SlideShare a Scribd company logo
1 of 33
Download to read offline
Design Kit
2-Phase Bipolar Stepping Motor Driver Using
TB62206FG


           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009   1
Contents
                                                                                                                                    Slide #
    1. Background
       1.1 Bipolar Stepping Motors.......................................................................................           3
       1.2 Torque vs. Speed.................................................................................................        4
       1.3 Bipolar Operating Mode.......................................................................................            5-6
    2. Application Circuit......................................................................................................    7
       2.1 Specification........................................................................................................    8-9
       2.2 Calculating Equations..........................................................................................          10
    3. Stepper Motor Switching Sequences
       3.1 Full Step Switching Sequence.............................................................................                11-12
       3.2 Half Step Switching Sequence.............................................................................                13-14
    4. Functions
       4.1 STANDBY............................................................................................................      15-16
       4.2 TORQUE.............................................................................................................      17-18
       4.3 Phase A Over-current Protection..........................................................................                19-20
       4.4 Phase B Over-current Protection.........................................................................                 21-22
    5. Output Ripple Current................................................................................................        23
       5.1 Stepping Motor Phase Inductance at The Chopping Frequency..........................                                      24
       5.2 Ripple Current Simulation....................................................................................            25-26
    6. The Current Changing Rate.......................................................................................             27
       6.1 Stepping Motor Phase Inductance at The Phase Frequency................................                                   28
       6.2 Current Changing Rate Simulation.......................................................................                  29-30
    7. Optimization of The Drive Voltage VM.......................................................................                  31-32
    Simulations index............................................................................................................   33


                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                         2
1.1 Bipolar Stepping Motors




•       There are two winding with no center taps.
•       The drive circuitry requires an H-bridge control circuit for each winding, as the drive circuit need to
        change the polarity of each pair of motor poles.
•       The current sequences are shown below.

•       Full Step                                                 •       Half Step

                                                                           100%
          100%                                                    Io(A)     0%
Io(A)    -100%
                                                                          -100%
          100%                                                             100%
Io(B)
         -100%                                                              0%
                                                                  Io(B)
                                                      time               -100%
                                                                                                            time




                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2009              3
1.2 Torque vs. Speed



                                                              Torque

                                                                                           Running Torque

100%      ideal
                                   actual                                         Cutoff
                                                                                  Speed
                                                Time
                                                                                                            Max. Speed
-100%



                                                                                           Speed




•   The inductance of the motor winding determines the rise and fall time of the current through the
    winding.
•   The current-vs-time function through each winding depend on the drive circuitry and the motor
    characteristics.
•   The rise time is determined by the drive voltage, while the fall time depends on the circuitry used
    to dissipate the stored energy in the motor winding (fast or slow decay).
•   The effect of the inductance of the motor windings is to reduce the available torque, as shown in
    the Torque-vs-Speed curve.

                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                        4
1.3 Bipolar Operating Mode


             Charge mode                          Slow decay mode                                  Fast decay mode




                              OFF          OFF                              OFF          OFF
    ON                                                                                                               ON




    OFF                                                                                                              OFF
                               ON          ON                                 ON         ON




•        These figure show how TB62206FG switches the current in each motor winding on and off, and
         controlling its direction, in three different modes.



                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                           5
1.3 Bipolar Operating Mode

   •   Charge mode, the H-bridge forward state to allow current to flow from the supply
       through the motor winding and onward to ground.
   •   Slow decay mode, in this mode, winding current is re-circulated by enabling both of
       the low-side FETs in the bridge.
   •   Fast decay mode, the H-bridge reverses state to allow winding current to flow in a
       reverse direction.


                            U1                       U2                       L1            L2

       Charge               ON                      OFF                      OFF            ON

        Slow               OFF                      OFF                       ON            ON

        Fast               OFF                       ON                       ON            OFF



   •   In TB62206FG, three modes as shown above are automatically switched to control the
       constant current




                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2009         6
2. Application Circuit



                                                                  Rosc 3.6kohm
                                                                                                                                           O_A
                                                                                                   U1                                      O_A1
                                                                  Cosc 560pF                                                                                             L1
                                                                                                   CR      TORQUE                                                                     RSA
                                                                                                   VDD      OUT_B1             O_B1
                                                                                                                                                                         IC = 0
                                                                                    0              VREF_A ENABLE_B                                                   2            1
                                                                                                   VREF_B ENABLE_A                                RSB
                                                                                                   RS_B      OUT_B             O_B
                                                                                                                                           O_B                   1
                                                                                   RRSB 0.5ohm
                                                                                   RRSA 0.5ohm                  FIN
                                                                                                                                           O_B1
                                                                                                                                                            L2
                                                                                                   RS_A       OUT_A     0      O_A
                                                                                                   VM      PHASE_B             Ph_B
                                                                                                                               Ph_A                     IC = 0
                                                                                                   CCP_C   PHASE_A
                                                                                                   CCP_B     OUT_A1            O_A1                              2
                                                                                                   CCP_A   STANDBY

                                                                                                   TB62206FG
            VDD                                           Cv ref AB                  Cccp_2                    VM = 24                V5
            5Vdc             C1     Vref AB               1uF                        0.022uF   Cccp_1          COSC = 560PF
                             10uF   1.25Vdc                           VM1                      0.22uF          ROSC = 3.6K
                                                                      24V          CVM1                        CCP1 = 0.22UF
                                                                                   100uF                       CCP2 = 0.01UF
                     0       0                 0         0                  0       0          0                                      0
     Ph_A
     Ph_B




            250Hz Full Step
       V_PHASE_A             V_PHASE_B             PARAMETERS:
       V1 = 0                V1 = 0V               f phase = 250Hz
       V2 = 5V               V2 = 5
       TD = 0                TD = {tphase/4}       tphase = {1/f phase}
       TR = {trphase}        TR = {trphase}        tdphase = {trphase+pwphase/2}
       TF = {tf phase}       TF = {tf phase}       pwphase = {-2*trphase+tphase/2}
       PW = {pwphase}        PW = {pwphase}
       PER = {tphase}        PER = {tphase}        trphase = 100n
                                                   tf phase = {trphase}
 0                       0




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                7
2.1 Specification

Operating Conditions
          Characteristics                    Symbol               Value              Unit
Power supply voltage                           VDD                   5                 V
Motor supply voltage                            VM                  24                 V
Reference voltage                              VREF                1.25                V
Logic input voltage                             VIN                  5                 V
Output current                                 IOUT                 0.5                A
Phase signal input frequency                  fPHASE               250                Hz
Chopping frequency                             fchop               101               kHz
Oscillation frequency                           fCR                813               kHz




                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2009   8
2.1 Specification

           4.0V

                                                        fCR = 813kHz

           3.0V




           2.0V




           1.0V
                  V(U1:CR)
          540mA

                                                           fchop = 101kHz
                    Charge mode
          500mA                                                                                     IOUT = 0.5A



                         Slow decay mode
          SEL>>                        Fast decay mode
          420mA
            2.540ms    2.544ms      2.548ms   2.552ms   2.556ms   2.560ms   2.564ms   2.568ms   2.572ms   2.576ms 2.580ms
                 I(U1:OUT_A)
                                                                   Time




    •   This figure shows the output current IOUT ,the oscillation frequency fCR ,and the
        chopping frequency fchop.



                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                        9
2.2 Calculating Equations


   •   The output current value (set current value) can be determined by setting the sensing
       resistor (RRS) and reference voltage (Vref).


                           1         Torque(Torque  100, 71%)
                     IOUT   Vref                                                          (1)
                           5             RRS 100 %

   •   The oscillation frequency is calculated as follows:


                                           1
                      fCR                                                                   (2)
                            0.523  (COSC  ROSC  600  C )
   •   The chopping frequency fchop is calculated as follows:


                                                   fchop                                     (3)
                                             fCR 
                                                    8

                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009         10
3.1 Full Step Switching Sequence


                                                                     Rosc 3.6kohm


                                                                                                      U1
                                                                     Cosc 560pF                                                               O_A
                                                                                                      CR      TORQUE
                                                                                                      VDD      OUT_B1             O_B1
                                                                                       0              VREF_A ENABLE_B                         O_A1
                                                                                                                                                                                L1
                                                                                                      VREF_B ENABLE_A                                                           9.15mH          RSA
                                                                                                      RS_B      OUT_B             O_B
                                                                                                                                                                                IC = -0.5       7.9ohm
                                                                                      RRSB 0.5ohm                                                                           2               1
                                                                                      RRSA 0.5ohm                  FIN                               RSB     7.9ohm
                                                                                                                                  O_A         O_B                      1
                                                                                                      RS_A       OUT_A     0
                                                                                                      VM      PHASE_B             Ph_B
                                                                                                      CCP_C   PHASE_A             Ph_A        O_B1
                                                                                                                                                                L2
                                                                                                      CCP_B     OUT_A1            O_A1
                                                                                                                                                           9.15mH
                                                                                                      CCP_A   STANDBY                                      IC = -0.5
                                                                                                      TB62206FG                                                        2
               VDD                                           Cv ref AB                  Cccp_2                    VM = 24                V5
               5Vdc             C1     Vref AB               1uF                        0.022uF   Cccp_1          COSC = 560PF
                                10uF   1.25Vdc                           VM1                      0.22uF          ROSC = 3.6K
                                                                         24V          CVM1                        CCP1 = 0.22UF
                                                                                      100uF                       CCP2 = 0.01UF
                        0       0                 0         0                  0       0          0                                      0
        Ph_A
        Ph_B




               250Hz Full Step
          V_PHASE_A             V_PHASE_B             PARAMETERS:
          V1 = 0                V1 = 0V               f phase = 250Hz
          V2 = 5V               V2 = 5
          TD = {tphase/4}       TD = {tphase/2}       tphase = {1/f phase}
          TR = {trphase}        TR = {trphase}        tdphase = {trphase+pwphase/2}
          TF = {tf phase}
          PW = {pwphase}
                                TF = {tf phase}
                                PW = {pwphase}
                                                      pwphase = {-2*trphase+tphase/2}                                    Analysis                                          .Options
                                                      trphase = 100n
          PER = {tphase}        PER = {tphase}
                                                      tf phase = {trphase}
                                                                                                                         Time Domain (Transient)                           RELTOL: 0.01
    0                       0
                                                                                                                            Run to time: 8ms                               VNTOL: 1.0m
                                                                                                                            Start saving data after: 0ms                   ABSTOL: 1.0n
                                                                                                                            Maximum step size: -                           CHGTOL: 1p
                                                                                                                                                                           GMIN: 1.0E-12
                                        Full-step sequences                                                                                                                ITL1: 500
                                          control signals                                                                                                                  ITL2: 200
                                                                                                                                                                           ITL4: 100




                                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                     11
3.1 Full Step Switching Sequence

Phase A
                  0V
                            V(PH_A)


Phase B
                  0V
                            V(PH_B)


Enable A
                  0V
                            V(U1:ENABLE_A)


Enable B       SEL>>
                  0V
                            V(U1:ENABLE_B)
                1.0A

IOUT A            0A
               -1.0A
                            I(U1:OUT_A1)
                1.0A
                  0A
IOUT B
               -1.0A
                       0s                                                         4.0ms                          8.0ms
                            I(U1:OUT_B1)
                                                                                   Time



           •      This figure shows the simulation result of the circuit with Full-step switching sequence.


