SlideShare a Scribd company logo
1 of 20
Download to read offline
Normal Modes Analysis
of RiverSonde Data in a
     Tidal Channel

   Calvin C. Teague, Donald E. Barrick
     CODAR Ocean Sensors, Ltd.
           Mountain View, CA

           David Honegger
        Oregon State University
            Corvallis, OR
RiverSonde Description


•   UHF (435 MHz, 70-cm wavelength) radar

•   Bragg scattering from 35-cm wavelength waves

•   Based on SeaSonde hardware

•   1 W transmit power

•   MUSIC direction finding using 3-yagi antenna array

•   5–15 m range bins, 1° angle bins

•   Typically installed on a river bank
Antennas
Center array used for Transmit & Receive
   Side arrays used for receive only
Typical Geometry


River                            Mean Flow
           Radar Field of View




                1 2 3


                Radar
Newport Experiment



•   CODAR student grant program

•   Installed in September 2010 at Newport, Oregon

•   Channel connecting Yaquina Bay to Pacific Ocean

•   Tidal flow between parallel jetties
Experiment Location
Radial Vectors
            2010-12-07-13:00 UTC
Velocity Vector Estimation

•   From a single site, find along- and cross-channel
    components from least-squares fit to radials

•   If 2 sites are available, find full vectors by combining
    radial measurements from both sites

•   From a single site, use Normal Modes Analysis of radial
    measurements to infer full vectors

    •   For arbitrary boundary, numerical solution required

    •   For rectangular boundary, closed-form solution possible

    •   Useful for dynamic flow conditions like tidal reversals
Normal Modes Analysis
• Assume water incompressible
• Express horizontal flow in terms of velocity potentials and stream func-
  tions
• Boundary conditions

  – Zero normal flow at banks
  – No impedance to tangential flow at banks
  – Periodic boundary at ends of analysis region
                                     −
                                     →
• Horizontal surface velocity vector U
                       −
                       →
                        U = ∇ × [z (−Ψ) + ∇ × (ˆΦ)]
                                  ˆ            z
  where z is the vertical unit vector, Ψ is the stream function, and Φ is
         ˆ
  the velocity potential
• Allow up to 20 modes across river, only 2 along river
• Closed-form solutions in terms of sines and cosines
Homogeneous Equations
• Stream function satisfying Dirichlet condition at bank
                  ∇2ψn + νnψn = 0,        where ψn|Γ = 0
                                               
                                
                          D , v D = −∂ψn , ∂ψn
                         un n
                                      ∂y    ∂x
  where ψn is the n-th eigenfunction of the stream function Ψ, νn is the
  corresponding n-th eigenvalue and uD and vn are the velocity compo-
                                        n
                                                 D
  nents in the x and y directions, respectively.


• Velocity function satisfying Neumann condition at bank
                                                         
                                                     ∂φn 
           ∇2φn + µnφn = 0,        where (ˆ · ∇φn) =
                                          λ                =0
                                     
                                                    Γ ∂λ Γ
                N , v N ] = ∂φn , ∂φn
              [un n
                             ∂x ∂y
  where φn is the n-th eigenfunction of the velocity potential Φ, µn is the
  corresponding n-th eigenvalue and ˆ is the direction perpendicular to
                                      λ
  the boundary.
Normal Modes Solutions
Velocity potential modes with a periodic boundary at x = ±L/2 and bank at y = ±W/2
                          
                          cos(j2πx/L) cos(mπy/W )
                          
                          
                          
                           for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
                          
                          
                          
                          cos(j2πx/L) sin(mπy/W )
                          
                          
                          
                          
                              for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .
               φn(x, y) =
                          sin(j2πx/L) cos(mπy/W )
                          
                          
                           for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
                          
                          
                          
                          
                          sin(j2πx/L) sin(mπy/W )
                          
                          
                          
                           for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .

Corresponding stream modes
                        
                        cos(j2πx/L) cos(mπy/W )
                        
                        
                        
                         for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .
                        
                        
                        
                        cos(j2πx/L) sin(mπy/W )
                        
                        
                        
                        
                            for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
             ψn(x, y) =
                        sin(j2πx/L) cos(mπy/W )
                        
                        
                         for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .
                        
