SlideShare a Scribd company logo
1 of 23
Pembangkit Listrik
Tenaga Panas Bumi
( PLTP )
Regina Damayanti
1131120127 / D3 – 2A
Program Studi Teknik Listrik
Jurusan Teknik Elektro
Politeknik Negeri Malang
Energi Panas Bumi di Indonesia
• Di Indonesia pencarian sumber panas bumi pertama kali dilakukan
di daerah kawah Kamojang tahun 1918.
• Pada 1926 – 1929 lima sumur eksplorasi dibor, hingga saat ini salah
satunya yaitu KMJ-3 masih memproduksikan uap panas kering (dry
steam).
• Dari hasil survey Direktorat Vulkanologi dan Pertamina dengan
bantuan Pemerintah Perancis dan New Zeland dilaporkan pertama
kali bahwa terdapat 217 prospek panas bumi di Indonesia.
Potensi Panas Bumi di Indonesia
PLTP Kamojang di dekat Garut, memiliki unit 1, 2, 3 dengan
kapasitas total 140MW. Potensi yang masih dapat dikembangkan
sekitar 60MW.
PLTP Darajat, 60Km sebelah tenggara Bandung dengan kapasitas
55MW.
PLTP Gunung Salak di Sukabumi, terdiri dari unit 1, 2, 3, 4, 5, 6
dengan kapasitas total 330MW.
PLTP Wayang Windu di Panggalengan dengan kapasitas 110MW.
Terjadinya sumber energi panas bumi di Indonesia serta karakteristiknya
dijelaskan Budihardi (1998), yaitu ada tiga lempengan yang berinteraksi di
Indonesia yaitu ;
1) Lempeng Pasifik
2) Lempeng India-Australia
3) Lempeng Eurasia
Tumbukan antar lempeng India-
Australia di selatan dan lempeng
Eurasia di utara menghasilkan zona
penunjaman di kedalaman 160 –
210km di bawah Pulau Jawa–
Nusatenggara dan 100km di bawah
Proses Terjadinya Energi Panas Bumi
di Indonesia
Sistem yang terjadi di Indonesia
umumnya merupakan sistem
hidrothermal yang mempunyai
temperatur tinggi (>225oC),
Pada dasarnya sistem panas bumi jenis
hidrothermal terbentuk sebagai hasil
perpindahan panas dari suatu sumber
panas ke sekelilingnya yang terjadi
secara konduksi dan secara konveksi.
Adanya suatu sistem hidrothermal
dibawah permukaan sering kali
ditunjukkan oleh adanya menifestasi
penes bumi di ermukaan seperti; mataair
panas,kubangan lumpur panas, geyser.
Sistem Hidrothermal
Energi Panas Yang Ada di Indonesia
Energi Panas Bumi “Uap Basah”
Pemanfaatan energi panas bumi yang ideal adalah bila panas bumi
yang keluar dari perut bumi berupa uap kering, sehingga dapat
digunakan langsung untuk menggerakkan turbin generator listrik.
Namun uap kering yang demikian ini jarang ditemukan termasuk di
Indonesia dan pada umumnya uap yang keluar berupa uap basah yang
mengandung sejumlah air yang harus dipisahkan terlebih dulu sebelum
digunakan untuk menggerakkan turbin
Energi Panas Bumi “Air Basah”
Uap basah yang keluar dari perut bumi berupa air
panas bertekanan tinggi. Untuk memanfaatkan
jenis uap basah ini diperlukan separator untuk
memisahkan anatar uap dan air.
Uap yang dipisahkan diteruskan ke turbin untuk
menggerakkan generator listrik dan air nya
disuntikkan ke dalam bumi.
Air panas dari perut bumi umumnya berupa air
asin panas “brine” dan mengandung banyak
mineral. Hal ini dapat menimbulkan penyumbatan
pada pipa – pipa sistem pembangkit tenaga
listrik. Sehingga dibutuhkan sistem biner (dua
sistem utama yaitu wadah air panas sebagai
sistem primernya dan sistem sekundernya berupa
alat penukar panas yang akan menghasilkan uap
untuk menggerakkan turbin)
Energi Panas Bumi “Batuan Panas”
Energi jenis ini berupa batuan panas dalam perut bumi akibat berkontak dengan
