient thermal analysis of phase change materialTransient thermal analysis of phase change material
Transient thermal analysis of phase change material
 
Transient thermal analysis of phase change material based heat sinks
Transient thermal analysis of phase change material based heat sinksTransient thermal analysis of phase change material based heat sinks
Transient thermal analysis of phase change material based heat sinks
 
Introduction to Phase Change Materials #PSBPcomfort
Introduction to Phase Change Materials #PSBPcomfortIntroduction to Phase Change Materials #PSBPcomfort
Introduction to Phase Change Materials #PSBPcomfort
 
Ash Cooler Heat Recovery Under Energy Conservation Scheme
Ash Cooler Heat Recovery Under Energy Conservation SchemeAsh Cooler Heat Recovery Under Energy Conservation Scheme
Ash Cooler Heat Recovery Under Energy Conservation Scheme
 
Article - 2013 PTQ Q4
Article - 2013 PTQ Q4Article - 2013 PTQ Q4
Article - 2013 PTQ Q4
 
Phase change materials in renewable energy
Phase change materials in renewable energyPhase change materials in renewable energy
Phase change materials in renewable energy
 
PCM Thermal Energy Storage Systems; Ashrae 2004 Conference Paper
PCM Thermal Energy Storage Systems; Ashrae 2004 Conference PaperPCM Thermal Energy Storage Systems; Ashrae 2004 Conference Paper
PCM Thermal Energy Storage Systems; Ashrae 2004 Conference Paper
 
Cooling load estimation
Cooling load estimationCooling load estimation
Cooling load estimation
 
phase change materials by dhandabani,anna university,CEG,chennai.
phase change materials by dhandabani,anna university,CEG,chennai.phase change materials by dhandabani,anna university,CEG,chennai.
phase change materials by dhandabani,anna university,CEG,chennai.
 
Sensible heat energy storage technology using low cost locally available ther...
Sensible heat energy storage technology using low cost locally available ther...Sensible heat energy storage technology using low cost locally available ther...
Sensible heat energy storage technology using low cost locally available ther...
 
introduction to pcm
introduction to pcmintroduction to pcm
introduction to pcm
 
Direct steam generation from solar
Direct steam generation from solarDirect steam generation from solar
Direct steam generation from solar
 

Viewers also liked

Satel - Servicio de Asistencia Técnico-Legal
Satel - Servicio de Asistencia Técnico-LegalSatel - Servicio de Asistencia Técnico-Legal
Satel - Servicio de Asistencia Técnico-LegalSIA Group
 
Siacert firma digital y marco legal
Siacert   firma digital y marco legalSiacert   firma digital y marco legal
Siacert firma digital y marco legalSIA Group
 
Los Modos de Extinción de la Relación Jurídica Tributaria
Los Modos de Extinción de la Relación Jurídica TributariaLos Modos de Extinción de la Relación Jurídica Tributaria
Los Modos de Extinción de la Relación Jurídica TributariaRosangela Sira
 
3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_
3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_
3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_Hans Carranza
 
Contratacion electronica-e-informatica-pacheco
Contratacion electronica-e-informatica-pachecoContratacion electronica-e-informatica-pacheco
Contratacion electronica-e-informatica-pachecoAnthony Rivera Pacheco
 
Ventiladores, Sopladores y Compresores
Ventiladores, Sopladores y Compresores Ventiladores, Sopladores y Compresores
Ventiladores, Sopladores y Compresores Yuli24Minazola
 
Vidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 Novaro
Vidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 NovaroVidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 Novaro
Vidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 NovaroMartin Alberto Belaustegui
 
Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...
Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...
Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...Cancer Institute NSW
 
Media article draft Rise Against interview
Media article draft Rise Against interviewMedia article draft Rise Against interview
Media article draft Rise Against interviewsheamcguigan_
 
10. 9 1 La Globalizacion
10. 9 1 La Globalizacion10. 9 1 La Globalizacion
10. 9 1 La GlobalizacionMarioandres1405
 