                        
                        
                        
                        sin(j2πx/L) sin(mπy/W )
                        
                        
                        
                         for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
Velocity Mode Examples 1
      150
      150

      100
      100

      50
      50

       0
       0
            -400
            -400   -200
                   -200             0
                                    0              200
                                                    200   400
                                                           400

                          83, 0, 1, Null, Null
                           85, 1, 0, Null, Null
      350
      350

      300
      300

      250
      250

j=1   200
      200


m=0   150
      150

      100
      100

      50
      50

       0
       0
            -400
            -400   -200
                   -200             0
                                    0               200
                                                   200     400
                                                          400
                           86, 1, 1, Null, Null
      350

      300

      250

j=1   200

      150
m=1   100

       50

        0
            -400   -200             0              200    400
                          87, 2, -1, Null, Null
      350

      300

      250

      200
Velocity Mode Examples 2
      150

      100

       50

        0
             -400   -200             0              200    400
                           85, 1, 0, Null, Null
      350

      300

      250


j=0   200

      150

m=1   100

       50
                                                                  FitModes6-Mod
        0
             -400   -200             0              200    400
                           86, 1, 1, Null, Null
      350                   88, 2, 0, Null, Null
       350
      300
       300
      250
       250
      200
j=0    200
      150
       150

m=2   100
       100
       50
        50
        0
         0
             -400   -200             0              200    400
             -400   -200              0              200    400
                           87, 2, -1, Null, Null
      350                   89, 2, 1, Null, Null
       350
      300
       300
      250
       250
      200
       200
      150
2
                                                                   2             2
                                                                                 2



 Velocity Mode Examples 3
             n § Length@uPsiD, n ++, title = n =   ToString@nD; title = modeIDPLength@uPhiD +
                                                        ToString@nD; title = modeIDPLength@uPhiD
             plt = HVectorPlot@8uPsiPnT, vPsiPnT, 8x, x1, x2, 8y, y1, y2, Frame Ø True,
                                                               x2, 8y, y1, y2, Frame Ø True,
                 PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL;
                                                                 DisplayFunction Ø IdentityDL;
             Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0, 82, 2DD,
                                                               Disk@80, 0, 82, 2DD,
                PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10, 8yp1, yp2,
                                                               yp2,
                   ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F;
                                                                 $DisplayFunctionDDD;F;F;

                                    864, Null, Null, 1, 0
      350

      300

      250

j=0   200

      150
m=1   100

      50

       0
            -400            -200              0              200      400
                                                                      400
                                    865, Null, Null, 2, 0
      350

      300

      250

j=0   200

      150
m=2   100

      50

       0
            -400            -200              0              200      400
                                                                      400
Mode Coefficients
          Determination
•   Evaluate model in terms of unknown mode coefficients
    at each point where radar data are available

•   At each point, equate sum of radial components of
    model to radial radar measurement

•   Repeat over all available radar measurements

•   Solve overdetermined set of equations for mode
    coefficients (~5000 equations in ~50 unknowns) using
    least-squares

•   Allow up to 20 modes across river for along-river
    component (mmax), only 2 along river for both along- and
    cross-river components (jmax)
Streamline Examples
                  NWPT_2010_12_07_0600                                      NWPT_2010_12_07_0945
                                               2.0                                                       2.0

      300                                                       300
                                               1.5                                                       1.5
      250                                                       250
y m




                                                          y m
      200                                                       200
                                               1.0   ms                                                  1.0   ms
      150                                                       150

      100                                      0.5              100                                      0.5

       50                                                        50
            200      100     0   100     200                          200      100     0   100     200
                                               0.0                                                       0.0
                           x m                                                       x m



                  NWPT_2010_12_07_1300                                      NWPT_2010_12_07_1530
                                               2.0                                                       2.0

      300                                                       300
                                               1.5                                                       1.5
      250                                                       250
y m




                                                          y m

      200                                                       200
                                               1.0   ms                                                  1.0   ms
      150                                                       150

      100                                      0.5              100                                      0.5

       50                                                        50
            200      100     0   100     200                          200      100     0   100     200
                                               0.0                                                       0.0
                           x m                                                       x m
Mode Limits
                                           NWPT_2010_12_07_1530
                                                                        2.0

                               300
                                                                        1.5
                               250

u: jmax = 1, mmax = 5




                         y m
                               200
                                                                        1.0   ms
v: jmax = 0, mmax = 2          150

                               100                                      0.5

                                50
                                     200      100     0   100     200
                                                                        0.0
                                                    x m