sumber panas bumi (magma). Energi ini harus diambil sendiri dengan cara
menyuntikkan air ke dalam batuan panas dan dibiarkan menjadi uap panas,
kemudian diusahakan dapat diamil sebagai uap panas untuk menggerakkan
turbin. Karena letak sumber batuan panas jauh didalam perut bumi diperlukan
teknik pengeboran khusus untuk pemanfaatannya.
Pembangkit Listrik Tenaga Panas
Bumi (PLTP)
Pada prinsipnya sama seperti PLTU, hanya pada PLTU uap dibuat di
permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari
reservoir panas bumi. Jika fluida di kepala sumur berupa fasa uap, maka uap
tersebut dapat langsung dialirkan ke turbin dan turbin akan mengubah energi
panas bumi menjadi energi gerak yang akan memutar generator sehingga
dihasilkan energi listrik.
PLTU PLTP
Apabila fluida panas bumi keluar dari kepala sumur sebagai campuran fluida
dua fasa (fasa uap dan fasa cair) maka terlebih dahulu dilakukan proses
pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke
dalam separator, sehingga fasa uap akan terpisahkan dari fasa cairnya.
Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke
turbin.
Sistem Pembangkitan
 Uap dari sumur produksi mula-mula dialirkan ke steam receiving header (berfungsi
menampung uap panas bumi). Pada steam receiving terdapat Vent structure (katup
pelepas uap) yang berfungsi menjaga tekanan pasokan uap ke pembangkit bila terjadi
perubahan pasokan dari sumur uap atau pembebanan dari pembangkit.
 Karena uap panas bumi dari sumur uap tidak murni uap maka uap kemudian disalurkan ke
separator yang berfungsi memisahkan partikel padat yang terbawa bersama uap.
 Dari separator, masuk ke deminister. (berfungsi memisahkan butiran air dari uap pans
bumi, untuk menghindari terjadinya vibrasi, erosi, dan pembentukan kerak pada sudu dan
nozzle turbine)
 Uap yang sudah bersih dialirkan menuju turbine melalui main steam valve.
 Uap akan menggerakan turbin dan memutar generator dengan kecepatan 3000 rpm.
keluaran generator berupa energi listrik dengan arus 3 phasa, frekuensi 50 Hz, dan
tegangan 11,8 kV.
 Agar bisa dipararelkan dengan sistem distribusi Jawa-Bali, tegangan listrik dinaikan hingga
150 kV melalui step-up transformer
 Uap bekas memutar turbin dikondensasikan di dalam kondenser. Proses kondensasi
terjadi akibat penyerapan panas oleh air pendingin yang diinjeksikan lewat spray-nozzle.
level air kondensat dijaga dalam kondisi normal oleh cooling water pump, lalu didinginkan
di cooling tower sebelum disirkulasi kembali
 kelebihan air kondesat akan diinjeksikan kembali (reinjeksi) ke dalam reservoir
melaluiinjection well. Reinjeksi dilakukan untuk mengurangi pengaruh pencemaran
lingkungan, mengurangi ground subsidence, menjaga tekanan, serta recharge water bagi
reservoir
3 Macam Teknologi Pembangkitan
DRY STEAM (Uap Kering)
 Bekerja pada suhu uap reservoir >235oC
 Cocok untuk PLTP kapasitas kecil dan
kandungan gas yang tinggi
Contoh : PLTP Kamojang 1x250KM ;
PLTP Dieng 1x2000KW
 Jika aup kering yang tersedia lebih besar dapat
digunakan PLTP jenis condensing dengan
menara pendingn dan pompa,
Contoh : PLTP Kamojang 1x30MW dan
2x55MW ; PLTP Drajat 1x55MW
FLASH STEAM
Bekerja pada suhu >182oC
PLTP yang menggunakan sistem ini PLTP Salak dengan
2x55MW
BINARY CYCLE
Bekerja dengan suhu uap antara 107-182oC
Tidak mengeluarkan emisi, dapat dimanfaatkan pada