                                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009     12
3.2 Half Step Switching Sequence

                                                                     Rosc 3.6kohm


                                                                                                           U1
                                                                     Cosc 560pF
                                                                                                           CR      TORQUE
                                                                                                           VDD      OUT_B1                  O_B1        O_A
                                                                                           0               VREF_A ENABLE_B                  EN_B
                                                                                                           VREF_B ENABLE_A                  EN_A        O_A1
                                                                                                                                                                                         L1
                                                                                                           RS_B      OUT_B                  O_B
                                                                                                                                                                                         9.15mH          RSA
                                                                                          RRSB 0.5ohm                                                                                    IC = -0.5       7.9ohm
                                                                                          RRSA 0.5ohm                        FIN                                                     2               1
                                                                                                                                                               RSB     7.9ohm
                                                                                                           RS_A          OUT_A       0      O_A
                                                                                                                                            Ph_B        O_B                      1
                                                                                                           VM         PHASE_B
                                                                                                           CCP_C      PHASE_A               Ph_A
                                                                                                           CCP_B        OUT_A1              O_A1        O_B1
                                                                                                                                                                          L2
                                                                                                           CCP_A      STANDBY                                        9.15mH
                                                                                                                                                                     IC = -0.5
                                                                                                           TB62206FG
                  VDD                                        Cv ref AB                      Cccp_2                          VM = 24                V5
                  5Vdc        C1     Vref AB                 1uF                            0.022uF   Cccp_1                COSC = 560PF                                         2
                              10uF   1.25Vdc                             VM1                          0.22uF                ROSC = 3.6K
                                                                         24V               CVM1                             CCP1 = 0.22UF
                                                                                           100uF                            CCP2 = 0.01UF
                         0   0                   0          0                         0    0          0                                            0

                                                                                                          250Hz Half Step
           EN_A




                             EN_B




                                                     Ph_A




                                                                               Ph_B


                                                                                                          PARAMETERS:
            V_ENABLE_A         V_ENABLE_B                 V_PHASE_A                V_PHASE_B1             f phase = 250Hz
                     V1 = 0           V1 = 5V                     V1 = 0                  V1 = 0V
                   V2 = 5V              V2 = 0                  V2 = 5V                     V2 = 5        tphase = {1/f phase}
                     TD = 0  TD = {tphase/8}                      TD = 0         TD = {tphase/4}          tdphase = {trphase+pwphase/2}
            TR = {trphase}     TR = {trphase}            TR = {trphase}            TR = {trphase}         pwphase = {-2*trphase+tphase/2}
            TF = {tf phase}    TF = {tf phase}           TF = {tf phase}           TF = {tf phase}
       PW = {3*pwphase/4} PW = {1*pwphase/4}           PW = {pwphase}            PW = {pwphase}           trphase = 100n
         PER = {tphase/2}   PER = {tphase/2}            PER = {tphase}            PER = {tphase}          tf phase = {trphase}
       0                         0               0                         0
                                                                                                                                   Analysis                                                .Options
                                                                                                                                   Time Domain (Transient)                                 RELTOL: 0.01
                                                                                                                                      Run to time: 8ms                                     VNTOL: 1.0m
                                                                                                                                      Start saving data after: 0ms                         ABSTOL: 1.0n
                                                                                                                                      Maximum step size: -                                 CHGTOL: 1p
                                     Half-step sequences                                                                                                                                   GMIN: 1.0E-12
                                       control signals                                                                                                                                     ITL1: 500
                                                                                                                                                                                           ITL2: 200
                                                                                                                                                                                           ITL4: 100




                                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                                     13
3.2 Half Step Switching Sequence

Phase A
                  0V
                            V(U1:PHASE_A)


Phase B
                  0V
                            V(U1:PHASE_B)


Enable A
                  0V
                            V(U1:ENABLE_A)


Enable B       SEL>>
                  0V
                            V(U1:ENABLE_B)
                1.0A
                  0A
IOUT A
               -1.0A
                            I(U1:OUT_A1)
                1.0A
                  0A
IOUT B
               -1.0A
                       0s                            2.0ms                         4.0ms                          6.0ms   8.0ms
                            I(U1:OUT_B1)
                                                                                    Time



           •      This figure shows the simulation result of the circuit with Half-step switching sequence.


                                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2009             14
4.1 STANDBY


                                                               Rosc 3.6kohm


                                                                                             U1
                                                               Cosc 560pF
                                                                                             CR      TORQUE
                                                                                             VDD      OUT_B1             O_B1                             O_A
                                                                               0             VREF_A ENABLE_B
                                                                                             VREF_B ENABLE_A                                              O_A1
                                                                                                                                                                                           L1
                                                                                             RS_B      OUT_B             O_B
                                                                                                                                         Ven                                               9.15mH       RSA
                                                                              RRSB 0.5ohm                                                T1 = 0                                            IC = 0       7.9ohm
                                                                              RRSA 0.5ohm                 FIN                            V1 = 0                                        2            1
                                                                                                                                         T2 = 0.1u               RSB     7.9ohm
                                                                                             RS_A       OUT_A     0      O_A
                                                                                                                         Ph_B            V2 = 5           O_B                     1
                                                                                             VM      PHASE_B
                                                                                             CCP_C   PHASE_A             Ph_A        0
                                                                                             CCP_B     OUT_A1            O_A1                             O_B1
                                                                                                                                                                            L2
                                                                                             CCP_A   STANDBY                                                           9.15mH
                                                                                                                                    V5                                 IC = 0
                                                                                             TB62206FG
              VDD                                           Cv ref AB          Cccp_2                    VM = 24                    T1 = 0       V1 = 0
              5Vdc             C1      Vref AB              1uF                0.022uF   Cccp_1          COSC = 560PF               T2 = 2000u   V2 = 0                           2
                               10uF    1.25Vdc                   VM1                     0.22uF          ROSC = 3.6K                T3 = 2000.1u V3 = 5
                                                                 24V          CVM1                       CCP1 = 0.22UF
                                                                              100uF                      CCP2 = 0.01UF
                     0         0                 0         0              0    0         0                                      0
                                                                                                                                                                 STANBY turn on
       Ph_A
       Ph_B




               250Hz Full Step                                                                                                                                    (LH) at 2ms
         V_PHASE_A                 V_PHASE_B           PARAMETERS:
         V1 = 0                    V1 = 0V             f phase = 250Hz
         V2 = 5V                   V2 = 5
         TD = 0                    TD = {tphase/4}     tphase = {1/f phase}
         TR = {trphase}            TR = {trphase}      tdphase = {trphase+pwphase/2}
         TF = {tf phase}           TF = {tf phase}     pwphase = {-2*trphase+tphase/2}                                   Analysis                                                     .Options
         PW = {pwphase}            PW = {pwphase}
         PER = {tphase}            PER = {tphase}      trphase = 100n                                                    Time Domain (Transient)                                      RELTOL: 0.01
                                                       tf phase = {trphase}
   0                       0                                                                                                Run to time: 8ms                                          VNTOL: 1.0m
                                                                                                                            Start saving data after: 0ms                              ABSTOL: 1.0n
                                                                                                                            Maximum step size: -                                      CHGTOL: 10p
                                                                                                                                                                                      GMIN: 1.0E-12
                                                                                                                                                                                      ITL1: 500
                                                                                                                                                                                      ITL2: 200
                                                                                                                                                                                      ITL4: 100




                                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                         15
4.1 STANDBY

STANDBY                                            0 5V
                  0V
                          V(U1:STANDBY)
                 30V
Ccp1                                                 Charge Pump Start
                 20V
                          V(U1:CCP_A)

Phase A
                  0V
                          V(PH_A)

Phase B
                  0V
                          V(PH_B)

Enable A
                  0V
                          V(U1:ENABLE_A)

Enable B
                  0V
                          V(U1:ENABLE_B)
                                         STANDBY  TURN-ON
IOUT A            0A

                          I(U1:OUT_A1)
                1.0A
IOUT B         SEL>>
               -1.0A
                     0s                                                          4.0ms                          8.0ms
                          I(U1:OUT_B1)
                                                                                  Time


           •      This figure shows the simulation result of the circuit when V(STANDBY) changes from
                  LH.

