Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
 
Dr.	
  James	
  Bentley	
  
Professor	
  Department	
  of	
  Obstetrics	
  and	
  Gynecology	
  
Dalhousie	
  University...
Speaker	
  Disclosure:	
  
	
  
— No	
  conflicts	
  to	
  disclose	
  
Radiofrequencies	
  
60 Hz
100
kHz
550-1550
kHz
54-880
MHz
500 kHz – 33 MHz
Electrosurgery
Muscle & nerve
stimulation cease
Electrocautery	
  
—  Direct	
  Current	
  (electrons	
  
flowing	
  in	
  1	
  direction)	
  
—  Heats	
  an	
  alloy	
 ...
Electrosurgery	
  History	
  
	
  	
  	
  	
  In	
  1926	
  	
  Harvey	
  Cushing,	
  consulted	
  with	
  a	
  physicist	...
Electrosurgery	
  Evolu;on	
  
	
  
	
  
1920s Present
60hz Grounded Circuit >200 000hz Isolated Circuit
Alternate Site Bu...
Electrosurgery	
  
—  High	
  frequency	
  
—  Alternating	
  Current	
  
—  Current	
  enters	
  patient s	
  
body	
 ...
Ohm s	
  Law:	
  I=V/R	
  
—  Current	
  =	
  I:	
  flow	
  of	
  electrons/time	
  (amps)	
  
—  Resistance	
  (impedanc...
Monopolar	
  	
  	
  	
  vs.	
  	
  	
  	
  Bipolar	
  
• Cut/coag	
  
• ↑	
  dissection	
  
• ↑	
  current	
  density:	
 ...
CuIng	
  vs.	
  Coagula;on	
  
Safer	
  
Tissue	
  Effects	
  
—  Cutting=	
  Vaporisation	
  
—  Fulgaration	
  
—  Coagulation=Dessication	
  
—  The	
  differ...
Complica;ons:	
  Direct	
  Coupling	
  
Complica;ons:	
  Capacitance	
  	
  Coupling	
  
Complica;ons:	
  Capacitance	
  	
  Coupling	
  
Complica;ons:	
  Insula2on	
  Failure	
  
Energy	
  Sources:	
  The	
  New	
  Genera;on	
  
— Higher	
  Current,	
  Less	
  voltage	
  
— Less	
  thermal	
  sprea...
Energy	
  Sources:	
  Op;ons	
  
—  Advanced	
  Bipolar	
  Devices	
  
—  Gyrus	
  ACMI	
  (Olympus)	
  
—  Enseal	
  (...
Gyrus	
  ACMI	
  
— PK	
  (plasma	
  kinetic)	
  energy	
  delivered	
  in	
  a	
  
series	
  of	
  pulses	
  (VPC	
  =	
...
Gyrus	
  ACMI	
  
— Pulse/cool	
  off	
  period	
  cools	
  instrument	
  à	
  
reduces	
  drying	
  and	
  electrode	
  ...
Gyrus:	
  PKS	
  laparoscopy	
  instruments	
  
—  Cutting	
  Forceps	
  
—  L-­‐Hook	
  	
  	
  
—  Plasma	
  J-­‐Hook...
Enseal	
  
— Adjusts	
  energy	
  simultaneously	
  to	
  various	
  tissue	
  
types	
  in	
  a	
  tissue	
  bundle	
  (...
Enseal	
  
— Process	
  continues	
  until	
  entire	
  tissue	
  segment	
  is	
  
uniformly	
  fused	
  without	
  char...
Enseal	
  
—  Enseal	
  Trio	
  Tissue	
  
Sealing	
  Device	
  
Ligasure	
  
—  Electrosurgical	
  Collagen	
  Welding :	
  Combination	
  of	
  
pressure	
  and	
  energy;	
  denature	...
Ligasure	
  Vessel	
  Sealing	
  
Ligasure	
  
— Average	
  seal	
  cycle	
  is	
  2	
  to	
  4	
  seconds*	
  	
  
—  up	
  to	
  7	
  mm	
  vessel	
  di...
Ligasure:	
  Laparoscopic	
  Instruments	
  
