T 1 scope for biotechnology in paint industry - dr. d.k. bhattacharyya

2,525 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,525
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
34
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

T 1 scope for biotechnology in paint industry - dr. d.k. bhattacharyya

  1. 1. Scope of Biotechnology in Paint Industry <ul><li>Prof. D.K. Bhattacharyya </li></ul><ul><li>Adjunct Professor </li></ul><ul><li>School of Community Science & Technology </li></ul><ul><li>Bengal Engineering and Science University </li></ul><ul><li>Shibpur </li></ul>
  2. 2. Definition of Biotechnology <ul><li>Biotechnology is defined as the kind of technology that utilizes the living systems as well as their constituents to produce materials for service. </li></ul>
  3. 3. Biotechnology Methodologies <ul><li>Genetic Engineering (Recombinant DNA technology) </li></ul><ul><li>Microbial Enzyme Technology or Biocatalyst Technology </li></ul><ul><li>Microbial Fermentation Technology </li></ul>
  4. 4. Production of Vegetable Oils with desirable Fatty Acid Composition by Gene Cloning Technology (Biomodified Oils) <ul><li>Gene Trait of the Biomodified Oils </li></ul><ul><li>1. Stearoryl-ACP 1. High stearate oil or High oleate oil </li></ul><ul><li>desaturase </li></ul><ul><li>2. Δ 15 desaturase 2. Low or High polyunsaturated oil </li></ul><ul><li>3. ACP 3. High laurate oil </li></ul><ul><li>thioesterase </li></ul>
  5. 5. Microbial Production of Oils with desired fatty acid composition (Single Cell Oils) <ul><li>Oleic acid (18:1) rich oil </li></ul><ul><li>Linoleic acid (18:2) rich oil </li></ul><ul><li>Linolenic acid (18:3) rich oil </li></ul>
  6. 6. SOME LIPASE CATALYSED REACTIONS: <ul><li>Oxidation. </li></ul><ul><li>Isomerization. </li></ul><ul><li>Hydrolysis. </li></ul><ul><li>Esterification. </li></ul><ul><li>Interesterification </li></ul><ul><li>Alcoholysis </li></ul><ul><li>Ester-Ester Interfication </li></ul><ul><li>Acidolysis </li></ul>
  7. 7. Major Biocatalysts/Enzymes and Sources <ul><li>Enzymes Sources </li></ul><ul><li>Lipase Fungus </li></ul><ul><li>Phospholipase Mold </li></ul><ul><li>Protease Yeast </li></ul><ul><li>Amylase Bacteria </li></ul><ul><li>Pectinase Living Cells are also used </li></ul><ul><li>Cellulase as catalysts </li></ul><ul><li>Phytase </li></ul><ul><li>Tannase </li></ul><ul><li>Lipoxygenase </li></ul>
  8. 8. Some Commercial Biocatalysts (Lipases & Phospholipases) <ul><li>Mucor miehei </li></ul><ul><li>Rhizopus arrhizus </li></ul><ul><li>Geotrichum candidum </li></ul><ul><li>Candida cylindracae </li></ul><ul><li>Candida rugosa </li></ul><ul><li>Candida tropicalis </li></ul><ul><li>Pseudomonas sp. (Flourescence) </li></ul><ul><li>Candida antarctica </li></ul><ul><li>Phospholipase A1 & A2 </li></ul><ul><li>Phospholipase C & D </li></ul>
  9. 9. BIOISOMERISATION OF VEGETABLE OILS <ul><li>Vegetable oils </li></ul><ul><li>Treated with Anaerobic </li></ul><ul><li>bacteria(Haying Conjugase & </li></ul><ul><li>Isomerase Enzymes), 37˚C, </li></ul><ul><li>Atmospheric Pressure </li></ul><ul><li>Bioisomersed oils </li></ul>
  10. 10. BIOEPOXIDATION OF OILS <ul><li>Unsaturated (Linoleic acid-rich) oil </li></ul><ul><li>Oxygen Enzyme Lipoxygenase </li></ul><ul><li>Hydroperoxy-Conjugated </li></ul><ul><li>Octadecadienoic Acids </li></ul><ul><li>Epoxy Fatty Acids </li></ul>