                                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009     16
4.2 TORQUE

                                                                                                                                                                 TORQUE (HL) at
                                                           Rosc 3.6kohm                                                                                               4ms
                                                                                            U1
                                                           Cosc 560pF                                                                     VTRQ
                                                                                            CR      TORQUE                                T1 = 0       V1 = 5
                                                                                            VDD      OUT_B1             O_B1
                                                                                                                                          T2 = 4000u   V2 = 5
                                                                              0             VREF_A ENABLE_B                               T3 = 4000.1u V3 = 0
                                                                                            VREF_B ENABLE_A
                                                                                            RS_B      OUT_B             O_B
                                                                             RRSB 0.5ohm                                              0
                                                                             RRSA 0.5ohm                 FIN                                               O_A

                                                                                            RS_A       OUT_A     0      O_A                               O_A1
                                                                                                                        Ph_B                                                                 L1
                                                                                            VM      PHASE_B                                                                                  9.15mH          RSA
                                                                                            CCP_C   PHASE_A             Ph_A
                                                                                                                                                                                             IC = -0.5       7.9ohm
                                                                                            CCP_B     OUT_A1            O_A1
                                                                                                                                                                                         2               1
                                                                                            CCP_A   STANDBY                                                       RSB     7.9ohm
                                                                                                                                   Ven                     O_B                      1
                                                                                            TB62206FG
       VDD                                            Cv ref AB               Cccp_2                    VM = 24                    T1 = 0
       5Vdc                C1     Vref AB             1uF                     0.022uF   Cccp_1          COSC = 560PF               V1 = 0                 O_B1
                           10uF   1.25Vdc                     VM1                       0.22uF          ROSC = 3.6K                T2 = 0.1u                                 L2
                                                              24V            CVM1                       CCP1 = 0.22UF              V2 = 5                               9.15mH
                                                                             100uF                      CCP2 = 0.01UF                                                   IC = -0.5
                0      0                    0         0                0      0         0                                      0                                                    2
       Ph_A
       Ph_B




              250Hz Full Step
         V_PHASE_A                V_PHASE_B           PARAMETERS:
         V1 = 0                   V1 = 0V             f phase = 250Hz
         V2 = 5V                  V2 = 5
         TD = 0                   TD = {tphase/4}     tphase = {1/f phase}
         TR = {trphase}           TR = {trphase}      tdphase = {trphase+pwphase/2}
         TF = {tf phase}
         PW = {pwphase}
                                  TF = {tf phase}
                                  PW = {pwphase}
                                                      pwphase = {-2*trphase+tphase/2}                                     Analysis                                                      .Options
         PER = {tphase}           PER = {tphase}      trphase = 100n
                                                                                                                          Time Domain (Transient)                                       RELTOL: 0.01
                                                      tf phase = {trphase}
   0                        0
                                                                                                                             Run to time: 8ms                                           VNTOL: 1.0m
                                                                                                                             Start saving data after: 0ms                               ABSTOL: 1.0n
                                                                                                                             Maximum step size: -                                       CHGTOL: 1p
                                                                                                                                                                                        GMIN: 1.0E-12
                                                                                                                                                                                        ITL1: 500
                                                                                                                                                                                        ITL2: 200
                                                                                                                                                                                        ITL4: 100




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                               17
4.2 TORQUE

TORQUE                                                                          5 0V
                   0V
                           V(U1:TORQUE)


Phase A
                   0V
                           V(PH_A)


Phase B
                   0V
                           V(PH_B)

Enable A
                   0V
                           V(U1:ENABLE_A)


Enable B
                   0V
                           V(U1:ENABLE_B)                         IOUT =100%  70%
IOUT A             0A                                     100%                                                  71%
                           I(U1:OUT_A1)
                500mA
IOUT B          SEL>>                         100%                                                    71%
               -500mA
                      0s                                                        4.0ms                                 8.0ms
                           I(U1:OUT_B1)
                                                                                 Time


           •      This figure shows the simulation result of the circuit when V(TORQUE) changes from HL
                  ,then the output current changes from 100% to 71%.

                                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                 18
4.3 Phase A Over-current Protection

                                                                                                                                                                             RS is a small value to test
     RRSA (1.2  0.15),                                                                                                                                                      over current condition.
    IOUT(0.54A) at 1ms                                                Rosc 3.6kohm
                                                                                                                                                          O_A
                                                                                                       U1                                                 O_A1
                                                                       Cosc 560pF                                                                                                           L1
                                                                                                       CR      TORQUE                                                                       9.15mH          RSA
                                                                                                       VDD      OUT_B1             O_B1
                                                                                                                                                                                            IC = -0.5       3.5ohm
                                                                                        0              VREF_A ENABLE_B                                                                  2               1
                                                                   S1                                  VREF_B ENABLE_A                                           RSB     3.5ohm
                                                                                                       RS_B      OUT_B             O_B
                                                                   S                                                                                      O_B                      1
                                                                   VOFF = 0.0V         RRSB 1.2ohm
                                                                   VON = 1.0V                                       FIN
                                                                                                                                                          O_B1
                                                  V5               +    +                                                                                                   L2
                                                                                                       RS_A       OUT_A     0      O_A
                                                                                                                                   Ph_B                                9.15mH
                                V1 = 0   T1 = 0
                                                                   -    -                              VM      PHASE_B                                                 IC = -0.5
                                                                                                       CCP_C   PHASE_A             Ph_A
                                V2 = 0   T2 = 1200u                ROFF = 1.2
                                                                                                       CCP_B     OUT_A1            O_A1                                            2
                                V3 = 5   T3 = 1200.1u              RON = 0.15
                                                                                                       CCP_A   STANDBY
                                                           0                                                                                  Ven
                                                                                                       TB62206FG
               VDD                                                                       Cccp_2                    VM = 24                    T1 = 0
               5Vdc             C1        Vref AB                                        0.022uF   Cccp_1          COSC = 560PF               V1 = 0
                                10uF     3Vdc          Cv ref AB            VM1                    0.22uF          ROSC = 3.6K                T2 = 0.1u
                                                       1uF                  24V        CVM1                        CCP1 = 0.22UF              V2 = 5
                                                                                       100uF                       CCP2 = 0.01UF
                        0       0        0             0                          0     0          0                                      0
        Ph_A
        Ph_B




               250Hz Full Step
          V_PHASE_A             V_PHASE_B              PARAMETERS:
          V1 = 0                V1 = 0V                f phase = 250Hz
          V2 = 5V               V2 = 5
          TD = {tphase/4}       TD = {tphase/2}        tphase = {1/f phase}
          TR = {trphase}        TR = {trphase}         tdphase = {trphase+pwphase/2}
          TF = {tf phase}       TF = {tf phase}
          PW = {pwphase}        PW = {pwphase}
                                                       pwphase = {-2*trphase+tphase/2}
                                                                                                                           Analysis                                                    .Options
          PER = {tphase}        PER = {tphase}         trphase = 100n
                                                       tf phase = {trphase}                                                Time Domain (Transient)                                     RELTOL: 0.01
    0                       0
                                                                                                                              Run to time: 4.5ms                                       VNTOL: 1.0m
                                                                                                                              Start saving data after: 0ms                             ABSTOL: 1.0n
                                                                                                                              Maximum step size: -                                     CHGTOL: 1p
                                                                                                                                                                                       GMIN: 1.0E-12
                                                                                                                                                                                       ITL1: 500
                                                                                                                                                                                       ITL2: 200
                                                                                                                                                                                       ITL4: 100




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                              19
4.3 Phase A Over-current Protection

                7.5V
STANDBY

                  0V
                          V(U1:STANDBY)
                7.5V

Phase A
                  0V
                          V(PH_A)
                7.5V


Phase B
                  0V
                          V(PH_B)                                                                     Io > ISD (3A)
                2.0A
                                                                                                  OUTPUT TURNED OFF
                  0A
IOUT A
                          I(U1:OUT_A1)
               0.75A


IOUT B         SEL>>                                                                              OUTPUT SHUT DOWN
              -0.75A
                     0s                                                  2.0ms                                        4.0ms   4.5ms
                          I(U1:OUT_B1)
                                                                                 Time




          •       This figure shows the simulation result of the circuit when Phase A output current exceeds
                  the ISD(3A), then OCP shutdowns the output.

                                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                         20
4.4 Phase B Over-current Protection

                                                                                                                                                                             RS is a small value to test
    RRSB (1.2  0.15),                                                                                                                                                       over current condition.
    IOUT(0.54A) at 1ms                                                Rosc 3.6kohm
                                                                                                                                                          O_A
                                                                                                       U1                                                 O_A1
                                                                   S1Cosc 560pF                                                                                                             L1
                                                                   S                                   CR      TORQUE                                                                       9.15mH          RSA
                                                                                                       VDD      OUT_B1             O_B1
                                                                   VOFF = 0.0V                                                                                                              IC = -0.5       3.5ohm
                                                                   VON = 1.0V           0              VREF_A ENABLE_B                                                                  2               1
                                                                                                       VREF_B ENABLE_A                                           RSB     3.5ohm
                                                                   +    +
                                                                                                       RS_B      OUT_B             O_B
                                                                   -    -                                                                                 O_B                      1

                                                                   ROFF = 1.2          RRSA 1.2ohm                  FIN
                                                                                                                                                          O_B1
                                                  V5               RON = 0.15                                                                                               L2
                                                                                                       RS_A       OUT_A     0      O_A
                                                                                                                                   Ph_B                                9.15mH
                                V1 = 0   T1 = 0                                                        VM      PHASE_B                                                 IC = -0.5
                                                                                                       CCP_C   PHASE_A             Ph_A
                                V2 = 0   T2 = 2000u
                                                                                                       CCP_B     OUT_A1            O_A1                                            2
                                V3 = 5   T3 = 2000.1u
                                                                                                       CCP_A   STANDBY
                                                           0                                                                                  Ven
                                                                                                       TB62206FG
               VDD                                                                       Cccp_2                    VM = 24                    T1 = 0
               5Vdc             C1        Vref AB                                        0.022uF   Cccp_1          COSC = 560PF               V1 = 0
                                10uF     3Vdc          Cv ref AB            VM1                    0.22uF          ROSC = 3.6K                T2 = 0.1u
                                                       1uF                  24V        CVM1                        CCP1 = 0.22UF              V2 = 5
                                                                                       100uF                       CCP2 = 0.01UF
                        0       0        0             0                          0     0          0                                      0
        Ph_A
        Ph_B