—  LigaSure	
  Advance™	
  Pistol	
  Grip1	
  
—  LigaSure™	
  5	
  mm:	
  ...
Ultrasonic	
  Shears	
  
Piezoelectric	
  ceramic	
  
discs	
  convert	
  electrical	
  
energy	
  into	
  mechanical	
  
...
Harmonic	
  Scalpel	
  
— Amount	
  of	
  blade	
  excursion	
  modifies	
  tissue	
  effect;	
  
cutting	
  speed	
  incre...
Harmonic	
  Scalpel	
  
—  ACE	
  curved	
  Shears	
  
—  Coagulating	
  Shears	
  
—  Dissecting	
  Hook	
  
Harmonic	
  Scalpel	
  
How	
  do	
  we	
  decide??	
  
Comparison:	
  Mean	
  Burst	
  Pressure	
  
Newcomb et al. Comparison of blood vessel sealing among new
electrosurgical a...
Comparison:	
  Mean	
  Seal	
  Time	
  
Surg Endosc 2009; 23 (1):90–96
Comparison:	
  Failure	
  Rates	
  
Surg Endosc 2009; 23 (1):90–96
Comparison:	
  Temperature	
  Range	
  
F. J. Kim et al. Temperature safety profile of laparoscopic devices: Harmonic ACE ...
Comparison:	
  Cool	
  Time	
  
Surg Endosc 2008; 22:1464–1469
Histologic	
  effects	
  
A:Harmonic Scalpel
B: Gyrus PKS cutting forceps
C: Ligasure V with forced triad Generator
D: Liga...
What	
  do	
  you	
  want/not	
  want?	
  
— Tissue	
  Handling	
  
— Grasper,	
  Elevator	
  
— Dissector	
  
— Vesse...
What	
  do	
  you	
  want/not	
  want?	
  
— Handpiece	
  
— Activation:	
  hand	
  vs.	
  foot	
  pedal	
  
— Blade	
 ...
Summary	
  
— Electrosurgical	
  Principles:	
  
—  Use	
  lowest	
  voltage	
  possible	
  for	
  the	
  shortest	
  ti...
Upcoming SlideShare
Loading in …5
×