                                           NWPT_2010_12_07_1530
                                                                        2.0

                               300
                                                                        1.5
                               250

u: jmax = 1, mmax = 20
                         y m




                               200
                                                                        1.0   ms
v: jmax = 0, mmax = 2          150

                               100                                      0.5

                                50
                                     200      100     0   100     200
                                                                        0.0
                                                    x m
Lagrangian Particle Trajectories


  •   Compute velocity vectors at 5-minute intervals

  •   Seed study area with 100 particles randomly placed
      every 2 minutes

  •   Integrate particle velocity in 10-second steps

  •   Display 10 locations of particles with lighter color for
      older positions

  •   Movie covers 2.5 hours around a tidal reversal
Particle Trajectory Example
                        2010 12 07 08:30:00 0000
      350



      300



      250
y m




      200



      150



      100



       50
            200   100               0              100   200
                                  x m
Summary
•   For an arbitrary boundary, Normal Modes solution must be
    found numerically

•   For the special case of a rectangular boundary, with no normal
    flow across banks and periodic continuation at open
    boundaries, a closed-form solution can be found as a series of
    products of sines and cosines

•   Least-squares fit of radial components of Normal Modes to
    radar radial velocity vectors gives coefficients

•   Lagrangian visualization of particle trajectories may be useful in
    dynamic conditions like tidal reversals

•   Future studies

    •   Compare this 2D fitting to 1D radial data with ADCP or other
        in-situ measurements, especially during flow reversals

    •   Determine how many modes are meaningful

More Related Content

What's hot

M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCSEENET-MTP
 
Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...SSA KPI
 
Seridonio fachini conem_draft
Seridonio fachini conem_draftSeridonio fachini conem_draft
Seridonio fachini conem_draftAna Seridonio
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Nicolas Ratkovich
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Theme 5
Theme 5Theme 5
Theme 5aks29
 
propagacion medio disipativo
propagacion medio disipativopropagacion medio disipativo
propagacion medio disipativoalcajo2011
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filtersNikolay Karpov
 
Poster Partial And Complete Observables
Poster Partial And Complete ObservablesPoster Partial And Complete Observables
Poster Partial And Complete Observablesguest9fa195
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxYuji Oyamada
 
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...SSA KPI
 
Camera calibration
Camera calibrationCamera calibration
Camera calibrationYuji Oyamada
 

What's hot (20)

Anschp35
Anschp35Anschp35
Anschp35
 
M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHC
 
Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Electricmotor3
Electricmotor3Electricmotor3
Electricmotor3
 
Seridonio fachini conem_draft
Seridonio fachini conem_draftSeridonio fachini conem_draft
Seridonio fachini conem_draft
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Anschp29
Anschp29Anschp29
Anschp29
 
Theme 5
Theme 5Theme 5
Theme 5
 
Anschp39
Anschp39Anschp39
Anschp39
 
Anschp21
Anschp21Anschp21
Anschp21
 
propagacion medio disipativo
propagacion medio disipativopropagacion medio disipativo
propagacion medio disipativo
 
Physics
PhysicsPhysics
Physics
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
 
Poster Partial And Complete Observables
Poster Partial And Complete ObservablesPoster Partial And Complete Observables
Poster Partial And Complete Observables
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
 
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
Camera calibration
Camera calibrationCamera calibration
Camera calibration
 

Viewers also liked

Crow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptxCrow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptxgrssieee
 
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.pptRuf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.pptgrssieee
 
Tandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfTandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfgrssieee
 
ChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptgrssieee
 
TU3.T10.1.pptx
TU3.T10.1.pptxTU3.T10.1.pptx
TU3.T10.1.pptxgrssieee
 
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...grssieee
 
WEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptxWEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptxgrssieee
 
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfSea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfgrssieee
 
IGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.pptIGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.pptgrssieee
 

Viewers also liked (9)

Crow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptxCrow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptx
 
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.pptRuf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
 
Tandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfTandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdf
 
ChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.ppt
 
TU3.T10.1.pptx
TU3.T10.1.pptxTU3.T10.1.pptx
TU3.T10.1.pptx
 
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
 
WEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptxWEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptx
 
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfSea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
 
IGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.pptIGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.ppt
 

Similar to TU3.T10.2.pdf

1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdfmelihbulut1
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdfmelihbulut1
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2SinYK
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manualstudent
 
EMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdfEMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdfrsrao8
 