               250Hz Full Step
          V_PHASE_A             V_PHASE_B              PARAMETERS:
          V1 = 0                V1 = 0V                f phase = 250Hz
          V2 = 5V               V2 = 5
          TD = {tphase/4}       TD = {tphase/2}        tphase = {1/f phase}
          TR = {trphase}        TR = {trphase}         tdphase = {trphase+pwphase/2}
          TF = {tf phase}       TF = {tf phase}
          PW = {pwphase}        PW = {pwphase}
                                                       pwphase = {-2*trphase+tphase/2}
                                                                                                                           Analysis                                                    .Options
          PER = {tphase}        PER = {tphase}         trphase = 100n
                                                       tf phase = {trphase}                                                Time Domain (Transient)                                     RELTOL: 0.01
    0                       0
                                                                                                                              Run to time: 6ms                                         VNTOL: 1.0m
                                                                                                                              Start saving data after: 0ms                             ABSTOL: 1.0n
                                                                                                                              Maximum step size: -                                     CHGTOL: 1p
                                                                                                                                                                                       GMIN: 1.0E-12
                                                                                                                                                                                       ITL1: 500
                                                                                                                                                                                       ITL2: 200
                                                                                                                                                                                       ITL4: 100




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                              21
4.4 Phase B Over-current Protection

              7.5V
STANDBY

                0V
                          V(U1:STANDBY)
              7.5V
Phase A

                0V
                          V(PH_A)
              7.5V

Phase B
                0V
                          V(PH_B)

                                                                                                   OUTPUT SHUT DOWN
                0A
IOUT A

                          I(U1:OUT_A1)                                                                  Io > ISD (3A)
              2.0A
IOUT B                                                                                             OUTPUT SHUT DOWN
              SEL>>

                     0s                                     2.0ms                                  4.0ms                6.0ms
                          I(U1:OUT_B1)
                                                                                Time




          •      This figure shows the simulation result of the circuit when Phase B output current exceeds
                 the ISD(3A), then OCP shutdowns the output.

                                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                   22
5 Output Ripple Current

            600mA




   IOUT A



            SEL>>
            400mA
                    I(U1:OUT_A1)
            600mA


                                                     fchop = 101kHz
                                                                                            IOUT = 0.5A
                                         Charge mode
   IOUT B



                                              Slow decay mode Fast decay mode
            400mA
               2.54ms                                                                                2.58ms
                    I(U1:OUT_B1)
                                                             Time




   •   This figure shows the output ripple current of the Mixed Decay Mode ,which consist of
       Charge ,Slow decay ,and Fast decay mode ,with 101kHz chopping frequency.



                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                 23
5.1 Stepping Motor Phase Inductance at The Chopping Frequency



                                        Stepping Motor Phase Inductance

                          0.012

                           0.01


                          0.008
                  Ls(H)




                          0.006                                                                           Ls

                          0.004                                                                           Ls = 1.7mH @
                                                                                                           fchop=100kHz
                          0.002


                             0
                             1.E+02                1.E+03                1.E+04                  1.E+05
                                                        Frequency (Hz)




    •   Ls(H) vs. Frequency(Hz) is shown in figure above. Ls value at the chopping frequency
        (approximately 100kHz) will be used as stepping motor phase inductance.

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                            24
5.2 Ripple Current Simulation
                                                                                                                  Ls = 1.7mH is input as
                                                                                                                    the stepping motor
                                                         Rosc 3.6kohm                                            phase inductance value
                                                                                        U1
                                                         Cosc 560pF                                                             O_A
                                                                                        CR      TORQUE
                                                                                        VDD      OUT_B1             O_B1
                                                                          0             VREF_A ENABLE_B                         O_A1
                                                                                                                                                                 L1
                                                                                        VREF_B ENABLE_A                                                          1.7mH           RSA
                                                                                        RS_B      OUT_B             O_B
                                                                                                                                                                 IC = -0.5       7.9ohm
                                                                         RRSB 1.2ohm                                                                         2               1
                                                                         RRSA 1.2ohm                 FIN                               RSB     7.9ohm
                                                                                                                    O_A         O_B                      1
                                                                                        RS_A       OUT_A     0
                                                                                        VM      PHASE_B             Ph_B
                                                                                        CCP_C   PHASE_A             Ph_A        O_B1
                                                                                                                                                  L2
                                                                                        CCP_B     OUT_A1            O_A1
                                                                                                                                             1.7mH
                                                                                        CCP_A   STANDBY                                      IC = -0.5
                                                                                        TB62206FG                                                        2
          VDD                                       Cv ref AB             Cccp_2                    VM = 24                V5
          5Vdc              C1     Vref AB          1uF                   0.022uF   Cccp_1          COSC = 560PF
                            10uF   3Vdc                     VM1                     0.22uF          ROSC = 3.6K
                                                            24V          CVM1                       CCP1 = 0.22UF
                                                                         100uF                      CCP2 = 0.01UF
                    0       0                0     0                 0    0         0                                      0
        Ph_A
        Ph_B




               250Hz Full Step
          V_PHASE_A             V_PHASE_B         PARAMETERS:
          V1 = 0                V1 = 0V           f phase = 250Hz
          V2 = 5V               V2 = 5
          TD = {tphase/4}       TD = {tphase/2}   tphase = {1/f phase}
          TR = {trphase}
          TF = {tf phase}
                                TR = {trphase}
                                TF = {tf phase}
                                                  tdphase = {trphase+pwphase/2}                            Analysis                                          .Options
                                                  pwphase = {-2*trphase+tphase/2}
          PW = {pwphase}        PW = {pwphase}
                                                  trphase = 100n
                                                                                                           Time Domain (Transient)                           RELTOL: 0.01
          PER = {tphase}        PER = {tphase}
                                                  tf phase = {trphase}                                        Run to time: 4ms                               VNTOL: 1.0m
    0                       0
                                                                                                              Start saving data after: 0ms                   ABSTOL: 1.0n
                                                                                                              Maximum step size: -                           CHGTOL: 1p
                                                                                                                                                             GMIN: 1.0E-12
                                                                                                                                                             ITL1: 500
                                                                                                                                                             ITL2: 200
                                                                                                                                                             ITL4: 100




                                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                          25
5.2 Ripple Current Simulation
                      SEL>>


                      700mA



                      600mA


        Simulation    500mA
                                                                                              Current ripple

                      400mA



                      300mA
                          2.593ms    2.595ms      2.597ms    2.599ms     2.601ms    2.603ms
                              I(U1:OUT_A1)
                                                              Time




        Measurement
                                                                                              Current ripple




    •   The simulation result shows the current ripple that agrees to the measurement data.



                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2009              26
6. The Current Changing Rate

        800mA




       100%




           0A




       -100%


                 Rise time                                                 Fall time
       -800mA
                0s                                                                                        4.0ms
                     I(U1:OUT_A1)
                                                                        Time



   •     This figure shows the current changing rate (rise and fall time) that is determined by
         the phase inductance value.



                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009           27
6.1 Stepping Motor Phase Inductance at The Phase Frequency



                                        Stepping Motor Phase Inductance

                          0.012
                                                Ls = 9.15mH @
                           0.01                  fphase=250Hz

                          0.008
                  Ls(H)




                          0.006                                                                           Ls

                          0.004


                          0.002


                             0
                             1.E+02                1.E+03                1.E+04                  1.E+05
                                                        Frequency (Hz)




    •   Ls(H) vs. Frequency(Hz) is shown in figure above. Ls value at the phase frequency (250
        Hz) will be used as stepping motor phase inductance.

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                 28
6.2 Current Changing Rate Simulation
                                                                                                                     Ls = 9.15mH is input as
                                                                                                                       the stepping motor
                                                           Rosc 3.6kohm                                              phase inductance value.
                                                                                            U1
                                                           Cosc 560pF
                                                                                            CR      TORQUE
                                                                                            VDD      OUT_B1             O_B1        O_A
                                                                              0             VREF_A ENABLE_B
                                                                                            VREF_B ENABLE_A                         O_A1
                                                                                                                                                                     L1
                                                                                            RS_B      OUT_B             O_B
                                                                                                                                                                     9.15mH          RSA
                                                                             RRSB 0.5ohm                                                                             IC = -0.5       7.9ohm
                                                                             RRSA 0.5ohm                 FIN                                                     2               1
                                                                                                                                           RSB     7.9ohm
                                                                                            RS_A       OUT_A     0      O_A
                                                                                                                        Ph_B        O_B                      1
                                                                                            VM      PHASE_B
                                                                                            CCP_C   PHASE_A             Ph_A
                                                                                            CCP_B     OUT_A1            O_A1        O_B1
                                                                                                                                                      L2
                                                                                            CCP_A   STANDBY                                      9.15mH
                                                                                                                                                 IC = -0.5
                                                                                            TB62206FG
        VDD                                           Cv ref AB               Cccp_2                    VM = 24                V5
        5Vdc                C1     Vref AB            1uF                     0.022uF   Cccp_1          COSC = 560PF                                         2
                            10uF   1.25Vdc                    VM                        0.22uF          ROSC = 3.6K
                                                              24V            CVM1                       CCP1 = 0.22UF
                                                                             100uF                      CCP2 = 0.01UF
                 0      0                    0       0                 0      0         0                                      0
        Ph_A
        Ph_B




               250Hz Full Step
          V_PHASE_A                V_PHASE_B          PARAMETERS:
          V1 = 0                   V1 = 0V            f phase = 250Hz
          V2 = 5V                  V2 = 5
          TD = 0                   TD = {tphase/4}    tphase = {1/f phase}
          TR = {trphase}           TR = {trphase}     tdphase = {trphase+pwphase/2}                             Analysis                                         .Options
          TF = {tf phase}          TF = {tf phase}
          PW = {pwphase}           PW = {pwphase}
                                                      pwphase = {-2*trphase+tphase/2}
                                                                                                                Time Domain (Transient)                          RELTOL: 0.01
          PER = {tphase}           PER = {tphase}     trphase = 100n
                                                      tf phase = {trphase}
                                                                                                                   Run to time: 4ms                              VNTOL: 1.0m
    0                        0
                                                                                                                   Start saving data after: 0ms                  ABSTOL: 1.0n
                                                                                                                   Maximum step size: -                          CHGTOL: 1p
                                                                                                                                                                 GMIN: 1.0E-12
                                                                                                                                                                 ITL1: 500
                                                                                                                                                                 ITL2: 200
                                                                                                                                                                 ITL4: 100




                                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                          29
6.2 Current Changing Rate Simulation


      7.5V




                                                                                                   Current ripple
        0V
                  V(PH_A)
      7.5V




     SEL>>
        0V
                  V(PH_B)
     0.75A
                                                                                                                    VM=24V
                                              VM=24V
        0A


    -0.75A
             0s              1.0ms   2.0ms         3.0ms        4.0ms                              Current ripple
                  I(U1:OUT_A1)
                                     Time




•       The simulation result shows the current changing rate (rise and fall time) that agrees to the
        measurement data.