Enfermedad Cerebro Vascular Isquemica
Enfermedad Cerebro Vascular Isquemica Enfermedad Cerebro Vascular Isquemica
Enfermedad Cerebro Vascular Isquemica Hans Carranza
 
Media monitoring india news voir,india
Media monitoring india   news voir,indiaMedia monitoring india   news voir,india
Media monitoring india news voir,indianewsvoirindia
 

Viewers also liked (20)

Satel - Servicio de Asistencia Técnico-Legal
Satel - Servicio de Asistencia Técnico-LegalSatel - Servicio de Asistencia Técnico-Legal
Satel - Servicio de Asistencia Técnico-Legal
 
Agenda digital-2.0
Agenda digital-2.0Agenda digital-2.0
Agenda digital-2.0
 
25 años creciendo juntos
25 años creciendo juntos25 años creciendo juntos
25 años creciendo juntos
 
Siacert firma digital y marco legal
Siacert   firma digital y marco legalSiacert   firma digital y marco legal
Siacert firma digital y marco legal
 
Los Modos de Extinción de la Relación Jurídica Tributaria
Los Modos de Extinción de la Relación Jurídica TributariaLos Modos de Extinción de la Relación Jurídica Tributaria
Los Modos de Extinción de la Relación Jurídica Tributaria
 
3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_
3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_
3 d-grandes-sindromes iii-cerb-dem-hec-mio-2016-1_
 
slim Honey ppt
slim Honey pptslim Honey ppt
slim Honey ppt
 
Contratacion electronica-e-informatica-pacheco
Contratacion electronica-e-informatica-pachecoContratacion electronica-e-informatica-pacheco
Contratacion electronica-e-informatica-pacheco
 
Anuario Estatístico Embratur 2006
Anuario Estatístico Embratur 2006Anuario Estatístico Embratur 2006
Anuario Estatístico Embratur 2006
 
Ventiladores, Sopladores y Compresores
Ventiladores, Sopladores y Compresores Ventiladores, Sopladores y Compresores
Ventiladores, Sopladores y Compresores
 
Vidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 Novaro
Vidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 NovaroVidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 Novaro
Vidas ilustres Leonardo Da Vinci, revista completa, 01 junio 1960 Novaro
 
Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...
Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...
Mapping lung cancer diagnostic pathways: a qualitative study of interviews wi...
 
Media article draft Rise Against interview
Media article draft Rise Against interviewMedia article draft Rise Against interview
Media article draft Rise Against interview
 
10. 9 1 La Globalizacion
10. 9 1 La Globalizacion10. 9 1 La Globalizacion
10. 9 1 La Globalizacion
 
5. 9 2 Rojas Pinilla.
5. 9 2 Rojas Pinilla.5. 9 2 Rojas Pinilla.
5. 9 2 Rojas Pinilla.
 
Precordillera argentina y Andes Áridos
Precordillera argentina  y Andes ÁridosPrecordillera argentina  y Andes Áridos
Precordillera argentina y Andes Áridos
 
Enfermedad Cerebro Vascular Isquemica
Enfermedad Cerebro Vascular Isquemica Enfermedad Cerebro Vascular Isquemica
Enfermedad Cerebro Vascular Isquemica
 
Group therapy
Group therapyGroup therapy
Group therapy
 
Staff development programme
Staff development programmeStaff development programme
Staff development programme
 
Media monitoring india news voir,india
Media monitoring india   news voir,indiaMedia monitoring india   news voir,india
Media monitoring india news voir,india
 

Similar to Prepphase-1

Thermal analysis of phase change material incorporated building roof and wall
Thermal analysis of phase change material incorporated building roof and wallThermal analysis of phase change material incorporated building roof and wall
Thermal analysis of phase change material incorporated building roof and wallPrvkmrR
 
Fabrication of Thermal Energy Storage using Phase Changing Material
Fabrication of Thermal Energy Storage using Phase Changing MaterialFabrication of Thermal Energy Storage using Phase Changing Material
Fabrication of Thermal Energy Storage using Phase Changing Materialijtsrd
 
IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...
IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...
IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...IRJET Journal
 