sumber panas bumi bersuhu rendah
Peralatan – Peralatan Penting di PLTP
1. Well Pad ( Sumur Produksi )
2. Steam Receiving Header (tabung untuk pengumpul uap sementara)
3. Vent Structure (pelepas uap dengan peredam suara)
4. Separator (pemisah zat padat yang menyertai uap)
5. Demister (mengeliminasi butir air yang menyertai uap)
6. Turbin (penghasil gerak mekanik yang akan diubah ke energi listrik)
7. Generator (mengubah energi mekanik putaran poros ke energi listrik)
8. Trafo utama (step up trafo)
9. Switch yard (pemutus dan penghubung aliran listrik)
10. Kondensor (mengkondensasikan uap bekas dari turbin dengan kondisi
tekanan hampa)
11. Main cooling water pump (memopakan air dr kondensator ke cooling tower
untuk didinginkan)
12. Cooling Tower
Proses Sinkron Generator Pada PLTP
Sinkronisasi adalah suatu cara untuk menghubungkan dua sumber
atau beban AC. Tujuannya, untuk contoh di PT.Geo Dipa Energi Unit I
Dieng adalah unutk menghubungkan bus 15KV keluaran generator
pada pembangkit dengan bus pada jaringan 150KV milik PLN saat
pembangkit mulai start up.
Syarat - Syarat Sinkron Pada Pembangkit adalah,
Mempunyai tegangan kerja yang sama
Mempunyai frekuensi kerja yang sama
Mempunyai urutan fasa yang sma
Mempunyai sudut fasa yang sama
Jenis – Jenis Sinkronisasi
• Forward Synchronization (Sinkronisasi maju)
• Reverse Synchronization / backward synchronization (sinkronisasi
terbalik)
Urutan Proses Sinkron
• Sinkron di Circuit Breaker Generator
• Sinkron di Main Circuit Breaker ( MCB )
Prosedur Sinkronisasi
Manual Synchron
Karena membutuhkan ketelitian dan kejelian dari operator untuk
menyamakan tegangan dan frekuensi output generator dengan tegangan
dan frekuensi output pada bus.
Auto Synchron
Merupakan cara paling praktis dalam proses sinkron pada pembangkit
karena hanya membutuhkan alat Automatic Synchronizer yang berfungsi
menyamakan tegangan dan frekuensi keluaran generator dengan
tegangan dan frekuensi keluaran bus PLN agar dapat tersambung.
Kelebihan dan Kelamahan Energi
Panas Bumi
KELEBIHAN
Biaya operasi Pembangkit Listrik Tenaga Panas Bumi (PLTP) lebih rendah
dibandingkan dengan biaya operasi pembangkit listrik yang lain.
Ramah lingkungan, energi yang clean.
Mampu berproduksi secara terus menerus selama 24 jam, sehingga tidak
membutuhkan tempat penyimpanan energi (energy storage).
Tingkat ketersediaan (availability) yang sangat tinggi yaitu diatas 95%.
Bebas emisi ( binary-cycle ).
Tidak memerlukan bahan bakar.
Harga yang kompetitive.
KELEMAHAN
Tidak bisa diekspor ( unexportable resources ).
Cairan bersifat korosif.
Effisiensi agak rendah, namun karena tidak perlu bahan bakar,
sehingga effisiensi tidak merupakan faktor yang sangat penting.
Untuk teknologi dry steam dan flash masih menghasilkan emisi
walau sangat kecil.
Kelebihan dan Kelemahan Energi
Panas Bumi
 Pembangkit Listrik Tenaga Panas Bumi adalah Pembangkit Listrik
(Power generator) yang menggunakan panas bumi (Geothermal)
sebagai energi penggeraknya.
 PLTP memanfaatkan uap panas bumi sebagai pemutar generator.
 Secara singkat Prinsip kerja PLTP :
Panas tekanan tinggi digunakan untuk memutar turbin
muncul beda potensial menghasilkan listrik.
 Teknologi PLTP dibedakan menjkadi 3 yaitu dry steam, flash
steam, dan binary cycle.
KESIMPULAN
113807 1. ppt tugas pembangkit listrik tenaga panas bumi

