Your SlideShare is downloading. ×
0
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Energy sources jb
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Energy sources jb

966

Published on

Published in: Technology, Business
1 Comment
4 Likes
Statistics
Notes
No Downloads
Views
Total Views
966
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
0
Comments
1
Likes
4
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1.   Dr.  James  Bentley   Professor  Department  of  Obstetrics  and  Gynecology   Dalhousie  University   Halifax  NS     Thanks:   Dr  N  VanEyk   Assistant  Professor  Dalhousie  University  
  • 2. Speaker  Disclosure:     — No  conflicts  to  disclose  
  • 3. Radiofrequencies   60 Hz 100 kHz 550-1550 kHz 54-880 MHz 500 kHz – 33 MHz Electrosurgery Muscle & nerve stimulation cease
  • 4. Electrocautery   —  Direct  Current  (electrons   flowing  in  1  direction)   —  Heats  an  alloy  (metal)   which  is  then  applied  to   tissue:  does  not  flow   through  patient  
  • 5. Electrosurgery  History          In  1926    Harvey  Cushing,  consulted  with  a  physicist  connected  with   the  Harvard  Cancer  Commission,  William  T.  Bovie.  Together  they   worked  to  create  the  most  effective  circuits  and  electrodes,  which   were  introduced  into  surgery  in  October  of  1926.    
  • 6. Electrosurgery  Evolu;on       1920s Present 60hz Grounded Circuit >200 000hz Isolated Circuit Alternate Site Burns No Alternate Site Burns Return Electrode Burns Return Electrode Burns Still Possible
  • 7. Electrosurgery   —  High  frequency   —  Alternating  Current   —  Current  enters  patient s   body  as  part  of  the  circuit  
  • 8. Ohm s  Law:  I=V/R   —  Current  =  I:  flow  of  electrons/time  (amps)   —  Resistance  (impedance)  =  R  :obstacle  to  the  flow  of   current  (ohms)   —  Voltage  =  V:  force  pushing  current  through  the   resistance  (volts)   —  Power  =  V  x  I  (watts)  
  • 9. Monopolar        vs.        Bipolar   • Cut/coag   • ↑  dissection   • ↑  current  density:  ↓   thermal  spread   • ↓  “stick”   • ↓impedance  à  ↓voltage  à   ↓  heat     • no  grounding  pad   • ↓  coupling   • ↓  smoke   • ↑hemostasis   • wet  OK   • implants  OK   Safer  
  • 10. CuIng  vs.  Coagula;on   Safer  
  • 11. Tissue  Effects   —  Cutting=  Vaporisation   —  Fulgaration   —  Coagulation=Dessication   —  The  difference  between  cutting   and  coag  is  the  rate  at  which  the   tissue  heats  up.   —  This  is  manipulated  by  varying   the  current  density  (surface   area)  
  • 12. Complica;ons:  Direct  Coupling  
  • 13. Complica;ons:  Capacitance    Coupling  
  • 14. Complica;ons:  Capacitance    Coupling  
  • 15. Complica;ons:  Insula2on  Failure  
  • 16. Energy  Sources:  The  New  Genera;on   — Higher  Current,  Less  voltage   — Less  thermal  spread   —  Plug  &  Play  :  output  &  power  preset   — Impedance  feedback  &  adjustments   — Grasp,  dissect,  coagulate  &  transect  with  one   instrument   — Disposable:  safer,  more  efficient  but  ↑$  
  • 17. Energy  Sources:  Op;ons   —  Advanced  Bipolar  Devices   —  Gyrus  ACMI  (Olympus)   —  Enseal  (Ethicon  Endo-­‐Surgery)   —  Ligasure  (Covidien)   —  Ultrasonic  Shears   —  Harmonic  Scalpel  (Ethicon  Endo-­‐Surgery)   Vessel Sealing Devices
  • 18. Gyrus  ACMI   — PK  (plasma  kinetic)  energy  delivered  in  a   series  of  pulses  (VPC  =  vapor  pulse   coagulation)  à  boil  fluid  in  tissue  à  steam   creates  vapor  pockets  which  coalesce  to   form  vapor  zones     — High  resistance  within  zone,  low  at   periphery  à  highest  current  density  at   edges  where  tissue  moist/not  coagulated  
  • 19. Gyrus  ACMI   — Pulse/cool  off  period  cools  instrument  à   reduces  drying  and  electrode  sticking   — Pulses  repeated  until  tissues  don t  absorb   fluid  =  uniformly  coagulated  à  audible  and   visual  impedance  end  point  indicators   — Vessel  sealing  capacity  
  • 20. Gyrus:  PKS  laparoscopy  instruments   —  Cutting  Forceps   —  L-­‐Hook       —  Plasma  J-­‐Hook   —  PlasmaSORD™  Bipolar  Morcellator   —  PlasmaSpatula®:  coag  with  one  surface,  rotate  90   degrees  and  cut  