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELSWE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELSgrssieee
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsmolmodbasics
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpointKris Ann Ferrer
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Abhishek Das
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?Colm Connaughton
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopyclayqn88
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...SEENET-MTP
 

Similar to TU3.T10.2.pdf (20)

Waveguide
WaveguideWaveguide
Waveguide
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
EMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdfEMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdf
 
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELSWE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
Reflection Data Analysis
Reflection Data AnalysisReflection Data Analysis
Reflection Data Analysis
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Rock Physics: Definitions
Rock Physics: DefinitionsRock Physics: Definitions
Rock Physics: Definitions
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 

More from grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELgrssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESgrssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSgrssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERgrssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdfgrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.pptgrssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptgrssieee
 

More from grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

Recently uploaded

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfhans926745
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Recently uploaded (20)

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 

TU3.T10.2.pdf

  • 1. Normal Modes Analysis of RiverSonde Data in a Tidal Channel Calvin C. Teague, Donald E. Barrick CODAR Ocean Sensors, Ltd. Mountain View, CA David Honegger Oregon State University Corvallis, OR
  • 2. RiverSonde Description • UHF (435 MHz, 70-cm wavelength) radar • Bragg scattering from 35-cm wavelength waves • Based on SeaSonde hardware • 1 W transmit power • MUSIC direction finding using 3-yagi antenna array • 5–15 m range bins, 1° angle bins • Typically installed on a river bank
  • 3. Antennas Center array used for Transmit & Receive Side arrays used for receive only
  • 4. Typical Geometry River Mean Flow Radar Field of View 1 2 3 Radar
  • 5. Newport Experiment • CODAR student grant program • Installed in September 2010 at Newport, Oregon • Channel connecting Yaquina Bay to Pacific Ocean • Tidal flow between parallel jetties
  • 7. Radial Vectors 2010-12-07-13:00 UTC
  • 8. Velocity Vector Estimation • From a single site, find along- and cross-channel components from least-squares fit to radials • If 2 sites are available, find full vectors by combining radial measurements from both sites • From a single site, use Normal Modes Analysis of radial measurements to infer full vectors • For arbitrary boundary, numerical solution required • For rectangular boundary, closed-form solution possible • Useful for dynamic flow conditions like tidal reversals
  • 9. Normal Modes Analysis • Assume water incompressible • Express horizontal flow in terms of velocity potentials and stream func- tions • Boundary conditions – Zero normal flow at banks – No impedance to tangential flow at banks – Periodic boundary at ends of analysis region − → • Horizontal surface velocity vector U − → U = ∇ × [z (−Ψ) + ∇ × (ˆΦ)] ˆ z where z is the vertical unit vector, Ψ is the stream function, and Φ is ˆ the velocity potential • Allow up to 20 modes across river, only 2 along river • Closed-form solutions in terms of sines and cosines
  • 10. Homogeneous Equations • Stream function satisfying Dirichlet condition at bank ∇2ψn + νnψn = 0, where ψn|Γ = 0 D , v D = −∂ψn , ∂ψn un n ∂y ∂x where ψn is the n-th eigenfunction of the stream function Ψ, νn is the corresponding n-th eigenvalue and uD and vn are the velocity compo- n D nents in the x and y directions, respectively. • Velocity function satisfying Neumann condition at bank ∂φn ∇2φn + µnφn = 0, where (ˆ · ∇φn) = λ =0 Γ ∂λ Γ N , v N ] = ∂φn , ∂φn [un n ∂x ∂y where φn is the n-th eigenfunction of the velocity potential Φ, µn is the corresponding n-th eigenvalue and ˆ is the direction perpendicular to λ the boundary.