More Related Content

What's hot

PLTA (Pembangkit Listrik Tenaga Air)
PLTA (Pembangkit Listrik Tenaga Air)PLTA (Pembangkit Listrik Tenaga Air)
PLTA (Pembangkit Listrik Tenaga Air)Yohanes Sangkang
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorAli Hasimi Pane
 
Fisika kuantum 2
Fisika kuantum 2Fisika kuantum 2
Fisika kuantum 2keynahkhun
 
Bahan magnetik,dielektrik, dan optik (kelompok)
Bahan magnetik,dielektrik, dan optik (kelompok)Bahan magnetik,dielektrik, dan optik (kelompok)
Bahan magnetik,dielektrik, dan optik (kelompok)kemenag
 
Solar Energy power point
Solar Energy power pointSolar Energy power point
Solar Energy power pointIman Maris
 
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)Ali Hasimi Pane
 
Penerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamikaPenerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamikaFKIP UHO
 
Transmisi Daya Listrik
Transmisi Daya ListrikTransmisi Daya Listrik
Transmisi Daya ListrikMulia Damanik
 
Fisika kuantum
Fisika kuantumFisika kuantum
Fisika kuantumHana Dango
 
Termodinamika1
Termodinamika1Termodinamika1
Termodinamika1APRIL
 
Mesin arus bolak_balik_(bahan_kuliah)
Mesin arus bolak_balik_(bahan_kuliah)Mesin arus bolak_balik_(bahan_kuliah)
Mesin arus bolak_balik_(bahan_kuliah)mocoz
 
Siklus daya gas
Siklus daya gasSiklus daya gas
Siklus daya gasRock Sandy
 
ppt energi tenaga terbarukan angin
ppt energi tenaga terbarukan anginppt energi tenaga terbarukan angin
ppt energi tenaga terbarukan anginSekar Arum
 
Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiAli Hasimi Pane
 
Diagram p v pada mesin diesel
Diagram p v pada mesin dieselDiagram p v pada mesin diesel
Diagram p v pada mesin dieselrijal ghozali
 

What's hot (20)

PLTA (Pembangkit Listrik Tenaga Air)
PLTA (Pembangkit Listrik Tenaga Air)PLTA (Pembangkit Listrik Tenaga Air)
PLTA (Pembangkit Listrik Tenaga Air)
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar Kalor
 
Fisika kuantum 2
Fisika kuantum 2Fisika kuantum 2
Fisika kuantum 2
 
Energi surya
Energi suryaEnergi surya
Energi surya
 
Bahan magnetik,dielektrik, dan optik (kelompok)
Bahan magnetik,dielektrik, dan optik (kelompok)Bahan magnetik,dielektrik, dan optik (kelompok)
Bahan magnetik,dielektrik, dan optik (kelompok)
 
Pembangkit Listrik Tenaga Uap (PLTU)
Pembangkit Listrik Tenaga Uap (PLTU)Pembangkit Listrik Tenaga Uap (PLTU)
Pembangkit Listrik Tenaga Uap (PLTU)
 
Solar Energy power point
Solar Energy power pointSolar Energy power point
Solar Energy power point
 
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
 
Penerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamikaPenerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamika
 
Transmisi Daya Listrik
Transmisi Daya ListrikTransmisi Daya Listrik
Transmisi Daya Listrik
 
Fisika kuantum
Fisika kuantumFisika kuantum
Fisika kuantum
 
semikonduktor
semikonduktorsemikonduktor
semikonduktor
 
Termodinamika1
Termodinamika1Termodinamika1
Termodinamika1
 
Termodinamika modul
Termodinamika modulTermodinamika modul
Termodinamika modul
 
Mesin arus bolak_balik_(bahan_kuliah)
Mesin arus bolak_balik_(bahan_kuliah)Mesin arus bolak_balik_(bahan_kuliah)
Mesin arus bolak_balik_(bahan_kuliah)
 
Siklus daya gas
Siklus daya gasSiklus daya gas
Siklus daya gas
 
ppt energi tenaga terbarukan angin
ppt energi tenaga terbarukan anginppt energi tenaga terbarukan angin
ppt energi tenaga terbarukan angin
 
Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasi
 
Termodinamika kelompok 6
Termodinamika kelompok 6Termodinamika kelompok 6
Termodinamika kelompok 6
 
Diagram p v pada mesin diesel
Diagram p v pada mesin dieselDiagram p v pada mesin diesel
Diagram p v pada mesin diesel
 

Similar to 113807 1. ppt tugas pembangkit listrik tenaga panas bumi

Energy Alternatif Geothermal
Energy Alternatif GeothermalEnergy Alternatif Geothermal
Energy Alternatif GeothermalHermawan Hermawan
 
Sistem pembangkit tenaga listrik
Sistem pembangkit tenaga listrikSistem pembangkit tenaga listrik
Sistem pembangkit tenaga listrikUDIN MUHRUDIN
 