Experimental Study on Phase Change Material based Thermal Energy Storage System
Experimental Study on Phase Change Material based Thermal Energy Storage SystemExperimental Study on Phase Change Material based Thermal Energy Storage System
Experimental Study on Phase Change Material based Thermal Energy Storage SystemIRJET Journal
 
DESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIAL
DESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIALDESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIAL
DESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIALIRJET Journal
 
HIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONS
HIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONSHIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONS
HIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONSijiert bestjournal
 
Waste Heat Recovery and Sustainable Energy
Waste Heat Recovery and Sustainable EnergyWaste Heat Recovery and Sustainable Energy
Waste Heat Recovery and Sustainable EnergyYOGESH AHIRE
 
A Review On Thermal Energy Storage For Concentrating Solar Power Plants
A Review On Thermal Energy Storage For Concentrating Solar Power PlantsA Review On Thermal Energy Storage For Concentrating Solar Power Plants
A Review On Thermal Energy Storage For Concentrating Solar Power PlantsSophia Diaz
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
IRJET- Design and Fabrication of Thermo Acoustic Refrigerator
IRJET- Design and Fabrication of Thermo Acoustic RefrigeratorIRJET- Design and Fabrication of Thermo Acoustic Refrigerator
IRJET- Design and Fabrication of Thermo Acoustic RefrigeratorIRJET Journal
 
IRJET- Thermal Analysis and Management for an Autonomous Underwater Vehicle
IRJET- Thermal Analysis and Management for an Autonomous Underwater VehicleIRJET- Thermal Analysis and Management for an Autonomous Underwater Vehicle
IRJET- Thermal Analysis and Management for an Autonomous Underwater VehicleIRJET Journal
 
Low fidelity prototype assignment
Low fidelity prototype assignment Low fidelity prototype assignment
Low fidelity prototype assignment Ratan Kotipalli
 

Similar to Prepphase-1 (20)

K1303027277
K1303027277K1303027277
K1303027277
 
Thermal analysis of phase change material incorporated building roof and wall
Thermal analysis of phase change material incorporated building roof and wallThermal analysis of phase change material incorporated building roof and wall
Thermal analysis of phase change material incorporated building roof and wall
 
Fabrication of Thermal Energy Storage using Phase Changing Material
Fabrication of Thermal Energy Storage using Phase Changing MaterialFabrication of Thermal Energy Storage using Phase Changing Material
Fabrication of Thermal Energy Storage using Phase Changing Material
 
IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...
IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...
IRJET- A Review on Utilization of Phase Change Material in Solar Water Heatin...
 
Experimental Study on Phase Change Material based Thermal Energy Storage System
Experimental Study on Phase Change Material based Thermal Energy Storage SystemExperimental Study on Phase Change Material based Thermal Energy Storage System
Experimental Study on Phase Change Material based Thermal Energy Storage System
 
DESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIAL
DESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIALDESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIAL
DESIGN AND DEVELOPMENT OF SOLAR WATER HEATING SYSTEM USING PHASE CHANGE MATERIAL
 
HIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONS
HIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONSHIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONS
HIGH TEMERATURE THERMAL ENERGY STOARAGE SYSTEM APPLICATIONS
 
Waste Heat Recovery and Sustainable Energy
Waste Heat Recovery and Sustainable EnergyWaste Heat Recovery and Sustainable Energy
Waste Heat Recovery and Sustainable Energy
 
A Review On Thermal Energy Storage For Concentrating Solar Power Plants
A Review On Thermal Energy Storage For Concentrating Solar Power PlantsA Review On Thermal Energy Storage For Concentrating Solar Power Plants
A Review On Thermal Energy Storage For Concentrating Solar Power Plants
 
91 sanjay
91 sanjay91 sanjay
91 sanjay
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Paper Final
Paper FinalPaper Final
Paper Final
 
IRJET- Design and Fabrication of Thermo Acoustic Refrigerator
IRJET- Design and Fabrication of Thermo Acoustic RefrigeratorIRJET- Design and Fabrication of Thermo Acoustic Refrigerator
IRJET- Design and Fabrication of Thermo Acoustic Refrigerator
 