                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                     30
7. Optimization of The Drive Voltage VM


                                                            Rosc 3.6kohm


                                                                                           U1
                                                            Cosc 560pF
                                                                                           CR      TORQUE
                                                                                           VDD      OUT_B1             O_B1        O_A
                                                                             0             VREF_A ENABLE_B
                                                                                           VREF_B ENABLE_A                         O_A1
                                                                                                                                                                    L1
                                                                                           RS_B      OUT_B             O_B
                                                                                                                                                                    9.15mH          RSA
                                                                            RRSB 0.5ohm                                                                             IC = -0.5       7.9ohm
                                                                            RRSA 0.5ohm                 FIN                                                     2               1
                                                                                                                                          RSB     7.9ohm
                              The Drive Voltage                                            RS_A
                                                                                           VM
                                                                                                      OUT_A
                                                                                                   PHASE_B
                                                                                                                0      O_A
                                                                                                                       Ph_B        O_B                      1
                                                                                                                       Ph_A
                                Source: VM                                                 CCP_C
                                                                                           CCP_B
                                                                                                   PHASE_A
                                                                                                     OUT_A1            O_A1        O_B1
                                                                                                                                                     L2
                                                                                           CCP_A   STANDBY                                      9.15mH
                                                                                                                                                IC = -0.5
                                                                                           TB62206FG
        VDD                                            Cv ref AB             Cccp_2                    VM = 24                V5
        5Vdc                C1     Vref AB             1uF                   0.022uF   Cccp_1          COSC = 560PF                                         2
                            10uF   1.25Vdc                     VM                      0.22uF          ROSC = 3.6K
                                                               24           CVM1                       CCP1 = 0.22UF
                                                                            100uF                      CCP2 = 0.01UF
                 0      0                    0        0                 0    0         0                                      0
        Ph_A
        Ph_B




               250Hz Full Step
          V_PHASE_A                V_PHASE_B         PARAMETERS:
          V1 = 0                   V1 = 0V           f phase = 250Hz
          V2 = 5V                  V2 = 5
          TD = 0                   TD = {tphase/4}   tphase = {1/f phase}
          TR = {trphase}           TR = {trphase}    tdphase = {trphase+pwphase/2}                             Analysis                                         .Options
          TF = {tf phase}          TF = {tf phase}
          PW = {pwphase}           PW = {pwphase}
                                                     pwphase = {-2*trphase+tphase/2}
                                                                                                               Time Domain (Transient)                          RELTOL: 0.01
          PER = {tphase}           PER = {tphase}    trphase = 100n
                                                     tf phase = {trphase}
                                                                                                                  Run to time: 4.5ms                            VNTOL: 1.0m
    0                        0
                                                                                                                  Start saving data after: 0ms                  ABSTOL: 1.0n
                                                                                                                  Maximum step size: 1u                         CHGTOL: 10p
                                                                                                                   (SKIPBP)                                    GMIN: 1.0E-12
                                                                                                               Parametric Sweep                                 ITL1: 500
                                                                                                                   Voltage source                              ITL2: 200
                                                                                                                     Name: VM                                   ITL4: 100
                                                                                                                      Value list: 12, 18, 24



                                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                         31
7. Optimization of The Drive Voltage VM


7.5V




                                                                                                 Current ripple
    0V
                 V(PH_A)
7.5V




    0V
                                                                                                             VM=24V
                 V(PH_B)
                                                                                                                  VM=18V
                                         VM=24V                                                                            VM=12V
                                            VM=18V
    0A
                                                 VM=12V
SEL>>

         0s                                                  4.0ms
                                                                                                 Current ripple
                 I(U1:OUT_A1)
                                  Time




•             These figures show that the current changing rates (rise and fall time) depend on the drive voltage
              (VM). The higher current changing rate means higher phase frequency is available.



                                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                              32
Simulations index

   Simulations                                                                                           Folder name

   1.   Full Step Switching Sequence.......................................................              Full-Step

   2.   Half Step Switching Sequence.......................................................              Half-Step

   3.   STANDBY.......................................................................................   STANDBY

   4.   TORQUE........................................................................................   TORQUE

   5.   Phase A Over-current Protection....................................................              OCP_A

   6.   Phase B Over-current Protection...................................................               OCP_B

   7.   Ripple Current Simulation..............................................................          RIPPLE

   8.   Current Changing Rate Simulation.................................................                I_Step

   9.   Optimization of The Drive Voltage VM..........................................                   VM




                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                     33

More Related Content

What's hot

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
16 pf-st.current opt.ipmsm traction (1)
16 pf-st.current opt.ipmsm traction (1)16 pf-st.current opt.ipmsm traction (1)
16 pf-st.current opt.ipmsm traction (1)
fatememoatabarian
 
Sensorless vector control of psms drives wquipped with inverter output filter
Sensorless vector control of psms drives wquipped with inverter output filterSensorless vector control of psms drives wquipped with inverter output filter
Sensorless vector control of psms drives wquipped with inverter output filter
warluck88
 
Characteristics of Motor
Characteristics of MotorCharacteristics of Motor
Characteristics of Motor
Kiran George
 

What's hot (18)

IRJET- Frequency Variation in Rotor Current on Changing Mechanical Load in Th...
IRJET- Frequency Variation in Rotor Current on Changing Mechanical Load in Th...IRJET- Frequency Variation in Rotor Current on Changing Mechanical Load in Th...
IRJET- Frequency Variation in Rotor Current on Changing Mechanical Load in Th...
 
Improved Indirect Rotor Flux Oriented Control of PWM inverter fed Induction M...
Improved Indirect Rotor Flux Oriented Control of PWM inverter fed Induction M...Improved Indirect Rotor Flux Oriented Control of PWM inverter fed Induction M...
Improved Indirect Rotor Flux Oriented Control of PWM inverter fed Induction M...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Torque slip characteristics of im skerbala
Torque   slip characteristics of im skerbalaTorque   slip characteristics of im skerbala
Torque slip characteristics of im skerbala
 
Torque - Slip Characteristic of a three phase induction motor
Torque - Slip Characteristic of a three   phase induction motorTorque - Slip Characteristic of a three   phase induction motor
Torque - Slip Characteristic of a three phase induction motor
 
Naser AVEC-Sep10-2012
Naser AVEC-Sep10-2012Naser AVEC-Sep10-2012
Naser AVEC-Sep10-2012
 
Induction machines
Induction machinesInduction machines
Induction machines
 
DC GENERATORS
DC GENERATORS DC GENERATORS
DC GENERATORS
 
Torque speed curve
Torque speed curveTorque speed curve
Torque speed curve
 
3 phase Induction Motor Torque-slip characteristics and Related problems
3 phase Induction Motor Torque-slip characteristics and Related problems3 phase Induction Motor Torque-slip characteristics and Related problems
3 phase Induction Motor Torque-slip characteristics and Related problems
 
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems SolutionsSYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
SYNCHRONOUS MACHINES BY Dr. P. Kundur Power Systems Solutions
 
PV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationPV Lead Acid Battery System Simulation
PV Lead Acid Battery System Simulation
 
16 pf-st.current opt.ipmsm traction (1)
16 pf-st.current opt.ipmsm traction (1)16 pf-st.current opt.ipmsm traction (1)
16 pf-st.current opt.ipmsm traction (1)
 
Lecture note e2063
Lecture note e2063Lecture note e2063
Lecture note e2063
 
Sensorless vector control of psms drives wquipped with inverter output filter
Sensorless vector control of psms drives wquipped with inverter output filterSensorless vector control of psms drives wquipped with inverter output filter
Sensorless vector control of psms drives wquipped with inverter output filter
 
261581
261581261581
261581
 
Characteristics of Motor
Characteristics of MotorCharacteristics of Motor
Characteristics of Motor
 
SIMPLE AND FAST METHOD FOR DESIGNING A PROGRAMMABLE PSM MODE CONTROL OF A BU...
 SIMPLE AND FAST METHOD FOR DESIGNING A PROGRAMMABLE PSM MODE CONTROL OF A BU... SIMPLE AND FAST METHOD FOR DESIGNING A PROGRAMMABLE PSM MODE CONTROL OF A BU...
SIMPLE AND FAST METHOD FOR DESIGNING A PROGRAMMABLE PSM MODE CONTROL OF A BU...
 