CoalFireSteamPowerPlant System
CoalFireSteamPowerPlant SystemCoalFireSteamPowerPlant System
CoalFireSteamPowerPlant Systems4712io
 
dokumen.tips_pembangkit-listrik-tenaga-uaphen.ppt
dokumen.tips_pembangkit-listrik-tenaga-uaphen.pptdokumen.tips_pembangkit-listrik-tenaga-uaphen.ppt
dokumen.tips_pembangkit-listrik-tenaga-uaphen.pptsiroedhie
 
Makalah soft skill
Makalah soft skillMakalah soft skill
Makalah soft skillalifperwira
 
9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)
9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)
9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)Juragan Udiles
 
PPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptx
PPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptxPPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptx
PPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptxYobelitaLastardaMjrg
 
Teknik Tenaga Listrik-2
Teknik Tenaga Listrik-2Teknik Tenaga Listrik-2
Teknik Tenaga Listrik-2UDIN MUHRUDIN
 
222291473 energy-geothermal
222291473 energy-geothermal222291473 energy-geothermal
222291473 energy-geothermalMetas1
 
GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )
GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )
GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )Armstrong Sompotan
 
Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...
Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...
Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...Selly Riansyah
 
pembangkit listrik tenaga panas bumi
pembangkit listrik tenaga panas bumipembangkit listrik tenaga panas bumi
pembangkit listrik tenaga panas bumi1st Bali Property
 
pembangkit listrik dan konversi energi
pembangkit listrik dan konversi energipembangkit listrik dan konversi energi
pembangkit listrik dan konversi energiHamid Abdillah
 
Konversi energi panas bumi
Konversi energi panas bumiKonversi energi panas bumi
Konversi energi panas bumiXDragoGaming
 
Coal Fire Steam PowerPlant System.pdf
Coal Fire Steam PowerPlant System.pdfCoal Fire Steam PowerPlant System.pdf
Coal Fire Steam PowerPlant System.pdfMuhamadFatwa3
 

Similar to 113807 1. ppt tugas pembangkit listrik tenaga panas bumi (20)

Energy Alternatif Geothermal
Energy Alternatif GeothermalEnergy Alternatif Geothermal
Energy Alternatif Geothermal
 
Rangkuman Teknik Tenaga Listrik
Rangkuman Teknik Tenaga ListrikRangkuman Teknik Tenaga Listrik
Rangkuman Teknik Tenaga Listrik
 
Sistem pembangkit tenaga listrik
Sistem pembangkit tenaga listrikSistem pembangkit tenaga listrik
Sistem pembangkit tenaga listrik
 
Pltpb
PltpbPltpb
Pltpb
 
CoalFireSteamPowerPlant System
CoalFireSteamPowerPlant SystemCoalFireSteamPowerPlant System
CoalFireSteamPowerPlant System
 
dokumen.tips_pembangkit-listrik-tenaga-uaphen.ppt
dokumen.tips_pembangkit-listrik-tenaga-uaphen.pptdokumen.tips_pembangkit-listrik-tenaga-uaphen.ppt
dokumen.tips_pembangkit-listrik-tenaga-uaphen.ppt
 
Makalah soft skill
Makalah soft skillMakalah soft skill
Makalah soft skill
 
9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)
9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)
9a klmpk1-6-20 okt-pw (cukup-ada mat pjng)
 
PPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptx
PPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptxPPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptx
PPT.DsignMultimedia.PRINSIP KERJA PLTU,PLTN PLTG PLTNYOBELITA_PTEA.pptx
 
PLTU (Pembangkit Listrik Tenaga Uap)
PLTU (Pembangkit Listrik Tenaga Uap)PLTU (Pembangkit Listrik Tenaga Uap)
PLTU (Pembangkit Listrik Tenaga Uap)
 
Teknik Tenaga Listrik-2
Teknik Tenaga Listrik-2Teknik Tenaga Listrik-2
Teknik Tenaga Listrik-2
 
222291473 energy-geothermal
222291473 energy-geothermal222291473 energy-geothermal
222291473 energy-geothermal
 
Jurnal Teknik mesin
Jurnal Teknik mesinJurnal Teknik mesin
Jurnal Teknik mesin
 
GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )
GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )
GEOTHERMAL IN INDONESIA ( Armstrong . UNIMA )
 
Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...
Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...
Studi pembangunan pltp cangar 2 x55 mw di kabupaten malang jawa timur dan ren...
 