IRJET- Thermal Analysis and Management for an Autonomous Underwater Vehicle
IRJET- Thermal Analysis and Management for an Autonomous Underwater VehicleIRJET- Thermal Analysis and Management for an Autonomous Underwater Vehicle
IRJET- Thermal Analysis and Management for an Autonomous Underwater Vehicle
 
Thermal method of analysis(D.S.C)
Thermal method of analysis(D.S.C)Thermal method of analysis(D.S.C)
Thermal method of analysis(D.S.C)
 
HTR Report - Energy Storage.pdf
HTR Report - Energy Storage.pdfHTR Report - Energy Storage.pdf
HTR Report - Energy Storage.pdf
 
E3 14-02-00
E3 14-02-00E3 14-02-00
E3 14-02-00
 
Low fidelity prototype assignment
Low fidelity prototype assignment Low fidelity prototype assignment
Low fidelity prototype assignment
 

Prepphase-1

  • 1. Phase 1 Report of the Graduation Project Preparation phase EXPERIMENTAL MODELLING OF A TWO STAGE ENCAPSULATED PCM THERMAL STORAGE Master: Mechanical Engineering Department: Mechanical Engineering Research group: Energy Technology Student: A.R. Sharma Identity number : 0924981 Thesis supervisor: C.C.M. Rindt Date: 22-01-2016
  • 2. Contents Chapter1: BACKGROUND............................................................................................................................................3 1.1 ENERGIEDAK .....................................................................................................................................................3 1.2 STORAGE REQUIREMENT...................................................................................................................................3 1.3 STORAGE OPTIONS............................................................................................................................................5 1.4 THERMOCLINE TWO STAGE PCMSTORAGE.........................................................................................................5 Chapter2: PROJECT GOAL............................................................................................................................................7 Chapter3: RESEARCH PLAN..........................................................................................................................................8 3.1 DESIGN .............................................................................................................................................................8 3.2 TEST RUN..........................................................................................................................................................9 3.3 PARAMETER VARIATION....................................................................................................................................9 3.4 PRELIMINARY SYSTEMANALYSIS........................................................................................................................9 Chapter4: PROJECT PLANNING....................................................................................................................................1 BIBLIOGRPHY..............................................................................................................................................................1
  • 3. Chapter1: BACKGROUND 1.1 ENERGIEDAK SolartechInternationalcurrentlyproducessolarpoweredheatingsystemsaimedtowardsawide varietyof buildings:residential,commercial aswell asindustrial.The productisstandardizedandappliedonflatroofsasa buildingintegratedthermalcollector.The thermal collectoris,essentially,anetworkof pipesrunningthrough an insulatedbulkwithadarksurface.Thusthe surface,whenexposedtosunlight,achievesahightemperature. The pipeslocatedadjacenttothe surface,collectthe heatinthe fluidrunningthroughthem.Thisthermal collectorcan alsobe usedto rejectheaton summernights. On itsown,the systemdescribedabove shallprovideclimaticcomfortfora verysmall fractionof the year.Thus, incurrent installations,thissystemiscoupledwithundergroundsensible storage systems:ATES&BTES. In such systems,twostorage regionsare createdunderground:hotwell/aquiferforwinteruse andcoldone forsummer use.Predictably,these systemssufferfrom: I. Highfootprint