Similar to デザインキット・モータドライブ回路の解説書

Bldc motor drive system
Bldc motor drive systemBldc motor drive system
Bldc motor drive system
controltrix
 
Bldc motor drive system
Bldc motor drive systemBldc motor drive system
Bldc motor drive system
anusheel nahar
 

Similar to デザインキット・モータドライブ回路の解説書 (20)

3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf
 
Vk
VkVk
Vk
 
CONTROL OF ELECTRICAL MACHINES
CONTROL OF ELECTRICAL MACHINESCONTROL OF ELECTRICAL MACHINES
CONTROL OF ELECTRICAL MACHINES
 
Ca31511515
Ca31511515Ca31511515
Ca31511515
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
 
デザインキット・DCモータ制御回路の解説書
デザインキット・DCモータ制御回路の解説書デザインキット・DCモータ制御回路の解説書
デザインキット・DCモータ制御回路の解説書
 
Ijeet 06 08_010
Ijeet 06 08_010Ijeet 06 08_010
Ijeet 06 08_010
 
HANCESS ATB CATALOGUE
HANCESS ATB CATALOGUE HANCESS ATB CATALOGUE
HANCESS ATB CATALOGUE
 
Stepper motors
Stepper motorsStepper motors
Stepper motors
 
Bldc motor drive system
Bldc motor drive systemBldc motor drive system
Bldc motor drive system
 
Bldc motor drive system
Bldc motor drive systemBldc motor drive system
Bldc motor drive system
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
IRJET- Design for Navigation of Underwater Remotely Operated Vehicle
IRJET- Design for Navigation of Underwater Remotely Operated VehicleIRJET- Design for Navigation of Underwater Remotely Operated Vehicle
IRJET- Design for Navigation of Underwater Remotely Operated Vehicle
 
LV SWITCHGEAR -Final PPT.pptx
LV SWITCHGEAR -Final PPT.pptxLV SWITCHGEAR -Final PPT.pptx
LV SWITCHGEAR -Final PPT.pptx
 
Electricmotors6
Electricmotors6Electricmotors6
Electricmotors6
 
Unit 3 steppermotors
Unit 3 steppermotorsUnit 3 steppermotors
Unit 3 steppermotors
 
melay and moore machine.pptx
melay and moore machine.pptxmelay and moore machine.pptx
melay and moore machine.pptx
 
00843 a
00843 a00843 a
00843 a
 
srm
srmsrm
srm
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 

More from Tsuyoshi Horigome

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Recently uploaded (20)