Pltu
PltuPltu
Pltu
 
pembangkit listrik tenaga panas bumi
pembangkit listrik tenaga panas bumipembangkit listrik tenaga panas bumi
pembangkit listrik tenaga panas bumi
 
pembangkit listrik dan konversi energi
pembangkit listrik dan konversi energipembangkit listrik dan konversi energi
pembangkit listrik dan konversi energi
 
Konversi energi panas bumi
Konversi energi panas bumiKonversi energi panas bumi
Konversi energi panas bumi
 
Coal Fire Steam PowerPlant System.pdf
Coal Fire Steam PowerPlant System.pdfCoal Fire Steam PowerPlant System.pdf
Coal Fire Steam PowerPlant System.pdf
 

113807 1. ppt tugas pembangkit listrik tenaga panas bumi

  • 1. Pembangkit Listrik Tenaga Panas Bumi ( PLTP ) Regina Damayanti 1131120127 / D3 – 2A Program Studi Teknik Listrik Jurusan Teknik Elektro Politeknik Negeri Malang
  • 2. Energi Panas Bumi di Indonesia • Di Indonesia pencarian sumber panas bumi pertama kali dilakukan di daerah kawah Kamojang tahun 1918. • Pada 1926 – 1929 lima sumur eksplorasi dibor, hingga saat ini salah satunya yaitu KMJ-3 masih memproduksikan uap panas kering (dry steam). • Dari hasil survey Direktorat Vulkanologi dan Pertamina dengan bantuan Pemerintah Perancis dan New Zeland dilaporkan pertama kali bahwa terdapat 217 prospek panas bumi di Indonesia.
  • 3. Potensi Panas Bumi di Indonesia PLTP Kamojang di dekat Garut, memiliki unit 1, 2, 3 dengan kapasitas total 140MW. Potensi yang masih dapat dikembangkan sekitar 60MW. PLTP Darajat, 60Km sebelah tenggara Bandung dengan kapasitas 55MW. PLTP Gunung Salak di Sukabumi, terdiri dari unit 1, 2, 3, 4, 5, 6 dengan kapasitas total 330MW. PLTP Wayang Windu di Panggalengan dengan kapasitas 110MW.
  • 4. Terjadinya sumber energi panas bumi di Indonesia serta karakteristiknya dijelaskan Budihardi (1998), yaitu ada tiga lempengan yang berinteraksi di Indonesia yaitu ; 1) Lempeng Pasifik 2) Lempeng India-Australia 3) Lempeng Eurasia Tumbukan antar lempeng India- Australia di selatan dan lempeng Eurasia di utara menghasilkan zona penunjaman di kedalaman 160 – 210km di bawah Pulau Jawa– Nusatenggara dan 100km di bawah Proses Terjadinya Energi Panas Bumi di Indonesia
  • 5. Sistem yang terjadi di Indonesia umumnya merupakan sistem hidrothermal yang mempunyai temperatur tinggi (>225oC), Pada dasarnya sistem panas bumi jenis hidrothermal terbentuk sebagai hasil perpindahan panas dari suatu sumber panas ke sekelilingnya yang terjadi secara konduksi dan secara konveksi. Adanya suatu sistem hidrothermal dibawah permukaan sering kali ditunjukkan oleh adanya menifestasi penes bumi di ermukaan seperti; mataair panas,kubangan lumpur panas, geyser. Sistem Hidrothermal
  • 6. Energi Panas Yang Ada di Indonesia Energi Panas Bumi “Uap Basah” Pemanfaatan energi panas bumi yang ideal adalah bila panas bumi yang keluar dari perut bumi berupa uap kering, sehingga dapat digunakan langsung untuk menggerakkan turbin generator listrik. Namun uap kering yang demikian ini jarang ditemukan termasuk di Indonesia dan pada umumnya uap yang keluar berupa uap basah yang mengandung sejumlah air yang harus dipisahkan terlebih dulu sebelum digunakan untuk menggerakkan turbin
  • 7. Energi Panas Bumi “Air Basah” Uap basah yang keluar dari perut bumi berupa air panas bertekanan tinggi. Untuk memanfaatkan jenis uap basah ini diperlukan separator untuk memisahkan anatar uap dan air. Uap yang dipisahkan diteruskan ke turbin untuk menggerakkan generator listrik dan air nya disuntikkan ke dalam bumi. Air panas dari perut bumi umumnya berupa air asin panas “brine” dan mengandung banyak mineral. Hal ini dapat menimbulkan penyumbatan pada pipa – pipa sistem pembangkit tenaga listrik. Sehingga dibutuhkan sistem biner (dua sistem utama yaitu wadah air panas sebagai sistem primernya dan sistem sekundernya berupa alat penukar panas yang akan menghasilkan uap untuk menggerakkan turbin)
