Your SlideShare is downloading. ×
complex numbers
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

complex numbers

3,817
views

Published on

Here is my powerpoint presentation on COMPLEX NUMBERS..

Here is my powerpoint presentation on COMPLEX NUMBERS..

Published in: Education, Technology, Business

0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
3,817
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
418
Comments
0
Likes
3
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1.
    • Complex Numbers
  • 2. If a and b are real numbers and i is the imaginary unit, then a + bi is called a complex number . ▪ a is the real part ▪ bi is the imaginary part . Definition of Complex Numbers
  • 3. Definition: The number i , called the imaginary unit , is the number such that i = ____ √-1 __ and i 2 = __ -1 ______
  • 4. Powers of i
  • 5. Let a + bi and c + di be complex numbers. 1. Add/Subtract the Real parts. 2. Add/Subtract the Imaginary parts .
    • (3 + 4i) + (2 - i) = (3 + 2) + (4i - i) = (5 + 3i)
    • (7 + i) - (3 - i) = (7 - 3) + i(1 - (-1)) = 4 + 2i
  • 6. Let a + bi and c + di be complex numbers. 1. Multiply the binomials. 2. Convert i 2 to -1 and add the like terms. (3 + 2i)(4 + 5i) = (3 × 4) + (3 × (5i)) + ((2i) × 4) + ((2i) × (5i))                              = 12 + 15i + 8i + 10i²                              = 12 + 23i -10 (Remenber that 10i² = 10(-1) = -10)                              = 2 + 23i  Therefore, (3 + 2i)(4 + 5i) = 2+23i
  • 7.
    • A complex number z is a number of the form z = x + yi . Its conjugate is a number of the form = x - yi . The complex number and its conjugate have the same real part. Re( z ) = Re( ). The sign of the imaginary part of the conjugate complex number is reversed. Im( z ) = - Im( ).
    • The conjugate numbers have the same modulus and opposite arguments. | z | = | |, arg( z ) = - arg( ). Any complex number multiplied by its complex conjugate is a real number, equal to the square of the modulus of the complex numbers z . z = ( x + yi )( x - yi ) = x 2+ y 2 = | z |2
  • 8. Division Of Complex Numbers Let a + bi and c + di be complex numbers. Multiply the numerator and denominator of the fraction by the Complex Conjugate of the Denominator . Then to perform the operation 2+6i x 4-i = (2+6i) (4-i) = 14+22i = 14 + 22 i 4+i 4-i (4+i) (4-i) 17 17 17
  • 9. Real Axis Imaginary Axis y x  The angle formed from the real axis and a line from the origin to ( x , y ) is called the argument of z , with requirement that 0   < 2  . modified for quadrant and so that it is between 0 and 2  Let a complex number be Z such that : z Modulus and Argument of Complex Numbers The magnitude or modulus of z denoted by z is the distance from the origin to the point ( x , y ).
  • 10. The Principal Argument is between -  and  Real Axis Imaginary Axis y x z = r  1  The unique value of θ such that – π < θ < π is called principle value of the argument. but in Quad II
  • 11. The magnitude or modulus of z is the same as r. We can take complex numbers given as and convert them to polar form : Real Axis Imaginary Axis y x z = r  Plot the complex number: Find the polar form of this number. 1  factor r out but in Quad II
  • 12.