area II. Highinstallationcosts III. Lossesto ambience athighstorage temperatures IV. Lots of governmentregulationsince itmayinterfere withwatersupplyorneighbouringstorages. A lotof smallerdwellingsandhighrise buildingsare thenleftwithouta conventional storage option.Inthe followingsectionswe will assessthe storage demandanddiscussthe optionswhichcantake the place of ATES and BTES. 1.2 STORAGE REQUIREMENT A roughestimationof the storage size requirementwasdone inordertodecide the size of the labsetup.Thisinvolved calculatingthe supplyof heatfromthe energydakfor everyhourof an year andcombiningitwiththe heatconsumption profile of aheat pumpof 6kW capacityoperatingina typical Dutchhome.The data for the energydakwas gathered fromthe installationonthe roof of VertigoinTU Eindhovenandwascombinedwiththe publicallyavailable weather data. The data for the heatpump wassuppliedbyMartanvan Meurs of NRGTEQ BV (heatpumpmanufacturers). For all the calculationswe have assumedaroof installationof 20m2 . We combine the weatherdatawiththe correlationsdeducedfromthe testinstallationonvertigo.The heatiscollectedonlyif the calculatedoutlettemperature fromthe collectoris1o C higherthanthe inlettemperature.The inlettemperature isassumedtobe fixedat10o C. Fora storage that islarge enough,thisisa safe assumptionsince the PCMstorage will alwaysbe intransition:neverfully frozenor fullymolten. Nextwe calculate the dailyenergyconsumptionforasingle familydwellingthroughoutthe year.The energy consumptionfromthe storage hastwo maincustomers:space heatingandtapwater heating.The tapwaterheating requirementisconstantthroughoutthe year,whereasthe space heatingrequirementismodelledmonthwise. The resultsof the aforementionedsimulationsof heatproductioninthe collectorandconsumptionbythe heatpump are as follows:
  • 4. Figure 1. Daily heatproduction at the multi-energy panel and daily heat consumption atthe heat pump. From figure 1 we can observe that the average production is8 to 9 timesthe consumption.However, summertime (days150to 300) experience ahigh productionandlow consumption,withthe reverse beingtrue for wintertime.Another significantobservationisthe day to dayvariationinheat collectionbecause of cloud covervariation.This necessitatesthe use of storage inorder to meaningfullyutilize the heatcollectionfromthe energiedak. Usingthe data above,we canestimate the size of storage requiredtosupplythe heatpumpcontinuously.Toachieve thisgoal,we can test the performance of eachstorage.The parameterchosentoevaluate aparticularsize of storage is “supplyfraction”,whichgivesthe fractionof time the storage isable toprovide the heatpumpsystem, the restof the time itis emptyandisthus unable toprovide heat.Since wintertime performance ismuchmore sensitive,we have expressedthe supplyfractionintotal,winterandJanuarysupplyfractions. WinterencompassesmonthsfromOctober to April.Followingare the results: Figure 2. Supply fraction of storage of different capacities annually,in winter and in January.The storage is modelled as lossless. From the above calculationswe have foundthat the storage size requiredto achieve unitsupplyfraction (uninterruptedsupply) is294 kWh (or about1 GJ). Thistranslatestoa vessel size of about5000 Litres(assuming meltingenthalpyof 200kJ/kgand the volume fractionof 0.5 for PCMin vessel). Thissizeistoobigfordomestic applications.Butfromthe calculations performedabove,anacceptable compromise betweenvessel size and supplyfractioncanbe achievedbasedonthe costof the vessel perunitvolume.
  • 5. 1.3 STORAGE OPTIONS Thermal storage systemsare designedtostore variousquantitiesof heat,atdifferenttemperatures,fordifferingperiods of time.Theyare usedtolevel outthe differencesbetweenthe heatsupplyandheatdemandof a system.These differencesinsupplyanddemandmaybe hourly,diurnalorevenseasonal.The workingprinciple behindthese systems can be broadlyclassifiedintothree categories: I. Sensible Storage:Asthe name suggests,these systemsutilize the sensible heatingof the material tostore heat. These systemshave averylowenergydensityasthe specificheatcapacityismuch lowerthanphase change and chemical change enthalpies.But,theyenjoyextremelylow