0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# 2 Combinational Logic Circuit 01

3,178

Published on

Published in: Technology, Education
2 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

Views
Total Views
3,178
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
91
0
Likes
2
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. 논리회로 설계실험<br />담당교수 : 전재욱<br />담당조교 : 석민식, 송지호<br />
• 2. 2<br />
• 3. 1 Analog & digital<br />Sub. Contents.<br />1.1 Analog & Digital<br />1.2 Analog<br />1.3 Digital<br />3<br />
• 4. 1.1 Analog & Digital<br />4<br />Analog<br />Digital<br />V<br />V<br />T<br />T<br />0<br />0<br />
• 5. 1.2 Analog<br />5<br />Input Signal<br />Output Signal<br />양적인 비례 관계<br />
• 6. 1.3 Digital<br />6<br />Input Signal<br />Output Signal<br />논리적인 비례 관계<br />
• 7. 2 Binary digit operation<br />Sub. Contents.<br />2.1 Binary System<br />2.2 Boolean Algebra<br />2.3 Venn Diagram<br />7<br />
• 8. 2.1 Binary System<br /><ul><li> Binary System</li></ul>0과 1로 이루어진 수<br />표기법 : 10001001(2)<br /><ul><li>Decimal to Binary Conversion</li></ul>8<br />2<br />65<br />32 … 1<br />2<br />16 … 0<br />2<br />128 64 32 16 8 4 2 1<br />1000001<br />2<br />08 … 0<br />0 1 0 0 0 0 0 1<br />Binary :<br />2<br />04 … 0<br />2<br />02 … 0<br />01 … 0<br />
• 9. 2.2 Boolean Algebra<br /> Logical Sum : +<br />► A + B = Y<br /> 0 + 0 = 0<br /> 0 + 1 = 1<br /> 1 + 1 = 1<br /> Logical Product : •<br />► A • B = Y<br /> 0 • 0 = 0<br /> 0 • 1 = 0<br /> 1 • 1 = 1<br /> Logical Not : /, ‾,n,`<br />► A ( /A, nA, A`) = Y<br /> 0 = 1<br /> 1 = 0<br />9<br />Truth Table<br />
• 10. 2.2 Boolean Algebra – Single Variable<br /> AND<br /> X • 0 = 0<br /> X • 1 = X<br /> X • 0 = 0<br /> X • X = 0<br /> NOT<br /> X = X<br /> OR<br /> X + 0 = X<br /> X + 1 = 1<br /> X + X = X<br /> X + X = 1<br />10<br />
• 11. 2.2 Boolean Algebra – Multi Variable<br /><ul><li> Commutative Law</li></ul> X + Y = Y + X<br /> X • Y = Y • X<br /><ul><li> Associative Law </li></ul>X + (Y + Z) = (X + Y) + Z = X + Y + Z<br />X(Y • Z) = X • Y • Z = XYZ<br /><ul><li> Distributive Law</li></ul>X(Y+Z) = X • Y + X • Z = XY + XZ<br />(X + W)(Y + Z) = X • Y + X • Z + W • Y + W • Z = XY + XZ + WY + WZ<br /><ul><li>Other Law</li></ul>X + XY = X<br />X + XY = X + Y<br />11<br />
• 12. 2.3 Venn Diagram<br />12<br />XY<br />XY<br />XY<br />
• 13. 2.4 De-Morgan Law<br />13<br />A + B = A • B<br />A • B = A + B<br />
• 14. 3 Gate symbol<br />Sub. Contents.<br />3.1 Buffer & NOT Gate<br />3.2 AND & NAND Gate<br />3.3 OR & NOR Gate<br />3.4 XOR & ExOR Gate<br />3.5 Relativity Theorem<br />14<br />
• 15. 3.1 Buffer & NOT Gate<br />15<br />NOT Gate<br />Buffer<br />Input<br />Output<br />Input<br />Output<br />
• 16. 3.1 Buffer & NOT Gate - Analog Not Gate Circuit<br />16<br />B = 0<br />C<br />Output<br />Input<br />B<br />E<br />B = 1<br />
• 17. 3.2 AND & NAND Gate<br />17<br />AND Gate<br />NAND Gate<br />Input A<br />Input A<br />Output<br />Output<br />Input B<br />Input B<br />
• 18. 3.2 AND & NAND Gate - Analog AND Gate Circuit<br />18<br />B<br />C<br />=><br />C<br />E<br />B<br />E<br />< TR ><br />< Switch ><br />Input A<br />Input B<br />Output<br />
• 19. 3.3 OR & NOR Gate<br />19<br />OR Gate<br />NOR Gate<br />Input A<br />Input A<br />Output<br />Output<br />Input B<br />Input B<br />
• 20. 3.3 OR & NOR Gate - Analog OR Gate Circuit<br />20<br />Input A<br />Input B<br />Output<br />
• 21. 3.4 XOR & ExOR Gate<br />21<br />ExOR(XOR) Gate<br />ExNORGate<br />Input A<br />Input A<br />Output<br />Output<br />Input B<br />Input B<br />A ⊙ B = Y<br />A B = Y<br />