Energy sources jb

5,337 views

Published on

Published in: Technology, Business

Energy sources jb

  1. 1.   Dr.  James  Bentley   Professor  Department  of  Obstetrics  and  Gynecology   Dalhousie  University   Halifax  NS     Thanks:   Dr  N  VanEyk   Assistant  Professor  Dalhousie  University  
  2. 2. Speaker  Disclosure:     — No  conflicts  to  disclose  
  3. 3. Radiofrequencies   60 Hz 100 kHz 550-1550 kHz 54-880 MHz 500 kHz – 33 MHz Electrosurgery Muscle & nerve stimulation cease
  4. 4. Electrocautery   —  Direct  Current  (electrons   flowing  in  1  direction)   —  Heats  an  alloy  (metal)   which  is  then  applied  to   tissue:  does  not  flow   through  patient  
  5. 5. Electrosurgery  History          In  1926    Harvey  Cushing,  consulted  with  a  physicist  connected  with   the  Harvard  Cancer  Commission,  William  T.  Bovie.  Together  they   worked  to  create  the  most  effective  circuits  and  electrodes,  which   were  introduced  into  surgery  in  October  of  1926.    
  6. 6. Electrosurgery  Evolu;on       1920s Present 60hz Grounded Circuit >200 000hz Isolated Circuit Alternate Site Burns No Alternate Site Burns Return Electrode Burns Return Electrode Burns Still Possible
  7. 7. Electrosurgery   —  High  frequency   —  Alternating  Current   —  Current  enters  patient s   body  as  part  of  the  circuit  
  8. 8. Ohm s  Law:  I=V/R   —  Current  =  I:  flow  of  electrons/time  (amps)   —  Resistance  (impedance)  =  R  :obstacle  to  the  flow  of   current  (ohms)   —  Voltage  =  V:  force  pushing  current  through  the   resistance  (volts)   —  Power  =  V  x  I  (watts)  
  9. 9. Monopolar        vs.        Bipolar   • Cut/coag   • ↑  dissection   • ↑  current  density:  ↓   thermal  spread   • ↓  “stick”   • ↓impedance  à  ↓voltage  à   ↓  heat     • no  grounding  pad   • ↓  coupling   • ↓  smoke   • ↑hemostasis   • wet  OK   • implants  OK   Safer  
  10. 10. CuIng  vs.  Coagula;on   Safer  
  11. 11. Tissue  Effects   —  Cutting=  Vaporisation   —  Fulgaration   —  Coagulation=Dessication   —  The  difference  between  cutting   and  coag  is  the  rate  at  which  the   tissue  heats  up.   —  This  is  manipulated  by  varying   the  current  density  (surface   area)  
  12. 12. Complica;ons:  Direct  Coupling  
  13. 13. Complica;ons:  Capacitance    Coupling  
  14. 14. Complica;ons:  Capacitance    Coupling  
  15. 15. Complica;ons:  Insula2on  Failure  
  16. 16. Energy  Sources:  The  New  Genera;on   — Higher  Current,  Less  voltage   — Less  thermal  spread   —  Plug  &  Play  :  output  &  power  preset   — Impedance  feedback  &  adjustments   — Grasp,  dissect,  coagulate  &  transect  with  one   instrument   — Disposable:  safer,  more  efficient  but  ↑$  
  17. 17. Energy  Sources:  Op;ons   —  Advanced  Bipolar  Devices   —  Gyrus  ACMI  (Olympus)   —  Enseal  (Ethicon  Endo-­‐Surgery)   —  Ligasure  (Covidien)   —  Ultrasonic  Shears   —  Harmonic  Scalpel  (Ethicon  Endo-­‐Surgery)   Vessel Sealing Devices
  18. 18. Gyrus  ACMI   — PK  (plasma  kinetic)  energy  delivered  in  a   series  of  pulses  (VPC  =  vapor  pulse   coagulation)  à  boil  fluid  in  tissue  à  steam   creates  vapor  pockets  which  coalesce  to   form  vapor  zones     — High  resistance  within  zone,  low  at   periphery  à  highest  current  density  at   edges  where  tissue  moist/not  coagulated  
  19. 19. Gyrus  ACMI   — Pulse/cool  off  period  cools  instrument  à   reduces  drying  and  electrode  sticking   — Pulses  repeated  until  tissues  don t  absorb   fluid  =  uniformly  coagulated  à  audible  and   visual  impedance  end  point  indicators   — Vessel  sealing  capacity  
  20. 20. Gyrus:  PKS  laparoscopy  instruments   —  Cutting  Forceps   —  L-­‐Hook       —  Plasma  J-­‐Hook   —  PlasmaSORD™  Bipolar  Morcellator   —  PlasmaSpatula®:  coag  with  one  surface,  rotate  90   degrees  and  cut  
  21. 21. Enseal   — Adjusts  energy  simultaneously  to  various  tissue   types  in  a  tissue  bundle  (each  with  own   impedance  characteristics)   — Proprietary  electrode  with  millions  of  nanometer   sized  conductive  particles  embedded  in  a   temperature  sensitive  material  ( Smart  electrode   technology );  each  particle-­‐discrete  thermostatic   switch   — To  keep  temperature  from  rising  dangerously  – each  particle  interrupts  current  flow  to  a  specific   tissue  region.    When  temperature  dips  below   optimal  fusion  level,  particle  turns  back  on;  temp   maintained  ~  1000  C  