installationcostsperunitcapacityandare thus widelyused.Thesesystemsinclude pitstorage,boreholestorage,aquiferstorage etc. II. Phase change storage:Phase change materialsprovideavarietyof temperature-specificstorage options.These materialsremainattheirmelting/freezingtemperaturesuntil the entire storage haschangeditsphase.The phase change materialsthemselvescanbe incorporatedintothe storage viadifferentencapsulations: a. Microencapsulation:Inthis method,pcmiscontainedinaplasticcapsulesof sizes1to 30 µm. These capsulesare theneitherincorporatedintobuildingmaterials(Kosny,2013) to act as passive storagesor suspendedinfluidstoformslurriesforactive storage systems(Delgado,2012). b. Macroencapsulation:MacroencapsulationreferstoPCMsencapsulatedinanytype of containersuchas tubes,spheresorpanelswhichcanbe incorporatedintobuildingmaterialsorserve asheatexchangers by themselves(Kalnaes,2015).In thispaper we will focusonspherical encapsulationsimmersedinheat transferfluid(HTF). III. Thermochemical storage Thermochemical storage utilizesthe reversiblechemical reactionstostore the heatforlongperiodsof time.A simple diagramaticexplanationisasfollows: Figure 3. Schematic explanation of thermochemical storage. The two blocks of different colours represent different chemicals. (Zondag, 2009) Normally,the chemicalsusedforsuchstoragesare hygroscopicinnature, i.e.theycan absorbhuge quantitiesof water.Thusheatisusedtorelease waterfrom these materialsandwhentheyare exposedtomoisture again, theyabsorbwaterintotheirlattice inan exothermicreaction.There is extensive researchbeingcarriedonbyECN and TNO on salt-hydratesand zeolitestocreate seasonal storage (Zondag,2009). The storage densityfor these materialsare several timeshigherthanthose forphase change materials. These materialsare still underresearchandhave nocommercial availability. 1.4 THERMOCLINE TWO STAGE PCM STORAGE Of the optionsstatedabove,sphericallyencapsulatedPCMstorage wasselecteddue toreasonsof easyavailability(from Global E systemsB.V.) andthe extensive researchavailable forsuchsystems. Thermocline storagesare widelyusedinconjunctionwithCSPpowerplantsandwithdomesticsolarheaters.Insuch systemsthe hot- andcold-temperatureregionsare separatedbyatemperature gradientor“thermocline”.A thermocline PCMstorage hasPCMs of differentmeltingtemperaturesinthe same tankasshowninfigure 4. Such storagesare alsocalledmulti-stage PCMstorages(Aldoss,2014).
  • 6. Figure 4. Schematic diagram ofa thermocline PCM (or multi stage PCM) storage during winter time.PCM-A has a higher melting temperature than PCM-B, thereby creating a thermocline. The advantage of a thermocline systemsare three- fold: 1. Higherchargingand dischargingrates:Asper Aldoss(2014), boththe charging anddischarging ratesof multi-stage storagesare higherforupto 3 stages,afterwhichgainsare minimal. 2. Lowerreturnwatertemperature:Due tolow meltingPCMplacedat outlet,returnwater temperature tothe heatsource islower.This increasesthe heatcollectionrate fromthe heat source. 3. Higherstabilityof thermocline:Since the encapsulatedPCMisnotdisplacedwiththe movementof HTF,the thermocline achievedis much more stable thanina sensiblestorage. Besidesthe advantagesstatedabove,the inclusion of a PCMwithlow meltingtemperature alsoopens up the possibilityof usingitasa cold storage for summerseason. Figure 4 representsthe wintertime scheme of the storage.Whereasfigure 5 depicts the usage of the storage inthe summer time where itisdividedintotwoparts, heatstorage and coldstorage usingthe same two PCMs.The heatstorage servesthe tapwater heatingdemand and ischargedduringthe day.The cold storage servesthe space cooling demandandis chargedduringthe night usingthe same Energie dak. Figure 5. Schematic diagram ofa thermocline PCM (or multi stage PCM) storage during winter time.PCM-A has a higher melting temperature than PCM-B, thereby creating a thermocline.