  11. 11. Production of Dibasic Acids by Biooxidation Process from Fatty Acids and Hydrocarbons <ul><li>Yeast such as Candida tropicalis M2030 is capable of producing ‘Dibasic’ acids from the ‘Monobasic’ acids derived from vegetable oils and Hydrocarbons by the Biooxidation process in a fermentor. The yield is almost quantitative. </li></ul><ul><li>Some Dibasic Acids from Fatty Acids and Hydrocarbons: </li></ul><ul><li>Fatty Acids/Hydrocarbons Dicarboxylic Acids </li></ul><ul><li>Oleic Acid 18:1 </li></ul><ul><li>Palmitic Acid 16:0 </li></ul><ul><li>Linoleic Acid 18:2 </li></ul><ul><li>n-Hexane Adipic acid (6:0) </li></ul><ul><li>n-Octane Sebacic acid (8:0) </li></ul><ul><li>Tri-decane 13:0 </li></ul><ul><li>Tetra-decane 14:0 </li></ul>
  12. 12. ENZYMATIC ESTERIFICATION FOR SYNTHESIS OF MONOGLYCERIDE <ul><li>Fatty acids + Glycerol </li></ul><ul><li>Hexane + Lipase from </li></ul><ul><li>Penicllium Species, </li></ul><ul><li>Room temperature </li></ul><ul><li>(24˚C) </li></ul><ul><li>Monoglycerides (85˚C Mol % Incorporation </li></ul><ul><li>Of fatty acids) </li></ul>
  13. 13. MONOGLYCERIDE BY GLYCEROLYSIS OF ALKYL (C 1 -C 4 ) ESTERS OF FATTY ACIDS USING ENZYME (BIOCATALYST) <ul><li>Glycerol + Alkyl(C 1 -C 4 )esters of fatty acids </li></ul><ul><li>Lipase/60˚C/Vacuum </li></ul><ul><li>Monoglyceride (s) </li></ul>
  14. 14. Production of Monoglyceride by Lipase Catalyzed Glycerolysis Process <ul><li>Fat/Oil Lipase Optimum Temp. MG Yield(Max.)% </li></ul><ul><li>Palm Pseudomonas fluorescens 40°C 67 </li></ul><ul><li>Coconut Pseudomonas fluorescens 30°C 77 </li></ul><ul><li>Palm Mucor miehei 40°C 57 </li></ul><ul><li>Palm SP 398 40°C 43 </li></ul><ul><li>Rapeseed Pseudomonas fluorescens 5°C 77 </li></ul>
  15. 15. Production of Bioalkyds (Alkyds made from Biorenewable Oils/Fats are called Bioalkyds) <ul><li>Involves Two Steps: </li></ul><ul><li>Step 1 : Bioalcoholysis (Bioglycerolysis) of oils with Pseudomonas f luorescens , Mucor meihei and Glycerol </li></ul><ul><li>Step 2: i]Bioesterification of the Monoglycerides (MGs) with long chain dibasic acids with 1,3-specific lipase at 60°C for a long period (72hrs.) under vacuum </li></ul><ul><li>ii] Biointeresterification of the MGs with Alkyl Esters (C1 or C4 Alcohols) of Phthalic Acid with 1,3-specific Lipase </li></ul>
  16. 16. BIOALKYDS CONTAINING CONJUGATED FATTY ACIDS <ul><li>Conjugated C 18:3 -acid rich oils </li></ul><ul><li>Bitter Gourd </li></ul><ul><li>(Momordica charantia) Having ~ 50% Conjugated C 18:3 -acid (Elaeostearic with 66% Trans & 33% Cis acid) </li></ul><ul><li>Snake Gourd </li></ul><ul><li>Having ~ 50% Conjugated C 18:3 -acid with 66% Trans & 33% Cis acid) </li></ul>
  17. 17. ENZYMATIC SYNTHESIS OF POLYOL ESTERS OF FATTY ACIDS FOR COATING USE <ul><li>A. Esterification process: </li></ul><ul><li>Polyol + Fatty acid </li></ul><ul><li>(Sorbitol, Mannitol) Hexane + Lipase ; 60˚C </li></ul><ul><li>Product Mix </li></ul><ul><li>Hexane removed </li></ul><ul><li>Desolventised Product Mix </li></ul><ul><li>Further reaction 60˚C under vacuum </li></ul><ul><li>Polyol Ester products </li></ul><ul><li>(Suitable as Paint ingredient varnish oils depending on the fatty acid composition) </li></ul><ul><li>B. Alcoholysis Process: </li></ul><ul><li>Polyol + Alkyl Esters (C 1 -C 4 ) of fatty acid (s) </li></ul><ul><li>Lipase/ 60˚C/Vacuum to remove the </li></ul><ul><li>alcohol part </li></ul><ul><li>Polyol Esters </li></ul>
  18. 18. Production of Specific Fatty Acids from Appropriate Vegetable Oils by Biohydrolysis Process <ul><li>Eg. For making Dimer Acid by Microbial Enzymatic Hydrolysis Process and Clay-Catalyzed Dimerisation </li></ul><ul><li>Biohydrolysis in a batch stirred reactor </li></ul><ul><li>Oil/Fat:Water Lipase Temp. /Time Fatty Acid Yield </li></ul><ul><li>(w/v) Non-Specific (%w/w) </li></ul><ul><li>Castor oil: Water Mucor miehei 37±2°C/30hr. 89.7 </li></ul><ul><li>(1:2) Sp 398 </li></ul><ul><li>Coconut acid oil Candida cylindracea 40±2°C/24hr. 82.7 </li></ul><ul><li>(As Lauric) </li></ul><ul><li>Rice bran acid oil Candida cylindracea 25±2°C/72hr. 93.8 </li></ul><ul><li>(As Oleic) </li></ul>