  • 8. Energi Panas Bumi “Batuan Panas” Energi jenis ini berupa batuan panas dalam perut bumi akibat berkontak dengan sumber panas bumi (magma). Energi ini harus diambil sendiri dengan cara menyuntikkan air ke dalam batuan panas dan dibiarkan menjadi uap panas, kemudian diusahakan dapat diamil sebagai uap panas untuk menggerakkan turbin. Karena letak sumber batuan panas jauh didalam perut bumi diperlukan teknik pengeboran khusus untuk pemanfaatannya.
  • 9. Pembangkit Listrik Tenaga Panas Bumi (PLTP) Pada prinsipnya sama seperti PLTU, hanya pada PLTU uap dibuat di permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari reservoir panas bumi. Jika fluida di kepala sumur berupa fasa uap, maka uap tersebut dapat langsung dialirkan ke turbin dan turbin akan mengubah energi panas bumi menjadi energi gerak yang akan memutar generator sehingga dihasilkan energi listrik. PLTU PLTP
  • 10. Apabila fluida panas bumi keluar dari kepala sumur sebagai campuran fluida dua fasa (fasa uap dan fasa cair) maka terlebih dahulu dilakukan proses pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke dalam separator, sehingga fasa uap akan terpisahkan dari fasa cairnya. Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke turbin.
  • 11. Sistem Pembangkitan  Uap dari sumur produksi mula-mula dialirkan ke steam receiving header (berfungsi menampung uap panas bumi). Pada steam receiving terdapat Vent structure (katup pelepas uap) yang berfungsi menjaga tekanan pasokan uap ke pembangkit bila terjadi perubahan pasokan dari sumur uap atau pembebanan dari pembangkit.  Karena uap panas bumi dari sumur uap tidak murni uap maka uap kemudian disalurkan ke separator yang berfungsi memisahkan partikel padat yang terbawa bersama uap.  Dari separator, masuk ke deminister. (berfungsi memisahkan butiran air dari uap pans bumi, untuk menghindari terjadinya vibrasi, erosi, dan pembentukan kerak pada sudu dan nozzle turbine)  Uap yang sudah bersih dialirkan menuju turbine melalui main steam valve.  Uap akan menggerakan turbin dan memutar generator dengan kecepatan 3000 rpm. keluaran generator berupa energi listrik dengan arus 3 phasa, frekuensi 50 Hz, dan tegangan 11,8 kV.  Agar bisa dipararelkan dengan sistem distribusi Jawa-Bali, tegangan listrik dinaikan hingga 150 kV melalui step-up transformer  Uap bekas memutar turbin dikondensasikan di dalam kondenser. Proses kondensasi terjadi akibat penyerapan panas oleh air pendingin yang diinjeksikan lewat spray-nozzle. level air kondensat dijaga dalam kondisi normal oleh cooling water pump, lalu didinginkan di cooling tower sebelum disirkulasi kembali  kelebihan air kondesat akan diinjeksikan kembali (reinjeksi) ke dalam reservoir melaluiinjection well. Reinjeksi dilakukan untuk mengurangi pengaruh pencemaran lingkungan, mengurangi ground subsidence, menjaga tekanan, serta recharge water bagi reservoir
  • 12.
  • 13. 3 Macam Teknologi Pembangkitan DRY STEAM (Uap Kering)  Bekerja pada suhu uap reservoir >235oC  Cocok untuk PLTP kapasitas kecil dan kandungan gas yang tinggi Contoh : PLTP Kamojang 1x250KM ; PLTP Dieng 1x2000KW  Jika aup kering yang tersedia lebih besar dapat digunakan PLTP jenis condensing dengan menara pendingn dan pompa, Contoh : PLTP Kamojang 1x30MW dan 2x55MW ; PLTP Drajat 1x55MW