  • 7. Chapter2: PROJECT GOAL The goal of thisprojectis to achieve the highestpossible supplyfraction from the energy storage at the lowest possible electrical inputfor a two stage encapsulatedPCM storage. Thistranslatesinto twoseparate goalsforthe entire project:firstlyestablishthe correlationsbetweenthe parametersandattributes1 of the thermal storage in questions;secondlyconductasystemanalysistosuggestthe optimal designforthe two-stage storage.The breakdown of these goalsintoaresearchprocessisdiscussedinthe nextsection. Accordingto A.Felix Regin (2008) variablesthatdeterminethe performanceof apacked bedthermal energystorage unitcan be dividedintothreegroupsasfollows: 1. Those connectedwiththe bedconstructionlike size,shape andpackingof the material elements,bedlength and the geometricconfigurationof the container. 2. Those describingthe characteristicsof the flowinglike fluidpropertiesandthe massvelocity. 3. Those associatedwiththe transientresponse of the bedmaterial like initialthermal state of the bed,the inlet temperature of the fluid,the physical andthermal propertiesof the bedmaterial andconvective heattransfer coefficient. To sum up,the aforementionedvariableswillbe variedinanexperimental setupinordertominimize the electric consumptionandmaximizethe supplyfractionof the energystorage,giventhe average Dutchweatherconditionsand the average Dutch single familyhouseholdthermal consumption. A brief summaryof the processwhichwill be employedtoachieve the goal isdescribedasfollows: Figure 6. Brief overview of the process which will be employed to achieve the goal stated above. 1 “Parameters” will bevaried to observe their impacton “attributes” of the storage, example in figure 6.
  • 8. Chapter3: RESEARCH PLAN The goal of achievingthe highestpossible supplyfraction from the energystorage at the lowestpossible electrical input for a two stage encapsulatedPCM storage has to be carriedout inseveral stages.Since mostof the important data for achievingthe goal hasto be collectedexperimentally,the firststepistodesignthe storage andassemble it. Several testruns,thenhave tocarriedon the saidsetupto ensure the accuracy of instruments,establishingthe material properties(of PCMsandHTF) and verifyingresultswiththose achievedbyprevioussuchstudies.The main experimentationcanthenbe carriedoutin whichthe parametersof the energystorage will be variedtoyieldthe importantoperatingattributesof the storage.Fromthe results,the correlationswill be derivedbetweenthe variables and the operatingattributes.Thesecorrelationswill be usedtorunbasicsystemanalysismodelstofindoutthe supply fractionsandelectricconsumptionof the storage underdifferentweatherandoperatingconditions toyieldthe design of the storage best suitedfor a single familyDutch dwelling. The stepsdescribedabove are detailedasfollows: 3.1 DESIGN The designof the experimental setupmustfulfillall the objectivesof the experiments.Thismeansthatthe setupmust be able to vary and monitorall the parametersplannedtobe variedandmonitorall the attributestobe measured. N.A.M.Amin (2012) providesanexampleof sphericallyencapsulatedPCMsetupforexperimentation.A verysimilar setupis suggestedas follows: Figure 6. Schematic diagram of the experimental setup proposed in line with the one described in N.A.M. Amin (2012).
  • 9. The parameterswhichwill be manipulatedinsuchasetupare the massflow rate,charging/dischargingtemperature and the PCMmeltingtemperature(capsulescanbe replacedusingthe removable cover).The parametersmeasuredby the setupare the pressure dropacrossthe storage,the massflow rate and temperaturesatthe inlet,outletandat4 cross sectionsinthe storage.Whetherthe sensorscanbe insertedinside the capsuleswillbe determinedaccordingthe capsule andsensordesign.The diffusorhose at the top distributesthe HTFflow acrossthe cross section.The coldand the hot HTF circuitneednotbe separate if the same tankcan be maintainedatextremelycoldandhottemperatures. 3.2 TEST RUN The experimental setupneedstobe rigorouslytested before actual experimentationcanbegin.Tothisend,there have to be several trial runswithPCMcapsulesof same meltingpoint(since the resultsforsingle-stagespherically encapsulatedPCMare widelyavailable).The charging/dischargingratesandthe temperature profilesof the storage shouldmatchthose statedinliterature if the equipmentisworkingperfectly.The capsulesof differentcapsuleshasto be each testedseparatelyforitsexactfreezingtemperature(since there canbe undercooling) and meltingtemperature range.Besidesthese tests,the measuringequipmentmustbe testedforanyerrorsinreadingand recording.Once the testrun issuccessful,we cancontinue withthe actual experimentation. 