  22. 22. Enseal   — Process  continues  until  entire  tissue  segment  is   uniformly  fused  without  charring  or  sticking   — Less  heat  required-­‐tissue  volume  reduced  by   compression;  limits  lateral  thermal  spread   —   Vessel  walls  fused  by  compression,  protein   denaturation,  then  renaturation   — up  to  7mm  vessel  diameter   — withstand  up  to  7  x  systolic  pressure    
  23. 23. Enseal   —  Enseal  Trio  Tissue   Sealing  Device  
  24. 24. Ligasure   —  Electrosurgical  Collagen  Welding :  Combination  of   pressure  and  energy;  denature  collagen  and  elastin  to   reform  a  permanent  seal;  hydrothermal  rupture  of   hydrogen  cross  links  by  elevating  to  60-­‐95  ºC   —  Cooling  allows  renaturation  of  entangled  unwound   collagen  strands;  high  uniform  mechanical  compression   increases  entanglement/recrosslinking  upon  thermal   relaxation   —  Permanently  fuses  vessels  and  tissue  bundles  without   dissection  or  isolation  
  25. 25. Ligasure  Vessel  Sealing  
  26. 26. Ligasure   — Average  seal  cycle  is  2  to  4  seconds*     —  up  to  7  mm  vessel  diameter   —  withstand  up  to  3  x  systolic  blood  pressure   — Impedance  feedback  –  adjusts  energy  output   based  on  real  time  measurements  of  tissue   impedance  3333  times/second   —  Feedback-­‐controlled  response  system  automatically   discontinues  energy  delivery  when  the  seal  cycle  is   complete  
  27. 27. Ligasure:  Laparoscopic  Instruments   —  LigaSure  Advance™  Pistol  Grip1   —  LigaSure™  5  mm:  blunt2   —  LigaSure  Advance™   —  LigaSure™  V:  dolphin3   —  LigaSure  Atlas™   —  LigaSure™  Lap:  Maryland   *Advance:  monopolar  tip   1   2   3  
  28. 28. Ultrasonic  Shears   Piezoelectric  ceramic   discs  convert  electrical   energy  into  mechanical   vibrations     • Lysis  hydrogen  bonds   • Denature  proteins   • Steam  formation   • Cavitational  fragmentation  à   tissue  falls  apart  =  cutting  
  29. 29. Harmonic  Scalpel   — Amount  of  blade  excursion  modifies  tissue  effect;   cutting  speed  increases  with  higher  settings  (1  -­‐  5)   — No  electrical  energy  à  no  risks  coupling   — No  smoke  (steam  only)   — Minimal  lateral  thermal  spread   — Small  –  medium  vessels:  up  to  5mm  
  30. 30. Harmonic  Scalpel   —  ACE  curved  Shears   —  Coagulating  Shears   —  Dissecting  Hook  
  31. 31. Harmonic  Scalpel  
  32. 32. How  do  we  decide??  
  33. 33. Comparison:  Mean  Burst  Pressure   Newcomb et al. Comparison of blood vessel sealing among new electrosurgical and ultrasonic devices. Surg Endosc 2009; 23 (1):90–96
  34. 34. Comparison:  Mean  Seal  Time   Surg Endosc 2009; 23 (1):90–96
  35. 35. Comparison:  Failure  Rates   Surg Endosc 2009; 23 (1):90–96
  36. 36. Comparison:  Temperature  Range   F. J. Kim et al. Temperature safety profile of laparoscopic devices: Harmonic ACE (ACE), Ligasure V (LV), and plasma trisector (PT). Kim et al. Surg Endosc 2008; 22:1464–1469
  37. 37. Comparison:  Cool  Time   Surg Endosc 2008; 22:1464–1469
  38. 38. Histologic  effects   A:Harmonic Scalpel B: Gyrus PKS cutting forceps C: Ligasure V with forced triad Generator D: Ligasure V with vessel sealing generator E: Gyrus Plasma Trissector
  39. 39. What  do  you  want/not  want?   — Tissue  Handling   — Grasper,  Elevator   — Dissector   — Vessel  Sealing   — Hemostasis   — Handpiece   expandability   — Tissue  Products   — Plume,  Smoke,   Steam   — Heat   — Carbon,  Stick   — Response  to  fat   — Response  to  tension  
  40. 40. What  do  you  want/not  want?   — Handpiece   — Activation:  hand  vs.  foot  pedal   — Blade  activation:  on  closing  vs.  separate  trigger   vs.   none   — Rotational  tip/shaft   — Jaw  design:  shape,  length,  width   — Size:  5mm,  10mm   — Cost  
  41. 41. Summary   — Electrosurgical  Principles:   —  Use  lowest  voltage  possible  for  the  shortest  time   possible   —  Bipolar  safer  than  monopolar   —  If  monopolar,  cut  safer  than  coag   — Advanced  Electrosurgical  Instruments   —  Understand  their  mechanisms  of  action   —  Assess  what  you  need  them  to  do   —  Trial  them:  look,  hold,  use   —  Cost  feasibility  

×