  19. 19. Enzymatic Polymerisation of Natural Anacardic Acid <ul><li>Anacardic Acid(Cashew Nut Shell Liquid) </li></ul><ul><li>Soy bean peroxidases+2 Propanol+ hydrozen </li></ul><ul><li>peroxide+ Phenothiazine+ Phenothiazine-10- </li></ul><ul><li>Propionic acid </li></ul><ul><li>Poly anacardic Acid Polymer (Mol, wt.=3,900) 61% yield </li></ul><ul><li>With Methanol, Polymer ( Mol. Wt.=5000) in 45% yield </li></ul><ul><li>The polymer shows antibiofouling effect against Gram Negative and Gram Positive </li></ul><ul><li>bacteria. </li></ul>
  20. 20. Preparation of Soyphospholipids with hydroxy and epoxy fatty acids by enzyme catalysed interesterification <ul><li>Major Fatty Acids Composition (%w/w) and Interficial Tension (IT) </li></ul><ul><li>IT 16:0 18:1 18:2 18:3 18:1(OH) 18:1 (Epoxy) </li></ul><ul><li>Soyphospholipids 13.2±0.08 27.3 14.7 52.5 3.8 - - </li></ul><ul><li>Soyphospholipids 23.6±0.08 6.4 7.1 17.4 1.2 65.1 - </li></ul><ul><li>with hydroxy oleic acid </li></ul><ul><li>Soyphospholipid with 21.5±0.08 8.2 7.3 35.5 2.5 - 43.1 </li></ul><ul><li>epoxyoleic acid </li></ul><ul><li>Soyphospholipid with 19.0±0.08 7.0 6.7 23.0 3.2 57.6 - </li></ul><ul><li>hydroxystearic acid (18:0-OH) </li></ul>
  21. 21. Biodiesel Feed Stock <ul><li>Major Oils: Minor Oils: </li></ul><ul><li>1. Soyabean 1. Tree-borne seed oil like Karanja Mowrah, Undi, Nahor </li></ul><ul><li>2. Rapeseed 2. Plant seed oil Jatropha (Ratanjyot) </li></ul><ul><li>3. Mustard 3. Rice bran </li></ul><ul><li>4. Sunflower 4. Watermelon </li></ul><ul><li>5. Palm and its 5. Tobacco seed </li></ul><ul><li>Fractions 6. Niger seed </li></ul><ul><li>6. Coconut </li></ul><ul><li>7. Palm Kernel </li></ul><ul><li>8. Cottonseed </li></ul><ul><li>9. Tallow </li></ul>
  22. 22. One Step Biocatalyst Process for Biodiesel Production <ul><li>Simultaneous Esterification and Transesterification (Acidolysis) of Triglyceride Oils </li></ul><ul><li>R.COOH + MeOH RCOOMe + H2O </li></ul><ul><li>TRANSESTERIFICATION: CH 2 OCOR CH2OH Lipase CHOCOR + 3MeOH 3 R.COOMe + CHOH   CH 2 OCOR CH2OH Lipase: Candida Cylindraceae, Candida Rugosa, Candida Antartica & Lipase 3A (1,3-specific lipase) </li></ul>
  23. 23. Biobutanol <ul><li>Butanol is an important fuel. Its characteristics make it a better fuel than ethanol in the formulation of gasohol for the following reasons. </li></ul><ul><li>Much lower Reid vapour pressure. </li></ul><ul><li>Higher flash point. </li></ul><ul><li>Higher octane rating. </li></ul><ul><li>More miscible with gasoline. </li></ul><ul><li>Production Technology </li></ul><ul><li>Low value inexpensive renewable feed stock </li></ul><ul><li>Glucose </li></ul><ul><li>Anaerobic fermentation </li></ul><ul><li>using Clostridium acetobutyicum </li></ul><ul><li>Butanol </li></ul>
  24. 24. Biotechnology Applications in Paint Industry <ul><li>Production of Specific Fatty Acids rich Vegetable Oils </li></ul><ul><li>Production of Specific Fatty Acids from Vegetable Oils </li></ul><ul><li>Production of Short and Long Chain Dibasic Acids </li></ul><ul><li>Production of Bioalkyds </li></ul><ul><li>Production of Surfactants </li></ul>
  25. 25. Conclusion <ul><li>Biotechnology has enormous potential in Paint industry. </li></ul><ul><li>Biotechnology offers the advantages like </li></ul><ul><li>Low Energy </li></ul><ul><li>Low Ecology </li></ul><ul><li>Low Capital Investment </li></ul><ul><li>High Specificity & Selectivity </li></ul><ul><li>High Quality of Products </li></ul><ul><li>Industries should explore the Biotechnology- based process developments at commercial level. </li></ul>
  26. 26. <ul><li>THANKYOU </li></ul>

×