  • 14. FLASH STEAM Bekerja pada suhu >182oC PLTP yang menggunakan sistem ini PLTP Salak dengan 2x55MW
  • 15. BINARY CYCLE Bekerja dengan suhu uap antara 107-182oC Tidak mengeluarkan emisi, dapat dimanfaatkan pada sumber panas bumi bersuhu rendah
  • 16. Peralatan – Peralatan Penting di PLTP 1. Well Pad ( Sumur Produksi ) 2. Steam Receiving Header (tabung untuk pengumpul uap sementara) 3. Vent Structure (pelepas uap dengan peredam suara) 4. Separator (pemisah zat padat yang menyertai uap) 5. Demister (mengeliminasi butir air yang menyertai uap) 6. Turbin (penghasil gerak mekanik yang akan diubah ke energi listrik) 7. Generator (mengubah energi mekanik putaran poros ke energi listrik) 8. Trafo utama (step up trafo) 9. Switch yard (pemutus dan penghubung aliran listrik) 10. Kondensor (mengkondensasikan uap bekas dari turbin dengan kondisi tekanan hampa) 11. Main cooling water pump (memopakan air dr kondensator ke cooling tower untuk didinginkan) 12. Cooling Tower
  • 17. Proses Sinkron Generator Pada PLTP Sinkronisasi adalah suatu cara untuk menghubungkan dua sumber atau beban AC. Tujuannya, untuk contoh di PT.Geo Dipa Energi Unit I Dieng adalah unutk menghubungkan bus 15KV keluaran generator pada pembangkit dengan bus pada jaringan 150KV milik PLN saat pembangkit mulai start up. Syarat - Syarat Sinkron Pada Pembangkit adalah, Mempunyai tegangan kerja yang sama Mempunyai frekuensi kerja yang sama Mempunyai urutan fasa yang sma Mempunyai sudut fasa yang sama
  • 18. Jenis – Jenis Sinkronisasi • Forward Synchronization (Sinkronisasi maju) • Reverse Synchronization / backward synchronization (sinkronisasi terbalik) Urutan Proses Sinkron • Sinkron di Circuit Breaker Generator • Sinkron di Main Circuit Breaker ( MCB )
  • 19. Prosedur Sinkronisasi Manual Synchron Karena membutuhkan ketelitian dan kejelian dari operator untuk menyamakan tegangan dan frekuensi output generator dengan tegangan dan frekuensi output pada bus. Auto Synchron Merupakan cara paling praktis dalam proses sinkron pada pembangkit karena hanya membutuhkan alat Automatic Synchronizer yang berfungsi menyamakan tegangan dan frekuensi keluaran generator dengan tegangan dan frekuensi keluaran bus PLN agar dapat tersambung.
  • 20. Kelebihan dan Kelamahan Energi Panas Bumi KELEBIHAN Biaya operasi Pembangkit Listrik Tenaga Panas Bumi (PLTP) lebih rendah dibandingkan dengan biaya operasi pembangkit listrik yang lain. Ramah lingkungan, energi yang clean. Mampu berproduksi secara terus menerus selama 24 jam, sehingga tidak membutuhkan tempat penyimpanan energi (energy storage). Tingkat ketersediaan (availability) yang sangat tinggi yaitu diatas 95%. Bebas emisi ( binary-cycle ). Tidak memerlukan bahan bakar. Harga yang kompetitive.
  • 21. KELEMAHAN Tidak bisa diekspor ( unexportable resources ). Cairan bersifat korosif. Effisiensi agak rendah, namun karena tidak perlu bahan bakar, sehingga effisiensi tidak merupakan faktor yang sangat penting. Untuk teknologi dry steam dan flash masih menghasilkan emisi walau sangat kecil. Kelebihan dan Kelemahan Energi Panas Bumi
  • 22.  Pembangkit Listrik Tenaga Panas Bumi adalah Pembangkit Listrik (Power generator) yang menggunakan panas bumi (Geothermal) sebagai energi penggeraknya.  PLTP memanfaatkan uap panas bumi sebagai pemutar generator.  Secara singkat Prinsip kerja PLTP : Panas tekanan tinggi digunakan untuk memutar turbin muncul beda potensial menghasilkan listrik.  Teknologi PLTP dibedakan menjkadi 3 yaitu dry steam, flash steam, dan binary cycle. KESIMPULAN