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 

デザインキット・モータドライブ回路の解説書

  • 1. Design Kit 2-Phase Bipolar Stepping Motor Driver Using TB62206FG All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 1
  • 2. Contents Slide # 1. Background 1.1 Bipolar Stepping Motors....................................................................................... 3 1.2 Torque vs. Speed................................................................................................. 4 1.3 Bipolar Operating Mode....................................................................................... 5-6 2. Application Circuit...................................................................................................... 7 2.1 Specification........................................................................................................ 8-9 2.2 Calculating Equations.......................................................................................... 10 3. Stepper Motor Switching Sequences 3.1 Full Step Switching Sequence............................................................................. 11-12 3.2 Half Step Switching Sequence............................................................................. 13-14 4. Functions 4.1 STANDBY............................................................................................................ 15-16 4.2 TORQUE............................................................................................................. 17-18 4.3 Phase A Over-current Protection.......................................................................... 19-20 4.4 Phase B Over-current Protection......................................................................... 21-22 5. Output Ripple Current................................................................................................ 23 5.1 Stepping Motor Phase Inductance at The Chopping Frequency.......................... 24 5.2 Ripple Current Simulation.................................................................................... 25-26 6. The Current Changing Rate....................................................................................... 27 6.1 Stepping Motor Phase Inductance at The Phase Frequency................................ 28 6.2 Current Changing Rate Simulation....................................................................... 29-30 7. Optimization of The Drive Voltage VM....................................................................... 31-32 Simulations index............................................................................................................ 33 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 2
  • 3. 1.1 Bipolar Stepping Motors • There are two winding with no center taps. • The drive circuitry requires an H-bridge control circuit for each winding, as the drive circuit need to change the polarity of each pair of motor poles. • The current sequences are shown below. • Full Step • Half Step 100% 100% Io(A) 0% Io(A) -100% -100% 100% 100% Io(B) -100% 0% Io(B)  time -100%  time All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 3
  • 4. 1.2 Torque vs. Speed Torque Running Torque 100% ideal actual Cutoff Speed  Time Max. Speed -100% Speed • The inductance of the motor winding determines the rise and fall time of the current through the winding. • The current-vs-time function through each winding depend on the drive circuitry and the motor characteristics. • The rise time is determined by the drive voltage, while the fall time depends on the circuitry used to dissipate the stored energy in the motor winding (fast or slow decay). • The effect of the inductance of the motor windings is to reduce the available torque, as shown in the Torque-vs-Speed curve. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 4
  • 5. 1.3 Bipolar Operating Mode Charge mode Slow decay mode Fast decay mode OFF OFF OFF OFF ON ON OFF OFF ON ON ON ON • These figure show how TB62206FG switches the current in each motor winding on and off, and controlling its direction, in three different modes. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
  • 6. 1.3 Bipolar Operating Mode • Charge mode, the H-bridge forward state to allow current to flow from the supply through the motor winding and onward to ground. • Slow decay mode, in this mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. • Fast decay mode, the H-bridge reverses state to allow winding current to flow in a reverse direction. U1 U2 L1 L2 Charge ON OFF OFF ON Slow OFF OFF ON ON Fast OFF ON ON OFF • In TB62206FG, three modes as shown above are automatically switched to control the constant current All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
  • 7. 2. Application Circuit Rosc 3.6kohm O_A U1 O_A1 Cosc 560pF L1 CR TORQUE RSA VDD OUT_B1 O_B1 IC = 0 0 VREF_A ENABLE_B 2 1 VREF_B ENABLE_A RSB RS_B OUT_B O_B O_B 1 RRSB 0.5ohm RRSA 0.5ohm FIN O_B1 L2 RS_A OUT_A 0 O_A VM PHASE_B Ph_B Ph_A IC = 0 CCP_C PHASE_A CCP_B OUT_A1 O_A1 2 CCP_A STANDBY TB62206FG VDD Cv ref AB Cccp_2 VM = 24 V5 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF 10uF 1.25Vdc VM1 0.22uF ROSC = 3.6K 24V CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = 0 TD = {tphase/4} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} TF = {tf phase} TF = {tf phase} pwphase = {-2*trphase+tphase/2} PW = {pwphase} PW = {pwphase} PER = {tphase} PER = {tphase} trphase = 100n tf phase = {trphase} 0 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7
  • 8. 2.1 Specification Operating Conditions Characteristics Symbol Value Unit Power supply voltage VDD 5 V Motor supply voltage VM 24 V Reference voltage VREF 1.25 V Logic input voltage VIN 5 V Output current IOUT 0.5 A Phase signal input frequency fPHASE 250 Hz Chopping frequency fchop 101 kHz Oscillation frequency fCR 813 kHz All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
  • 9. 2.1 Specification 4.0V fCR = 813kHz 3.0V 2.0V 1.0V V(U1:CR) 540mA fchop = 101kHz Charge mode 500mA IOUT = 0.5A Slow decay mode SEL>> Fast decay mode 420mA 2.540ms 2.544ms 2.548ms 2.552ms 2.556ms 2.560ms 2.564ms 2.568ms 2.572ms 2.576ms 2.580ms I(U1:OUT_A) Time • This figure shows the output current IOUT ,the oscillation frequency fCR ,and the chopping frequency fchop. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
  • 10. 2.2 Calculating Equations • The output current value (set current value) can be determined by setting the sensing resistor (RRS) and reference voltage (Vref). 1 Torque(Torque  100, 71%) IOUT   Vref  (1) 5 RRS 100 % • The oscillation frequency is calculated as follows: 1 fCR  (2) 0.523  (COSC  ROSC  600  C ) • The chopping frequency fchop is calculated as follows: fchop (3) fCR  8 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
  • 11. 3.1 Full Step Switching Sequence Rosc 3.6kohm U1 Cosc 560pF O_A CR TORQUE VDD OUT_B1 O_B1 0 VREF_A ENABLE_B O_A1 L1 VREF_B ENABLE_A 9.15mH RSA RS_B OUT_B O_B IC = -0.5 7.9ohm RRSB 0.5ohm 2 1 RRSA 0.5ohm FIN RSB 7.9ohm O_A O_B 1 RS_A OUT_A 0 VM PHASE_B Ph_B CCP_C PHASE_A Ph_A O_B1 L2 CCP_B OUT_A1 O_A1 9.15mH CCP_A STANDBY IC = -0.5 TB62206FG 2 VDD Cv ref AB Cccp_2 VM = 24 V5 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF 10uF 1.25Vdc VM1 0.22uF ROSC = 3.6K 24V CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = {tphase/4} TD = {tphase/2} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} TF = {tf phase} PW = {pwphase} TF = {tf phase} PW = {pwphase} pwphase = {-2*trphase+tphase/2} Analysis .Options trphase = 100n PER = {tphase} PER = {tphase} tf phase = {trphase} Time Domain (Transient) RELTOL: 0.01 0 0 Run to time: 8ms VNTOL: 1.0m Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p GMIN: 1.0E-12 Full-step sequences ITL1: 500 control signals ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
  • 12. 3.1 Full Step Switching Sequence Phase A 0V V(PH_A) Phase B 0V V(PH_B) Enable A 0V V(U1:ENABLE_A) Enable B SEL>> 0V V(U1:ENABLE_B) 1.0A IOUT A 0A -1.0A I(U1:OUT_A1) 1.0A 0A IOUT B -1.0A 0s 4.0ms 8.0ms I(U1:OUT_B1) Time • This figure shows the simulation result of the circuit with Full-step switching sequence. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
  • 13. 3.2 Half Step Switching Sequence Rosc 3.6kohm U1 Cosc 560pF CR TORQUE VDD OUT_B1 O_B1 O_A 0 VREF_A ENABLE_B EN_B VREF_B ENABLE_A EN_A O_A1 L1 RS_B OUT_B O_B 9.15mH RSA RRSB 0.5ohm IC = -0.5 7.9ohm RRSA 0.5ohm FIN 2 1 RSB 7.9ohm RS_A OUT_A 0 O_A Ph_B O_B 1 VM PHASE_B CCP_C PHASE_A Ph_A CCP_B OUT_A1 O_A1 O_B1 L2 CCP_A STANDBY 9.15mH IC = -0.5 TB62206FG VDD Cv ref AB Cccp_2 VM = 24 V5 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF 2 10uF 1.25Vdc VM1 0.22uF ROSC = 3.6K 24V CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 250Hz Half Step EN_A EN_B Ph_A Ph_B PARAMETERS: V_ENABLE_A V_ENABLE_B V_PHASE_A V_PHASE_B1 f phase = 250Hz V1 = 0 V1 = 5V V1 = 0 V1 = 0V V2 = 5V V2 = 0 V2 = 5V V2 = 5 tphase = {1/f phase} TD = 0 TD = {tphase/8} TD = 0 TD = {tphase/4} tdphase = {trphase+pwphase/2} TR = {trphase} TR = {trphase} TR = {trphase} TR = {trphase} pwphase = {-2*trphase+tphase/2} TF = {tf phase} TF = {tf phase} TF = {tf phase} TF = {tf phase} PW = {3*pwphase/4} PW = {1*pwphase/4} PW = {pwphase} PW = {pwphase} trphase = 100n PER = {tphase/2} PER = {tphase/2} PER = {tphase} PER = {tphase} tf phase = {trphase} 0 0 0 0 Analysis .Options Time Domain (Transient) RELTOL: 0.01 Run to time: 8ms VNTOL: 1.0m Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p Half-step sequences GMIN: 1.0E-12 control signals ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
  • 14. 3.2 Half Step Switching Sequence Phase A 0V V(U1:PHASE_A) Phase B 0V V(U1:PHASE_B) Enable A 0V V(U1:ENABLE_A) Enable B SEL>> 0V V(U1:ENABLE_B) 1.0A 0A IOUT A -1.0A I(U1:OUT_A1) 1.0A 0A IOUT B -1.0A 0s 2.0ms 4.0ms 6.0ms 8.0ms I(U1:OUT_B1) Time • This figure shows the simulation result of the circuit with Half-step switching sequence. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
  • 15. 4.1 STANDBY Rosc 3.6kohm U1 Cosc 560pF CR TORQUE VDD OUT_B1 O_B1 O_A 0 VREF_A ENABLE_B VREF_B ENABLE_A O_A1 L1 RS_B OUT_B O_B Ven 9.15mH RSA RRSB 0.5ohm T1 = 0 IC = 0 7.9ohm RRSA 0.5ohm FIN V1 = 0 2 1 T2 = 0.1u RSB 7.9ohm RS_A OUT_A 0 O_A Ph_B V2 = 5 O_B 1 VM PHASE_B CCP_C PHASE_A Ph_A 0 CCP_B OUT_A1 O_A1 O_B1 L2 CCP_A STANDBY 9.15mH V5 IC = 0 TB62206FG VDD Cv ref AB Cccp_2 VM = 24 T1 = 0 V1 = 0 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF T2 = 2000u V2 = 0 2 10uF 1.25Vdc VM1 0.22uF ROSC = 3.6K T3 = 2000.1u V3 = 5 24V CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 STANBY turn on Ph_A Ph_B 250Hz Full Step (LH) at 2ms V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = 0 TD = {tphase/4} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} TF = {tf phase} TF = {tf phase} pwphase = {-2*trphase+tphase/2} Analysis .Options PW = {pwphase} PW = {pwphase} PER = {tphase} PER = {tphase} trphase = 100n Time Domain (Transient) RELTOL: 0.01 tf phase = {trphase} 0 0 Run to time: 8ms VNTOL: 1.0m Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 10p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
  • 16. 4.1 STANDBY STANDBY 0 5V 0V V(U1:STANDBY) 30V Ccp1  Charge Pump Start 20V V(U1:CCP_A) Phase A 0V V(PH_A) Phase B 0V V(PH_B) Enable A 0V V(U1:ENABLE_A) Enable B 0V V(U1:ENABLE_B) STANDBY  TURN-ON IOUT A 0A I(U1:OUT_A1) 1.0A IOUT B SEL>> -1.0A 0s 4.0ms 8.0ms I(U1:OUT_B1) Time • This figure shows the simulation result of the circuit when V(STANDBY) changes from LH. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