3.3 PARAMETER VARIATION There are several physical parameterswhichwill affectthe workingof the storage considerably,thusinfluencingthe two majorattributesof the storage:its supplyfractionanditselectricconsumption.The detailsof the parametervariations to be performedforthe twoare as follows: a) Supplyfraction: The supplyfraction,asdefinedinthe introduction,dependsona hostof otherattributesandparametersof the storage.Since the lowermeltingPCMhas dual usage as heatand coldstorage,all the correlationswill be established for summeraswell aswintermode.Followingisthe listof attributesandvariablesaffectingthe supplyfraction: I. Chargingtemperature II. Dischargingtemperature III. Flowrate IV. Initial state of the storage (measuredbytemperaturesensorsinsidethe capsules) V. PCMmeltingtemperatures(orranges) VI. PCMconfiguration(placementof low andhightemperature meltingPCMscanbe reversed,dispersed,etc.) VII. Capsule size The correlationsof the above witheachotherand withmeasurablessuchasreturnwatertemperature,will make it possible forthe systemanalysismodeltopredictthe performance of the storage. b) Electricconsumption The electricconsumptionof the systemisadirectfunctionof the pressure dropandthe flow rate of the thermal storage.The pressure dropisin turn,affectedbythe following: I. The depthof the capsule bed II. Capsule size III. Flowrate Thus,varyingthe above can yieldthe correlationswhichwill predictthe electrical consumptionof the thermal storage (inconjunctionwiththe Energie dak). 3.4 PRELIMINARY SYSTEM ANALYSIS The preliminarysystemanalysiswilllinkupthe correlationsyieldedbythe experimentationtoprovide amodel for functioningof the energystorage undernumericallysimulatedreal conditions.There are three setsof dataon whichthis model will work I. Energysupplyfromthe Energie dak(whichisdependentonweatherdata)
  • 10. II. Thermal energyconsumptionpatternsof asingle-familyhousehold III. Physical parametersof the energystorage All these togethershall yieldthe supplyfraction foraparticularsetof physical parametersfordifferenttimesof the year.Thisshouldhelpgreatlyindesigningthe optimumstorage aswell assettingabase fordeepersystemanalysisand maybe furtherexperimentationonthe setup. The planningof thisprocessisin the nextsection.
  • 11. Chapter4: PROJECT PLANNING The projectis to be finishedinthe durationof 6to 8 monthsas perthe guidelinesof the Mechanical EngineeringDepartment atTU Eindhoven. There are several lead timesinvolvedinthe procurementof components(especiallyPCMcapsuleswithaleadtime of 8-10 weeks) andassemblyof the setup.Thismaycause the projecttobe organizedinanorder completelydifferentfromwhatisplannedasfollows:
  • 12. BIBLIOGRPHY A. Felix Regin,S.S.(2008). Heat transfercharacteristicsof thermal energystorage systemusingPCMcapsules:A review. Renewableand SustainableEnergy Reviews. N.A.M.Amin,F.B. (2012). Effectiveness-NTUcorrelationforlow temperature PCMencapsulatedinspheres. Applied energy. Aldoss,R.(2014). Comparisonbetweenthe single-PCMandmulti-PCMthermal energystorage design. Energy conversion and management. Concentrating SolarPowerThermalStorageSystemBasics.(2013, August).Retrievedfromenergy.gov: http://energy.gov/eere/energybasics/articles/concentrating-solar-power-thermal-storage-system-basics Delgado,L.M. (2012). Experimental analysisof amicroencapsulatedPCMslurryasthermal storage systemandas heat transferfluidinlaminarflow. Applied thermalEngineering. Kalnaes,J.(2015). Phase change materialsandproductsforbuildingapplications:A state-of-artreview andfuture researchopportunities. Energy and Buildings,154. Katiyar,M. (n.d.).consultation. Kosny,S.F. (2013). CostAnalysisof Simple PhaseChangeMaterial-Enhanced Building Envelopesin Southern U.S. Climates. The National RenewableEnergyLaboratory. Zondag.(2009, June). Salthydratesasheaters.Retrievedfromecn.nl: https://www.ecn.nl/nl/nieuws/newsletter- en/2009/june-2009/seasonal-storage/