  • 11. Normal Modes Solutions Velocity potential modes with a periodic boundary at x = ±L/2 and bank at y = ±W/2  cos(j2πx/L) cos(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .    cos(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . . φn(x, y) = sin(j2πx/L) cos(mπy/W )    for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .     sin(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . . Corresponding stream modes  cos(j2πx/L) cos(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .    cos(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . . ψn(x, y) = sin(j2πx/L) cos(mπy/W )    for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .     sin(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
  • 12. Velocity Mode Examples 1 150 150 100 100 50 50 0 0 -400 -400 -200 -200 0 0 200 200 400 400 83, 0, 1, Null, Null 85, 1, 0, Null, Null 350 350 300 300 250 250 j=1 200 200 m=0 150 150 100 100 50 50 0 0 -400 -400 -200 -200 0 0 200 200 400 400 86, 1, 1, Null, Null 350 300 250 j=1 200 150 m=1 100 50 0 -400 -200 0 200 400 87, 2, -1, Null, Null 350 300 250 200
  • 13. Velocity Mode Examples 2 150 100 50 0 -400 -200 0 200 400 85, 1, 0, Null, Null 350 300 250 j=0 200 150 m=1 100 50 FitModes6-Mod 0 -400 -200 0 200 400 86, 1, 1, Null, Null 350 88, 2, 0, Null, Null 350 300 300 250 250 200 j=0 200 150 150 m=2 100 100 50 50 0 0 -400 -200 0 200 400 -400 -200 0 200 400 87, 2, -1, Null, Null 350 89, 2, 1, Null, Null 350 300 300 250 250 200 200 150
  • 14. 2 2 2 2 Velocity Mode Examples 3 n § Length@uPsiD, n ++, title = n = ToString@nD; title = modeIDPLength@uPhiD + ToString@nD; title = modeIDPLength@uPhiD plt = HVectorPlot@8uPsiPnT, vPsiPnT, 8x, x1, x2, 8y, y1, y2, Frame Ø True, x2, 8y, y1, y2, Frame Ø True, PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL; DisplayFunction Ø IdentityDL; Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0, 82, 2DD, Disk@80, 0, 82, 2DD, PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10, 8yp1, yp2, yp2, ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F; $DisplayFunctionDDD;F;F; 864, Null, Null, 1, 0 350 300 250 j=0 200 150 m=1 100 50 0 -400 -200 0 200 400 400 865, Null, Null, 2, 0 350 300 250 j=0 200 150 m=2 100 50 0 -400 -200 0 200 400 400
  • 15. Mode Coefficients Determination • Evaluate model in terms of unknown mode coefficients at each point where radar data are available • At each point, equate sum of radial components of model to radial radar measurement • Repeat over all available radar measurements • Solve overdetermined set of equations for mode coefficients (~5000 equations in ~50 unknowns) using least-squares • Allow up to 20 modes across river for along-river component (mmax), only 2 along river for both along- and cross-river components (jmax)
  • 16. Streamline Examples NWPT_2010_12_07_0600 NWPT_2010_12_07_0945 2.0 2.0 300 300 1.5 1.5 250 250 y m y m 200 200 1.0 ms 1.0 ms 150 150 100 0.5 100 0.5 50 50 200 100 0 100 200 200 100 0 100 200 0.0 0.0 x m x m NWPT_2010_12_07_1300 NWPT_2010_12_07_1530 2.0 2.0 300 300 1.5 1.5 250 250 y m y m 200 200 1.0 ms 1.0 ms 150 150 100 0.5 100 0.5 50 50 200 100 0 100 200 200 100 0 100 200 0.0 0.0 x m x m
  • 17. Mode Limits NWPT_2010_12_07_1530 2.0 300 1.5 250 u: jmax = 1, mmax = 5 y m 200 1.0 ms v: jmax = 0, mmax = 2 150 100 0.5 50 200 100 0 100 200 0.0 x m NWPT_2010_12_07_1530 2.0 300 1.5 250 u: jmax = 1, mmax = 20 y m 200 1.0 ms v: jmax = 0, mmax = 2 150 100 0.5 50 200 100 0 100 200 0.0 x m
  • 18. Lagrangian Particle Trajectories • Compute velocity vectors at 5-minute intervals • Seed study area with 100 particles randomly placed every 2 minutes • Integrate particle velocity in 10-second steps • Display 10 locations of particles with lighter color for older positions • Movie covers 2.5 hours around a tidal reversal
  • 19. Particle Trajectory Example 2010 12 07 08:30:00 0000 350 300 250 y m 200 150 100 50 200 100 0 100 200 x m
  • 20. Summary • For an arbitrary boundary, Normal Modes solution must be found numerically • For the special case of a rectangular boundary, with no normal flow across banks and periodic continuation at open boundaries, a closed-form solution can be found as a series of products of sines and cosines • Least-squares fit of radial components of Normal Modes to radar radial velocity vectors gives coefficients • Lagrangian visualization of particle trajectories may be useful in dynamic conditions like tidal reversals • Future studies • Compare this 2D fitting to 1D radial data with ADCP or other in-situ measurements, especially during flow reversals • Determine how many modes are meaningful