  • 17. 4.2 TORQUE TORQUE (HL) at Rosc 3.6kohm 4ms U1 Cosc 560pF VTRQ CR TORQUE T1 = 0 V1 = 5 VDD OUT_B1 O_B1 T2 = 4000u V2 = 5 0 VREF_A ENABLE_B T3 = 4000.1u V3 = 0 VREF_B ENABLE_A RS_B OUT_B O_B RRSB 0.5ohm 0 RRSA 0.5ohm FIN O_A RS_A OUT_A 0 O_A O_A1 Ph_B L1 VM PHASE_B 9.15mH RSA CCP_C PHASE_A Ph_A IC = -0.5 7.9ohm CCP_B OUT_A1 O_A1 2 1 CCP_A STANDBY RSB 7.9ohm Ven O_B 1 TB62206FG VDD Cv ref AB Cccp_2 VM = 24 T1 = 0 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF V1 = 0 O_B1 10uF 1.25Vdc VM1 0.22uF ROSC = 3.6K T2 = 0.1u L2 24V CVM1 CCP1 = 0.22UF V2 = 5 9.15mH 100uF CCP2 = 0.01UF IC = -0.5 0 0 0 0 0 0 0 0 2 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = 0 TD = {tphase/4} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} TF = {tf phase} PW = {pwphase} TF = {tf phase} PW = {pwphase} pwphase = {-2*trphase+tphase/2} Analysis .Options PER = {tphase} PER = {tphase} trphase = 100n Time Domain (Transient) RELTOL: 0.01 tf phase = {trphase} 0 0 Run to time: 8ms VNTOL: 1.0m Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
  • 18. 4.2 TORQUE TORQUE 5 0V 0V V(U1:TORQUE) Phase A 0V V(PH_A) Phase B 0V V(PH_B) Enable A 0V V(U1:ENABLE_A) Enable B 0V V(U1:ENABLE_B) IOUT =100%  70% IOUT A 0A 100% 71% I(U1:OUT_A1) 500mA IOUT B SEL>> 100% 71% -500mA 0s 4.0ms 8.0ms I(U1:OUT_B1) Time • This figure shows the simulation result of the circuit when V(TORQUE) changes from HL ,then the output current changes from 100% to 71%. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
  • 19. 4.3 Phase A Over-current Protection RS is a small value to test RRSA (1.2  0.15), over current condition. IOUT(0.54A) at 1ms Rosc 3.6kohm O_A U1 O_A1 Cosc 560pF L1 CR TORQUE 9.15mH RSA VDD OUT_B1 O_B1 IC = -0.5 3.5ohm 0 VREF_A ENABLE_B 2 1 S1 VREF_B ENABLE_A RSB 3.5ohm RS_B OUT_B O_B S O_B 1 VOFF = 0.0V RRSB 1.2ohm VON = 1.0V FIN O_B1 V5 + + L2 RS_A OUT_A 0 O_A Ph_B 9.15mH V1 = 0 T1 = 0 - - VM PHASE_B IC = -0.5 CCP_C PHASE_A Ph_A V2 = 0 T2 = 1200u ROFF = 1.2 CCP_B OUT_A1 O_A1 2 V3 = 5 T3 = 1200.1u RON = 0.15 CCP_A STANDBY 0 Ven TB62206FG VDD Cccp_2 VM = 24 T1 = 0 5Vdc C1 Vref AB 0.022uF Cccp_1 COSC = 560PF V1 = 0 10uF 3Vdc Cv ref AB VM1 0.22uF ROSC = 3.6K T2 = 0.1u 1uF 24V CVM1 CCP1 = 0.22UF V2 = 5 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = {tphase/4} TD = {tphase/2} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} TF = {tf phase} TF = {tf phase} PW = {pwphase} PW = {pwphase} pwphase = {-2*trphase+tphase/2} Analysis .Options PER = {tphase} PER = {tphase} trphase = 100n tf phase = {trphase} Time Domain (Transient) RELTOL: 0.01 0 0 Run to time: 4.5ms VNTOL: 1.0m Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
  • 20. 4.3 Phase A Over-current Protection 7.5V STANDBY 0V V(U1:STANDBY) 7.5V Phase A 0V V(PH_A) 7.5V Phase B 0V V(PH_B) Io > ISD (3A) 2.0A OUTPUT TURNED OFF 0A IOUT A I(U1:OUT_A1) 0.75A IOUT B SEL>> OUTPUT SHUT DOWN -0.75A 0s 2.0ms 4.0ms 4.5ms I(U1:OUT_B1) Time • This figure shows the simulation result of the circuit when Phase A output current exceeds the ISD(3A), then OCP shutdowns the output. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
  • 21. 4.4 Phase B Over-current Protection RS is a small value to test RRSB (1.2  0.15), over current condition. IOUT(0.54A) at 1ms Rosc 3.6kohm O_A U1 O_A1 S1Cosc 560pF L1 S CR TORQUE 9.15mH RSA VDD OUT_B1 O_B1 VOFF = 0.0V IC = -0.5 3.5ohm VON = 1.0V 0 VREF_A ENABLE_B 2 1 VREF_B ENABLE_A RSB 3.5ohm + + RS_B OUT_B O_B - - O_B 1 ROFF = 1.2 RRSA 1.2ohm FIN O_B1 V5 RON = 0.15 L2 RS_A OUT_A 0 O_A Ph_B 9.15mH V1 = 0 T1 = 0 VM PHASE_B IC = -0.5 CCP_C PHASE_A Ph_A V2 = 0 T2 = 2000u CCP_B OUT_A1 O_A1 2 V3 = 5 T3 = 2000.1u CCP_A STANDBY 0 Ven TB62206FG VDD Cccp_2 VM = 24 T1 = 0 5Vdc C1 Vref AB 0.022uF Cccp_1 COSC = 560PF V1 = 0 10uF 3Vdc Cv ref AB VM1 0.22uF ROSC = 3.6K T2 = 0.1u 1uF 24V CVM1 CCP1 = 0.22UF V2 = 5 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = {tphase/4} TD = {tphase/2} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} TF = {tf phase} TF = {tf phase} PW = {pwphase} PW = {pwphase} pwphase = {-2*trphase+tphase/2} Analysis .Options PER = {tphase} PER = {tphase} trphase = 100n tf phase = {trphase} Time Domain (Transient) RELTOL: 0.01 0 0 Run to time: 6ms VNTOL: 1.0m Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
  • 22. 4.4 Phase B Over-current Protection 7.5V STANDBY 0V V(U1:STANDBY) 7.5V Phase A 0V V(PH_A) 7.5V Phase B 0V V(PH_B) OUTPUT SHUT DOWN 0A IOUT A I(U1:OUT_A1) Io > ISD (3A) 2.0A IOUT B OUTPUT SHUT DOWN SEL>> 0s 2.0ms 4.0ms 6.0ms I(U1:OUT_B1) Time • This figure shows the simulation result of the circuit when Phase B output current exceeds the ISD(3A), then OCP shutdowns the output. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
  • 23. 5 Output Ripple Current 600mA IOUT A SEL>> 400mA I(U1:OUT_A1) 600mA fchop = 101kHz IOUT = 0.5A Charge mode IOUT B Slow decay mode Fast decay mode 400mA 2.54ms 2.58ms I(U1:OUT_B1) Time • This figure shows the output ripple current of the Mixed Decay Mode ,which consist of Charge ,Slow decay ,and Fast decay mode ,with 101kHz chopping frequency. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
  • 24. 5.1 Stepping Motor Phase Inductance at The Chopping Frequency Stepping Motor Phase Inductance 0.012 0.01 0.008 Ls(H) 0.006 Ls 0.004 Ls = 1.7mH @ fchop=100kHz 0.002 0 1.E+02 1.E+03 1.E+04 1.E+05 Frequency (Hz) • Ls(H) vs. Frequency(Hz) is shown in figure above. Ls value at the chopping frequency (approximately 100kHz) will be used as stepping motor phase inductance. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 24
  • 25. 5.2 Ripple Current Simulation Ls = 1.7mH is input as the stepping motor Rosc 3.6kohm phase inductance value U1 Cosc 560pF O_A CR TORQUE VDD OUT_B1 O_B1 0 VREF_A ENABLE_B O_A1 L1 VREF_B ENABLE_A 1.7mH RSA RS_B OUT_B O_B IC = -0.5 7.9ohm RRSB 1.2ohm 2 1 RRSA 1.2ohm FIN RSB 7.9ohm O_A O_B 1 RS_A OUT_A 0 VM PHASE_B Ph_B CCP_C PHASE_A Ph_A O_B1 L2 CCP_B OUT_A1 O_A1 1.7mH CCP_A STANDBY IC = -0.5 TB62206FG 2 VDD Cv ref AB Cccp_2 VM = 24 V5 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF 10uF 3Vdc VM1 0.22uF ROSC = 3.6K 24V CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = {tphase/4} TD = {tphase/2} tphase = {1/f phase} TR = {trphase} TF = {tf phase} TR = {trphase} TF = {tf phase} tdphase = {trphase+pwphase/2} Analysis .Options pwphase = {-2*trphase+tphase/2} PW = {pwphase} PW = {pwphase} trphase = 100n Time Domain (Transient) RELTOL: 0.01 PER = {tphase} PER = {tphase} tf phase = {trphase} Run to time: 4ms VNTOL: 1.0m 0 0 Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 25
  • 26. 5.2 Ripple Current Simulation SEL>> 700mA 600mA Simulation 500mA Current ripple 400mA 300mA 2.593ms 2.595ms 2.597ms 2.599ms 2.601ms 2.603ms I(U1:OUT_A1) Time Measurement Current ripple • The simulation result shows the current ripple that agrees to the measurement data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 26
  • 27. 6. The Current Changing Rate 800mA 100% 0A -100% Rise time Fall time -800mA 0s 4.0ms I(U1:OUT_A1) Time • This figure shows the current changing rate (rise and fall time) that is determined by the phase inductance value. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 27
  • 28. 6.1 Stepping Motor Phase Inductance at The Phase Frequency Stepping Motor Phase Inductance 0.012 Ls = 9.15mH @ 0.01 fphase=250Hz 0.008 Ls(H) 0.006 Ls 0.004 0.002 0 1.E+02 1.E+03 1.E+04 1.E+05 Frequency (Hz) • Ls(H) vs. Frequency(Hz) is shown in figure above. Ls value at the phase frequency (250 Hz) will be used as stepping motor phase inductance. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 28
  • 29. 6.2 Current Changing Rate Simulation Ls = 9.15mH is input as the stepping motor Rosc 3.6kohm phase inductance value. U1 Cosc 560pF CR TORQUE VDD OUT_B1 O_B1 O_A 0 VREF_A ENABLE_B VREF_B ENABLE_A O_A1 L1 RS_B OUT_B O_B 9.15mH RSA RRSB 0.5ohm IC = -0.5 7.9ohm RRSA 0.5ohm FIN 2 1 RSB 7.9ohm RS_A OUT_A 0 O_A Ph_B O_B 1 VM PHASE_B CCP_C PHASE_A Ph_A CCP_B OUT_A1 O_A1 O_B1 L2 CCP_A STANDBY 9.15mH IC = -0.5 TB62206FG VDD Cv ref AB Cccp_2 VM = 24 V5 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF 2 10uF 1.25Vdc VM 0.22uF ROSC = 3.6K 24V CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = 0 TD = {tphase/4} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} Analysis .Options TF = {tf phase} TF = {tf phase} PW = {pwphase} PW = {pwphase} pwphase = {-2*trphase+tphase/2} Time Domain (Transient) RELTOL: 0.01 PER = {tphase} PER = {tphase} trphase = 100n tf phase = {trphase} Run to time: 4ms VNTOL: 1.0m 0 0 Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: - CHGTOL: 1p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 29
  • 30. 6.2 Current Changing Rate Simulation 7.5V Current ripple 0V V(PH_A) 7.5V SEL>> 0V V(PH_B) 0.75A VM=24V VM=24V 0A -0.75A 0s 1.0ms 2.0ms 3.0ms 4.0ms Current ripple I(U1:OUT_A1) Time • The simulation result shows the current changing rate (rise and fall time) that agrees to the measurement data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 30
  • 31. 7. Optimization of The Drive Voltage VM Rosc 3.6kohm U1 Cosc 560pF CR TORQUE VDD OUT_B1 O_B1 O_A 0 VREF_A ENABLE_B VREF_B ENABLE_A O_A1 L1 RS_B OUT_B O_B 9.15mH RSA RRSB 0.5ohm IC = -0.5 7.9ohm RRSA 0.5ohm FIN 2 1 RSB 7.9ohm The Drive Voltage RS_A VM OUT_A PHASE_B 0 O_A Ph_B O_B 1 Ph_A Source: VM CCP_C CCP_B PHASE_A OUT_A1 O_A1 O_B1 L2 CCP_A STANDBY 9.15mH IC = -0.5 TB62206FG VDD Cv ref AB Cccp_2 VM = 24 V5 5Vdc C1 Vref AB 1uF 0.022uF Cccp_1 COSC = 560PF 2 10uF 1.25Vdc VM 0.22uF ROSC = 3.6K 24 CVM1 CCP1 = 0.22UF 100uF CCP2 = 0.01UF 0 0 0 0 0 0 0 0 Ph_A Ph_B 250Hz Full Step V_PHASE_A V_PHASE_B PARAMETERS: V1 = 0 V1 = 0V f phase = 250Hz V2 = 5V V2 = 5 TD = 0 TD = {tphase/4} tphase = {1/f phase} TR = {trphase} TR = {trphase} tdphase = {trphase+pwphase/2} Analysis .Options TF = {tf phase} TF = {tf phase} PW = {pwphase} PW = {pwphase} pwphase = {-2*trphase+tphase/2} Time Domain (Transient) RELTOL: 0.01 PER = {tphase} PER = {tphase} trphase = 100n tf phase = {trphase} Run to time: 4.5ms VNTOL: 1.0m 0 0 Start saving data after: 0ms ABSTOL: 1.0n Maximum step size: 1u CHGTOL: 10p  (SKIPBP) GMIN: 1.0E-12 Parametric Sweep ITL1: 500  Voltage source ITL2: 200 Name: VM ITL4: 100  Value list: 12, 18, 24 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 31
  • 32. 7. Optimization of The Drive Voltage VM 7.5V Current ripple 0V V(PH_A) 7.5V 0V VM=24V V(PH_B) VM=18V VM=24V VM=12V VM=18V 0A VM=12V SEL>> 0s 4.0ms Current ripple I(U1:OUT_A1) Time • These figures show that the current changing rates (rise and fall time) depend on the drive voltage (VM). The higher current changing rate means higher phase frequency is available. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 32
  • 33. Simulations index Simulations Folder name 1. Full Step Switching Sequence....................................................... Full-Step 2. Half Step Switching Sequence....................................................... Half-Step 3. STANDBY....................................................................................... STANDBY 4. TORQUE........................................................................................ TORQUE 5. Phase A Over-current Protection.................................................... OCP_A 6. Phase B Over-current Protection................................................... OCP_B 7. Ripple Current Simulation.............................................................. RIPPLE 8. Current Changing Rate Simulation................................................. I_Step 9. Optimization of The Drive Voltage VM.......................................... VM All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 33