• 22. 3.5 Relativity Theorem<br />A + B = B + A<br />A+(B+C) = (A+B)+C<br />A(B+C) = A•B+A•C<br />A+0=A<br />A+1=1<br />A+A=A<br />A+A=1<br />A=A<br />A+B=A•B<br />A+A•B=A<br />A+A•B=A+B<br />A•B=B•A<br />A(B•C)=(A•B)C<br />A+B•C=(A+B)(A+C)<br />A•1=A<br />A•0=0<br />A•A=A<br />A•A=0<br />A=A<br />A•B=A+B<br />A(A+B)=A<br />A(A+B)=A•B<br />22<br />
• 23. 4 Combinational Logic Circuit<br />Sub. Contents.<br />4.1 Combinational Logic<br />4.2 Half-Adder<br />4.3 Full-Adder<br />4.4 Half-Subtracter<br />4.5 Full-Subtracter<br />4.6 Subtraction<br />4.7 Adder-Subtracter<br />23<br />
• 24. 4.1 Combinational Logic<br />24<br />Input A<br />Input B<br />Output<br />Input C<br />Input D<br />(A+B) (CD) = Output<br />
• 25. 4.2 Half-Adder<br />25<br />Input A<br />SUM<br />Input B<br />CARRY<br />(A B) = SUM<br />A • B = CARRY<br />
• 26. 4.2 Half-Adder<br />26<br /> 0<br />+0<br />00<br /> 1<br />+0<br />01<br /> 0<br />+1<br />01<br /> 1<br />+1<br />11<br />Half<br />Adder<br />Input A<br />SUM<br />Input B<br />CARRY<br />Half<br />Adder<br />Half<br />Adder<br />Half<br />Adder<br />Half<br />Adder<br />Half<br />Adder<br />Half<br />Adder<br />Half<br />Adder<br />0010011<br />+1000001<br />1010010<br />CARRY ?<br />
• 27. 4.3 Full-Adder<br />27<br />SUM<br />Input A<br />Half<br />Adder<br />Half<br />Adder<br />Input B<br />CARRY<br />Input C<br />
• 28. 4.3 Full-Adder<br />28<br />Input A<br />SUM<br />Input B<br />Carry<br />Carry<br />Input<br />
• 29. 4.3 Full-Adder<br />29<br />A1<br />A2<br />A3<br />A4<br />A5<br />A6<br />A7<br />A8<br />B1<br />B2<br />B3<br />B4<br />B5<br />B6<br />B7<br />B8<br />SUM1<br />SUM2<br />SUM3<br />SUM4<br />SUM5<br />SUM6<br />SUM7<br />SUM8<br />CARRY<br />Full<br />Adder<br />Full<br />Adder<br />Full<br />Adder<br />Full<br />Adder<br />Full<br />Adder<br />Full<br />Adder<br />Full<br />Adder<br />Half<br />Adder<br />10010011<br />+10010001<br />100100100<br />
• 30. 4.4 Half-Subtracter<br />30<br />Input A<br />Data<br />Half<br />Subtracter<br />(HS)<br />Input B<br />1<br />-1<br />00<br />1<br />-0<br />01<br />0<br />-1<br />11<br />0<br />-0<br />00<br />Borrow<br />Input A<br />SUM<br />Input B<br />Borrow<br />
• 31. 4.5 Full-Subtracter<br />31<br />Data<br />Input A<br />HS<br />HS<br />Input B<br />Borrow<br />Input C<br />
• 32. 4.5 Full-Subtracter<br />32<br />Input A<br />Data<br />Input B<br />Borrow<br />Borrow<br />Input<br />
• 33. 4.5 Full-Subtracter<br />33<br />A1<br />A2<br />A3<br />A4<br />A5<br />A6<br />A7<br />A8<br />B1<br />B2<br />B3<br />B4<br />B5<br />B6<br />B7<br />B8<br />D1<br />D2 <br />D3<br />D4<br />D5<br />D6<br />D7<br />D8<br />Borrow<br />FS<br />FS<br />FS<br />FS<br />FS<br />FS<br />FS<br />HS<br />10011001<br />-01000001<br />101011000<br />
• 34. 4.6 Subtraction<br />34<br />10011001<br />-01000001<br />?<br />One’s complement<br />Two’s complement<br />10111111<br />10111110<br />10011001<br />+10111111<br />101011000<br />10011001 = 153<br />01000001 = 65<br />153 - 65 = 88<br />88<br />
• 35. 4.7 Adder-Subtracter<br />35<br />A1<br />A2<br />A3<br />A4<br />A5<br />A6<br />A7<br />A8<br />B1<br />B2<br />B3<br />B4<br />B5<br />B6<br />B7<br />B8<br />Sel<br />FA<br />FA<br />FA<br />FA<br />FA<br />FA<br />FA<br />FA<br />D1<br />D2 <br />D3<br />D4<br />D5<br />D6<br />D7<br />D8<br />10011001<br />+10111111<br />001011000<br />10011001<br />-01000001<br />?<br />Plus & Minus Code<br />
• 36. 36<br />End of Page<br />