  • 21. Enseal   — Adjusts  energy  simultaneously  to  various  tissue   types  in  a  tissue  bundle  (each  with  own   impedance  characteristics)   — Proprietary  electrode  with  millions  of  nanometer   sized  conductive  particles  embedded  in  a   temperature  sensitive  material  ( Smart  electrode   technology );  each  particle-­‐discrete  thermostatic   switch   — To  keep  temperature  from  rising  dangerously  – each  particle  interrupts  current  flow  to  a  specific   tissue  region.    When  temperature  dips  below   optimal  fusion  level,  particle  turns  back  on;  temp   maintained  ~  1000  C  
  • 22. Enseal   — Process  continues  until  entire  tissue  segment  is   uniformly  fused  without  charring  or  sticking   — Less  heat  required-­‐tissue  volume  reduced  by   compression;  limits  lateral  thermal  spread   —   Vessel  walls  fused  by  compression,  protein   denaturation,  then  renaturation   — up  to  7mm  vessel  diameter   — withstand  up  to  7  x  systolic  pressure    
  • 23. Enseal   —  Enseal  Trio  Tissue   Sealing  Device  
  • 24. Ligasure   —  Electrosurgical  Collagen  Welding :  Combination  of   pressure  and  energy;  denature  collagen  and  elastin  to   reform  a  permanent  seal;  hydrothermal  rupture  of   hydrogen  cross  links  by  elevating  to  60-­‐95  ºC   —  Cooling  allows  renaturation  of  entangled  unwound   collagen  strands;  high  uniform  mechanical  compression   increases  entanglement/recrosslinking  upon  thermal   relaxation   —  Permanently  fuses  vessels  and  tissue  bundles  without   dissection  or  isolation  
  • 25. Ligasure  Vessel  Sealing  
  • 26. Ligasure   — Average  seal  cycle  is  2  to  4  seconds*     —  up  to  7  mm  vessel  diameter   —  withstand  up  to  3  x  systolic  blood  pressure   — Impedance  feedback  –  adjusts  energy  output   based  on  real  time  measurements  of  tissue   impedance  3333  times/second   —  Feedback-­‐controlled  response  system  automatically   discontinues  energy  delivery  when  the  seal  cycle  is   complete  
  • 27. Ligasure:  Laparoscopic  Instruments   —  LigaSure  Advance™  Pistol  Grip1   —  LigaSure™  5  mm:  blunt2   —  LigaSure  Advance™   —  LigaSure™  V:  dolphin3   —  LigaSure  Atlas™   —  LigaSure™  Lap:  Maryland   *Advance:  monopolar  tip   1   2   3  
  • 28. Ultrasonic  Shears   Piezoelectric  ceramic   discs  convert  electrical   energy  into  mechanical   vibrations     • Lysis  hydrogen  bonds   • Denature  proteins   • Steam  formation   • Cavitational  fragmentation  à   tissue  falls  apart  =  cutting  
  • 29. Harmonic  Scalpel   — Amount  of  blade  excursion  modifies  tissue  effect;   cutting  speed  increases  with  higher  settings  (1  -­‐  5)   — No  electrical  energy  à  no  risks  coupling   — No  smoke  (steam  only)   — Minimal  lateral  thermal  spread   — Small  –  medium  vessels:  up  to  5mm  
  • 30. Harmonic  Scalpel   —  ACE  curved  Shears   —  Coagulating  Shears   —  Dissecting  Hook  
  • 31. Harmonic  Scalpel  
  • 32. How  do  we  decide??  
  • 33. Comparison:  Mean  Burst  Pressure   Newcomb et al. Comparison of blood vessel sealing among new electrosurgical and ultrasonic devices. Surg Endosc 2009; 23 (1):90–96
  • 34. Comparison:  Mean  Seal  Time   Surg Endosc 2009; 23 (1):90–96
  • 35. Comparison:  Failure  Rates   Surg Endosc 2009; 23 (1):90–96
  • 36. Comparison:  Temperature  Range   F. J. Kim et al. Temperature safety profile of laparoscopic devices: Harmonic ACE (ACE), Ligasure V (LV), and plasma trisector (PT). Kim et al. Surg Endosc 2008; 22:1464–1469
  • 37. Comparison:  Cool  Time   Surg Endosc 2008; 22:1464–1469
  • 38. Histologic  effects   A:Harmonic Scalpel B: Gyrus PKS cutting forceps C: Ligasure V with forced triad Generator D: Ligasure V with vessel sealing generator E: Gyrus Plasma Trissector
  • 39. What  do  you  want/not  want?   — Tissue  Handling   — Grasper,  Elevator   — Dissector   — Vessel  Sealing   — Hemostasis   — Handpiece   expandability   — Tissue  Products   — Plume,  Smoke,   Steam   — Heat   — Carbon,  Stick   — Response  to  fat   — Response  to  tension  
  • 40. What  do  you  want/not  want?   — Handpiece   — Activation:  hand  vs.  foot  pedal   — Blade  activation:  on  closing  vs.  separate  trigger   vs.   none   — Rotational  tip/shaft   — Jaw  design:  shape,  length,  width   — Size:  5mm,  10mm   — Cost  
  • 41. Summary   — Electrosurgical  Principles:   —  Use  lowest  voltage  possible  for  the  shortest  time   possible   —  Bipolar  safer  than  monopolar   —  If  monopolar,  cut  safer  than  coag   — Advanced  Electrosurgical  Instruments   —  Understand  their  mechanisms  of  action   —  Assess  what  you  need  them  to  do   —  Trial  them:  look,  hold,  use   —  Cost  feasibility  

×